

MIT Open Access Articles

Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Meredith, Laura K., Deepa Rao, Tanja Bosak, Vanja Klepac-Ceraj, Kendall R. Tada, Colleen M. Hansel, Shuhei Ono, and Ronald G. Prinn. "Consumption of Atmospheric Hydrogen During the Life Cycle of Soil-Dwelling Actinobacteria." Environmental Microbiology Reports 6, no. 3 (November 20, 2013): 226–238.

As Published: http://dx.doi.org/10.1111/1758-2229.12116

Publisher: Wiley Blackwell

Persistent URL: http://hdl.handle.net/1721.1/99163

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

- I	

1	Title Page
2	Title: Consumption of atmospheric H ₂ during the life cycle of soil-dwelling actinobacteria
3	Authors: Laura K. Meredith ^{1,4} , Deepa Rao ^{1,5} , Tanja Bosak ¹ , Vanja Klepac-Ceraj ² , Kendall R.
4	Tada ² , Colleen M. Hansel ³ , Shuhei Ono ¹ , and Ronald G. Prinn ¹
5	(1) Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary
6	Science, Cambridge, Massachusetts, 02139, USA.
7	(2) Wellesley College, Department of Biological Sciences, Wellesley, Massachusetts, 02481,
8	USA.
9	(3) Woods Hole Oceanographic Institution, Department of Marine Chemistry and
10	Geochemistry, Woods Hole, Massachusetts, 02543, USA.
11	Corresponding author:
12	Laura K. Meredith
13	Address: 77 Massachusetts Ave., 54-1320, Cambridge, MA, 02139
14	Telephone: (617) 253-2321
15	Fax: (617) 253-0354
16	Email: predawn@mit.edu
17	Running title: Uptake of H ₂ during the life cycle of soil actinobacteria
18	Summary
19	Microbe-mediated soil uptake is the largest and most uncertain variable in the budget of
20	atmospheric hydrogen (H ₂). The diversity and ecophysiological role of soil microorganisms that
21	can consume low atmospheric abundances of H ₂ with high-affinity [NiFe]-hydrogenases is
	Author current addresses: (4) Stanford University, Environmental Earth System Science, Palo
	Alto, CA, 94305, USA. (5) Georgetown University, Communication, Culture and Technology,
	Washington, DC, 20057.

22 unknown. We expanded the library of atmospheric H₂-consuming strains to include four soil 23 Harvard Forest Isolate (HFI) Streptomyces spp., Streptomyces cattleya, and Rhodococcus equi by 24 assaying for high-affinity hydrogenase (*hhyL*) genes and quantifying H_2 uptake rates. We find 25 that aerial structures (hyphae and spores) are important for Streptomyces H₂ consumption; uptake 26 was not observed in Streptomyces griseoflavus Tu4000 (deficient in aerial structures) and was 27 reduced by physical disruption of *Streptomyces* sp. HFI8 aerial structures. H₂ consumption 28 depended on the life cycle stage in developmentally distinct actinobacteria: Streptomyces sp. 29 HFI8 (sporulating) and R. equi (non-sporulating, non-filamentous). Strain HFI8 took up H₂ only 30 after forming aerial hyphae and sporulating, while R. equi only consumed H₂ in the late 31 exponential and stationary phase. These observations suggest that conditions favoring H₂ uptake 32 by actinobacteria are associated with energy and nutrient limitation. Thus, H₂ may be an 33 important energy source for soil microorganisms inhabiting systems in which nutrients are 34 frequently limited.

35

Main Text

36 Introduction

2

Microbe-mediated soil uptake is the leading driver of variability in atmospheric H₂ and accounts 37 38 for 60% to 90% of the total H₂ sink; however, the dependence of this sink on environmental 39 parameters is poorly constrained by field and lab measurements (Xiao et al., 2007; recently 40 reviewed by Ehhalt and Rohrer, 2009). Atmospheric H₂ is an abundant reduced trace gas (global 41 average of 530 ppb) that influences the atmospheric chemistry of the troposphere and the 42 protective stratospheric ozone layer (Novelli et al., 1999). Most notably, the reaction of H₂ with 43 the hydroxyl radical (•OH) attenuates the amount of •OH available to scavenge potent 44 greenhouse gases, like methane (CH_4), from the atmosphere. The H_2 soil sink may play a

45 considerable role in buffering anthropogenic H_2 emissions, which constitute approximately 50% 46 of atmospheric H_2 sources (Ehhalt and Rohrer, 2009). A process-level understanding of the H_2 47 soil sink is required to understand the natural variability of atmospheric H_2 and its sensitivity to 48 changes in climate and anthropogenic activities.

49 Early studies established the H₂ soil sink as a biological process because of the enzymatic 50 nature of H₂ consumption (Conrad and Seiler, 1981; Schuler and Conrad, 1990; Häring and 51 Conrad, 1994). Initially, free soil hydrogenases were thought to be the primary drivers of the H₂ 52 soil sink because chemical fumigation of soils had little effect on soil H₂ uptake rates but 53 significantly reduced the active microbial consumption or production of other trace gases, *e.g.*, 54 the active microbial uptake of CO (Conrad and Seiler, 1981; Conrad et al., 1983b; Conrad, 55 1996). Only indirect evidence existed to support the notion that the soil sink was an active 56 microbial process (Conrad and Seiler, 1981; Conrad et al. 1983a; King, 2003b) until the isolation 57 of Streptomyces sp. PCB7, the first microorganism to exhibit significant consumption of 58 atmospheric H₂ (Constant et al., 2008). This organism demonstrated high-affinity (K_m ~10-50 59 ppm), low-threshold (< 0.1 ppm) H₂ uptake kinetics characteristic of uptake by environmental 60 soil samples (Conrad, 1996). Previously, only low-affinity (K_m~1000 ppm), high-threshold (> 0.5 ppm) H₂-oxidizing microorganisms were characterized, which were unable to consume H₂ at 61 62 atmospheric concentrations (Conrad et al., 1983b; Conrad, 1996; Guo and Conrad, 2008; 63 summarized by Constant et al., 2009). 64 *Streptomyces* spp. are ubiquitous soil microorganisms that degrade recalcitrant materials 65 in soils (Kieser et al., 2000). Theoretically, the observed rates of atmospheric H₂ soil 66 consumption can sustain the maintenance energy requirements for typical numbers of

67 *Streptomyces* spp. cells in soils (Conrad, 1999; Constant et al., 2010; Constant et al., 2011a).

68	However, the importance of atmospheric H ₂ as a source of energy to soil microorganisms
69	remains unknown. Atmospheric H ₂ uptake was specifically linked to a group 5 [NiFe]-
70	hydrogenase gene cluster containing genes that encode for the small and large hydrogenase
71	subunits, <i>hhyS</i> and <i>hhyL</i> , respectively (Constant et al., 2010). The <i>hhyL</i> gene is distributed
72	unevenly amongst the Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria phyla (e.g.,
73	many, but not all Streptomyces spp. possess the gene) (Constant et al., 2010; Constant et al.,
74	2011b). The link between high-affinity H_2 uptake and <i>hhyL</i> has been reported in nine
75	Streptomyces spp. and in Mycobacterium smegmatis (Constant et al., 2011b; King, 2003b), but it
76	remains untested in many soil microorganisms. Additional research adding to the library of
77	atmospheric H_2 -oxidizing bacteria is needed to identify the key microorganisms involved in H_2
78	biogeochemical cycling. Information about the genes and ecophysiology of these organisms can
79	improve the process-level understanding of the H_2 soil sink (Conrad, 1996; Madsen, 2005).
80	The life cycle of <i>Streptomyces</i> is complex and controls the timing of many physiological
81	activities, which may include H ₂ uptake (Kieser et al., 2000; Schrempf, 2008; Flärdh and
82	Buttner, 2009). In soils, Streptomyces exist predominantly as inactive spores, which germinate in
83	response to environmental triggers such as moisture and nutrient availability (Kieser et al., 2000)
84	and grow vegetatively, producing a network of mycelia that grow into the substrate (Flärdh and
85	Buttner, 2009). Over time, and in response to environmental triggers such as nutrient depletion
86	or physiological stresses, the colony differentiates to form hydrophobic aerial hyphae that break
87	the substrate surface tension and grow into the air, forming a millimeter-scale canopy in
88	immediate contact with the atmosphere (Kieser et al., 2000; Schrempf, 2008). Finally, aerial
89	hyphae differentiate and septate to form chains of resistant spores (Flärd and Buttner, 2009). In
90	cultures of Streptomyces sp. PCB7 growing on soil particles, H2 uptake coincided with the

91 presence of aerial hyphae and spores (Constant et al., 2008). It is unknown if H_2 uptake occurs at 92 the same life cycle stage in other *Streptomyces* strains and how long uptake persists in the spore 93 stage. Furthermore, the timing of atmospheric H_2 uptake in microbes that possess *hhyL*, but do 94 not sporulate has not been measured.

95 The goal of this paper is to address two questions. First, our study asks whether 96 environmental isolates and culture collection strains with the genetic potential for atmospheric 97 H_2 uptake, i.e., the *hhyL* gene, actually exhibit atmospheric H_2 uptake. To expand the library of 98 atmospheric H₂-oxidizing bacteria, we quantify H₂ uptake rates by novel Streptomyces soil 99 isolates that contain the *hhyL* and by three previously isolated and sequenced strains of 100 actinobacteria whose *hhyL* sequences span the known *hhyL* diversity. Second, we investigate 101 how H₂ uptake varies over organismal life cycle in one sporulating and one non-sporulating 102 microorganism, Streptomyces sp. HFI8 and Rhodococcus equi, respectively. These experiments 103 probe the advantage of atmospheric H₂ consumption to microbes and relationship between 104 environmental conditions, physiology of soil microbes, and H₂.

105 **Results**

106 H₂ uptake by microbial soil isolates and culture collection strains possessing *hhyL*. 107 Candidate Streptomyces strains, referred to henceforth as Harvard Forest Isolate (HFI) 108 strains, were isolated from Harvard Forest soils. PCR amplification revealed that *hhyL* encoding 109 the high-affinity [NiFe]-hydrogenase was present in six out of nine tested strains. Four of these 110 strains (HFI6, HFI7, HFI8, and HFI9) were successfully retained in culture and were used to test 111 the link between *hhyL* and H₂ uptake activity. These strains exhibited distinctive *Streptomyces* 112 traits such as pigmentation, a fuzzy appearance indicating the production of aerial hyphae 113 (Figures S1 and S2), and the distinctive earthy scent of geosmin (Schrempf, 2008). The 16S

114	rRNA gene sequences of the new isolates fell within the Streptomyces genus and were 100%
115	identical to several different strains of Streptomyces spp. (Table S1). Of two clusters that were
116	defined by Constant et al. (2011b) based on a deeply rooted split (99% of bootstrap replicates) in
117	the phylogenetic tree of hhyL amino acid sequences (Figure S3), the HFI6 - HFI9 hhyL
118	sequences group with hhyL Cluster 1. In addition to our Streptomyces isolates, we examined
119	three culture collection strains in this study to broaden representation across the hhyL clusters
120	and genera (Bergey et al., 1957): Streptomyces griseoflavus Tu4000 (Cluster 1), Rhodococcus
121	equi (Actinobacterium, Cluster 1), and Streptomyces cattleya (Cluster 2).
122	(Insert Table 1 here)
123	To test whether organisms with $hhyL$ gene sequences consume H ₂ , we measured the
124	uptake of atmospheric H ₂ in sporulated <i>Streptomyces</i> cultures and in stationary stage of <i>R. equi</i> .
125	The presence of <i>hhyL</i> predicted atmospheric H_2 uptake activity in HFI strains 6-9, <i>S. cattleya</i> ,
126	and <i>R. equi</i> , but not in <i>S. griseoflavus</i> Tu4000 (Table 1). We find that atmospheric H ₂ uptake
127	observed in strains with hhyL from Cluster 1 (Streptomyces strains HFI6 - HFI9 and R. equi) and
128	Cluster 2 (S. cattleya). The biomass-weighted H ₂ uptake rates of these isolates spanned nearly
129	two orders of magnitude (from 10 to 780 nmol min ⁻¹ g ⁻¹), and the <i>Streptomyces</i> strains that took
130	up H ₂ did so at rates more than 10-fold greater than dense stationary phase cultures of <i>R. equi</i>
131	(Table 1). R. equi consumed atmospheric H ₂ , both when grown on solid R2A medium and in
132	liquid TSB medium (data not shown). Uptake rates of Streptomyces cultures were measured on
133	solid medium because Streptomyces cultures typically do not progress through their full
134	developmental cycle in liquid medium (Flärdh and Buttner, 2009). The Michaelis-Menten
135	substrate affinity was determined from the x-intercept of Lineweaver-Burk plots of the inverse
136	relationship between the first-order H_2 uptake rate and initial headspace H_2 concentrations

137 between 0 and 35 ppm. This method can be more error prone than the non-inverse approach 138 performed over a greater range of initial H₂ mole fractions, but it better restricts H₂ uptake by 139 low-affinity hydrogenases, and has enough sensitivity to distinguish high- and low-affinity 140 uptake kinetics. K_m values of HFI strains were typically low (40-80 ppm for HFI strains), which 141 indicated that enzymatic processing of H₂ is tuned to operate efficiently at atmospheric levels of H₂ (high-affinity uptake). S. cattleya and R. equi appeared have high- or intermediate-affinity K_m 142 143 values (<1000 ppm), but did not pass the quality control measures (Experimental Procedures) to 144 be included in Table 1. The minimum H₂ concentration, or threshold, consumed by each HFI 145 strain ranged from 0.12 to 0.15 ppm, which is well below typical atmospheric mole fractions of 146 around 0.53 ppm (Table 1). S. cattleya and R. equi thresholds were also below atmospheric 147 levels at least below 0.45 and 0.30 ppm, respectively (Table 1). This study augments the library 148 of organisms that contain hhyL sequences and take up atmospheric H₂ with high-affinity and a 149 low-threshold from 10 to 16 strains.

150

H₂ uptake correlates with lifecycle stage in *Streptomyces* sp. HFI8

151 We randomly selected *Streptomyces* sp. HFI8 from our HFI strains as a representative 152 organism to determine whether high-affinity H_2 consumption depended on the stage of the life 153 cycle and how long uptake lasted in the sporulation stage. Microscopy revealed the progression 154 of strain HFI8 through developmental stages over 44 days on solid agar (Figure S4). Following 155 germination, the colonies of strain HFI8 grew as substrate mycelia (Figure S4-A). By day 1.8 the 156 lawn reached its maximal aerial coverage and grew upward as aerial hyphae formed and then 157 sporulated (Figure S4-B). The co-occurrence of partially septated aerial hyphae and spores 158 indicated that the events were not simultaneous throughout the colony (Figure S4-B). 159 Measurements of H_2 uptake revealed that H_2 consumption began only after the formation of

160	aerial hyphae and sporulation around day 2 (Figure 1). Aerial hyphae formation and sporulation
161	are stages of the life cycle often associated with nutrient limitation in Streptomyces spp. H_2
162	uptake reached a maximum rate $(9.4\pm2.3 \text{ nmol } \text{h}^{-1})$ on day 3.8, two days after sporulation had
163	begun, and then slowly decreased over the next 40 days, dropping below the detection limit of
164	± 0.24 nmol h ⁻¹ . Most cells between days 2.9 and 44 were a lawn of "dormant" spores that had
165	completed the full life cycle (Figures S4-C-H). H ₂ oxidation rates by dormant spores declined
166	slowly over the 44-day experiment to negligible rates (Figure 1). All three replicates displayed
167	similar timing, but the H ₂ uptake rates were systematically lower in the third replicate, although
168	the area coverage of the lawn and biomass was not demonstrably different among the replicates.
169	A cursory set of measurements (data not shown) indicated similar trends in H ₂ uptake over the
170	life cycle of Streptomyces sp. HFI6, Streptomyces sp. HFI7, Streptomyces sp. HFI9, and S.
171	

171 *cattleya*.

172 (Insert Table 2 here)

173 Because the formation of aerial biomass (hyphae and spores) occurred at the same time as the onset of H₂ consumption in *Streptomyces*, we asked whether H₂ uptake activity was 174 175 physically located in the aerial biomass. We isolated the aerial fraction (spores and aerial 176 hyphae) of strain HFI8 cultures by gently rolling glass beads over the entire surface of the colony 177 and transferring the beads and aerial biomass to an empty, sterile glass vial (Figure S5). H₂ 178 uptake rates were measured in whole cultures before the transfer, in the vials with the transferred 179 aerial fraction, and in the original vial with the substrate fraction that remained after the glass 180 bead procedure (Table 2, Samples 1-6; Figure S5). The experiment lasted 2-4 hours following 181 the aerial biomass transfer. H₂ uptake in the transferred aerial biomass fraction was consistently low, typically near or below the limit of detection of ± 0.24 nmol h⁻¹, and was thus often 182

183	statistically indistinguishable from zero. Low uptake rates in the aerial fraction were not the
184	result of poor biomass transfer efficiency by the glass bead procedure; glass beads transferred a
185	significant proportion (Table 2, 0.7±0.6 mg) of the aerial biomass from the replicate cultures of
186	that could be collected using a metal spatula (1.2 ± 0.5 mg). The drop in uptake also cannot be
187	explained by aging over this period, because this occurs over the course of days or weeks and not
188	hours (Figure 1). No reduction in H ₂ uptake stemming from reduced spore viability was expected
189	because the biomass transfer procedure by glass beads is based on established methods for
190	harvesting viable spores (e.g., Hirsch and Ensign, 1976; Hardisson et al., 1978). Furthermore, the
191	number of viable spores in bead-treated cultures was indistinguishable from the number of viable
192	spores obtained by transferring aerial biomass by a metal spatula from replicate vials incubated
193	at the same time. This test was done by harvesting spores by the two methods, plating spore
194	suspension dilutions, and counting the number of colony forming units as a function of the initial
195	amount of biomass (protein mass) in the spore suspensions.
196	We found that the net H_2 uptake diminished after the separation of the aerial biomass
197	from the substrate biomass (Table 2). Even in replicates where glass beads were gently rolled
198	over strain HFI8 lawns and all biomass was left in the original vial, net H_2 uptake was
199	significantly reduced (Table 2, Samples 7-12). The larger the initial H_2 oxidation rate, the larger
200	percentage reduction by the glass beads (Figure S6, linear fit, R^2 =0.93), regardless of culture age
201	or the amount of glass beads used for transfer (Samples 1-12). These experiments suggested that
202	the colony structure and the presence of intact aerial hyphae were important for H_2 uptake.
203	H ₂ uptake correlates with the growth stage of <i>Rhodococcus equi</i>

H₂ uptake correlates with the growth stage of *Rhodococcus equi*

204 (Insert Figure 2 here)

205	Only some microbes containing <i>hhyL</i> are sporulating <i>Streptomyces</i> (Figure S3). To test
206	whether H ₂ uptake by non-sporulating Actinobacterium <i>R. equi</i> is related to its lifecycle, we
207	measured the uptake of H ₂ by this organism at various stages of growth in liquid cultures (Figure
208	2). The growth phases were determined from optical density measurements of the cultures. R .
209	equi did not consume measurable quantities of H_2 during the exponential growth phase (day 1 to
210	4), but started taking up H_2 in the late exponential growth phase (day 4 to 7) and in the stationary
211	phase (day 7 to 17) until the end of the experiment (Figure 2). The late exponential phase and
212	stationary phase growth stages are associated with nutrient limitation.
213	The low H ₂ uptake rates by <i>R. equi</i> were much closer to the experimental detection limit
214	than <i>Streptomyces</i> sp. HFI8. This suggested that the lack of uptake could be related to low <i>R</i> .
215	equi cell densities in late exponential and early stationary phase rather the altered cell
216	physiology. To test this, we concentrated cells from a culture in exponential growth phase (day
217	1.9) into either fresh medium or sterile water to match the cell densities (Figure 2b) of H_2 -
218	oxidizing cultures in the late exponential and early stationary phases (comparable to those on
219	days 4-6). In spite of the comparable cell densities, cells concentrated in this manner did not
220	consume H ₂ (-0.075 \pm 0.15 nmol h ⁻¹ , Figure 2a). In addition, we diluted cells in stationary phase
221	(day 7.8) into fresh medium or water to obtain suspensions whose cell densities matched those
222	during days 2-3 of the exponential phase (Figure 2). Although H ₂ oxidation rates of the
223	exponentially growing cultures on days 2 and 3 were below the limit of detection (± 0.12 nmol h ⁻
224	¹), comparably dense cells derived from the diluted stationary phase cultures took up H_2
225	$(0.43\pm0.047 \text{ nmol } h^{-1})$. All cultures were shaken vigorously to ensure the delivery of H ₂ into the
226	medium. Some extracellular factors of relevance to H ₂ uptake, such as extracellular
227	hydrogenases, may have been carried over into the diluted suspensions. The decrease in the

228 uptake of H₂ by stationary phase cells (74% of undiluted uptake) did not scale with the dilution (22% of the undiluted cell biomass), which corresponds to a relative mismatch factor of 3.5 in H_2 229 230 uptake versus dilution. The reason is unclear, and could result from H₂ substrate diffusion 231 limitation in very dense cultures, which was partially alleviated upon dilution. If the cultures 232 were diffusion limited for H₂ substrate, the observed H₂ oxidation rate (Table 1) and H₂ uptake rates during late exponential and stationary phases (Figure 2) may underestimate the potential H₂ 233 234 uptake by cultures of *R. equi*. The uptake of H₂ only by stationary phase cells, either in the old 235 culture medium or when resuspended in fresh medium or water, related the uptake of H₂ to the late exponential and stationary phases. Overall, these tests linked R. equi H₂ consumption with 236 237 growth phase.

- 238 **Discussion**
- 239

Link between *hhyL* and H₂ uptake

240 Our results confirm links between *hhyL* and H₂ uptake to include *R. equi*, four 241 Streptomyces HFI soil isolates from Cluster 1, and S. cattleya from Cluster 2, thereby providing 242 additional support for the use of the high-affinity hydrogenase gene hhyL as a predictor for the 243 capability to consume atmospheric hydrogen. H₂ uptake by *hhyL* by strains from Clusters 1 and 2 244 indicate that the phylogenetic divergence between the two groups does not compromise 245 atmospheric H_2 uptake activity by *hhyL*, or its prediction. Strains HFI6 - HFI9 exhibit high H_2 246 uptake affinities and low uptake thresholds. Culture collection strains exhibit more variable H₂ 247 uptake kinetics, in keeping with a recent suggestion that H₂ consuming microorganisms exhibit a 248 continuum of affinities rather than a discrete grouping of high and low affinities (Constant et al., 249 2010). Current observations of high-affinity H₂ uptake are limited to the Actinobacteria, and 250 future studies are required to determine whether H_2 uptake occurs in the other phyla containing

251 the *hhyL* gene, such as Chloroflexi, Planctomycetes, Verrucomicrobia, and Proteobacteria 252 (Figure S3). A genome data-mining investigation revealed the ubiquity of *hhyL* in DNA 253 extracted from forest, desert, agricultural, and peat soils samples, and although some evidence 254 suggests a correlation between soil H₂ uptake rates and the number of H₂-oxidizing bacteria, no 255 correlation was found between *hhyL* DNA copies and soil H₂ uptake rates (Constant et al., 256 2011a; Constant et al., 2011b). Future work should be aimed both at understanding the diversity 257 and ecophysiology of these *hhyL*-containing microorganisms and at developing methods to 258 predict H₂ uptake activity across ecosystems.

259

H₂ uptake and the developmental cycle of actinobacteria

260 Our results support a correlation between the developmental stage of *Streptomyces* spp. 261 and high-affinity H₂ uptake in two ways. First, we did not observe any H₂ uptake in the substrate 262 mycelium developmental phase of *Streptomyces* sp. HFI8. H_2 uptake began only after the 263 formation of aerial hyphae and sporulation. Second, we found that S. griseoflavus Tu4000, which 264 grew predominantly as substrate mycelium, did not take up H₂. We propose that the impaired 265 development (i.e. lack of aerial hyphae and/or spores) of S. griseoflavus Tu4000 may impair the 266 production or activity of its high-affinity hydrogenase. In culture, S. griseoflavus Tu4000 is 267 smooth and waxy, and does not produce the aerial hyphae typical of *Streptomyces* grown on 268 solid culture (Figure S1 and S2). S. griseoflavus Tu4000 may belong to a class of bld (bald) 269 mutants that are often deficient in aerial hyphae production (Kieser et al., 2000). Sporulation 270 efficiency is also often reduced in *bld* mutants (Szabó and Vitalis, 1992), and S. griseoflavus 271 Tu4000 does not form spores on various types of media (J. Blodgett, personal communication), 272 including our cultures. To our knowledge, S. griseoflavus Tu4000 is the first hhyL-containing 273 Streptomyces sp. found to be unable to oxidize atmospheric H_2 under the same experimental

274 conditions that lead to H₂ oxidation by other *Streptomyces* spp. High-affinity H₂ uptake is also 275 absent from Cluster 1 hhyL containing cultures of a gram-negative beta-proteobacterium 276 Ralstonia eutropha H16 (formerly known as Alcaligenes eutropha 16) grown on solid medium 277 and tested for uptake in suspensions (Conrad et al., 1983b). Future experiments could compare 278 sporulating Streptomyces with their bld mutants or stimulate the formation of aerial hyphae 279 and/or sporulation in *bld Streptomyces* spp. mutants by application of exogenous δ -butyrolactone 280 factor (Ueda et al., 2000; Straight and Kolter, 2009), and determine the effect of this stimulation 281 on H₂ oxidation or *hhyL* expression. In summary, the combined lack of aerial hyphae, spores, 282 and H₂ uptake in S. griseoflavus Tu4000 and the co-occurrence of these phenotypes in strain 283 HFI8 underscored a strong developmental control of atmospheric H₂ uptake in *Streptomyces*. 284 These observations motivate the use of *Streptomyces* mutants arrested at different points in the 285 developmental cycle to investigate the regulation and physiological role of hhyL in sporulating 286 actinobacteria.

Our measurements of H₂ uptake in HFI8 colonies disturbed by glass beads indicate that 287 288 H₂ uptake depends on the physical structure of *Streptomyces* aggregates. Cultures treated by 289 glass beads take up less H_2 , suggesting that the activity of the hydrogenase is impaired by the 290 disturbance of the aerial structures. H_2 uptake by the disrupted colony could decrease because of 291 loss in structural support, loss in signaling and nutrient transport within the bacterial lawn 292 (Miguélez et al., 1999), or reduction in the aerial hyphae surface area in contact with the air. 293 Therefore, we attribute the observed decrease in H_2 uptake to physical destruction of the lawn 294 and colony structure of Streptomyces.

295 The H₂ uptake by non-sporulating batch cultures of *R. equi* occurs only during late
296 exponential and stationary phase, suggesting that its H₂ consumption may support metabolism

297 under nutrient-limiting conditions. Similarly, H₂ uptake by strain HFI8 is present only during 298 those stages of its life cycle associated with nutrient-limiting conditions, suggesting that H₂ may 299 be an important energy source for *Streptomyces* under stress. This is consistent with previous 300 reports of H₂ oxidation by *M. smegmatis*, a non-sporulating Actinobacterium with a Cluster 1 301 high-affinity [NiFe]-hydrogenase that can persist for many years in host tissue in a nutrient-302 deprived stationary phase (Smeulders et al, 1999; King, 2003b). M. smegmatis expresses the 303 hydrogenase gene under starvation conditions and mutants lacking this hydrogenase have a 304 reduced growth yield under these conditions (Berney and Cook, 2010). Therefore, the ability to 305 scavenge low concentrations of H₂ may be an important adaptation of various sporulating and 306 non-sporulating actinobacteria (Prescott, 1991; Smeulders et al, 1999; Scherr and Nguyen, 307 2009). This could be particularly true in terrestrial environments were nutrient concentrations are 308 often low for extended periods and atmospheric H₂ is available.

309

Implications for soil H₂ uptake in the environment

310 Uptake of atmospheric H_2 by spores, which are often considered to be metabolically 311 dormant, may have consequences for both the sporulating microbes and the cycling of H₂ in the 312 environment. H₂ oxidation rates in cultures of strain HFI8 continue to increase for two days after 313 the onset of sporulation. This could reflect heterogeneity in the sample, because not all cells 314 sporulate simultaneously, or maximum H_2 uptake by already formed spores. In any case, 315 measurable H₂ oxidation in sporulated cultures persists for over a month, such that the time-316 integrated H₂ oxidation in any culture is much larger in spore state than at any other stage in the 317 life cycle. Net H₂ consumption by HFI8 is at least tenfold larger in the spore state (days 4-44) 318 than during the growth of substrate mycelium (through day 1.1) and formation of aerial hyphae 319 (after day 1.8) combined. One should also keep in mind that the H_2 uptake rates measured in

320	culture studies depend on the specific medium, and may not be directly translated to different
321	media or soil types, where the nutritional characteristics, moisture levels, and cell abundances
322	likely differ. The persistence of H ₂ oxidation by <i>Streptomyces</i> spp. may have consequences for
323	environmental H ₂ cycling and environmental conditions that promote the removal of atmospheric
324	H ₂ . Conditions that favor germination and growth, including soil moisture and nutrient
325	availability (Kieser et al., 2000), may increase the population of Streptomyces spp. in the
326	substrate mycelium phase and actually limit the amount of H ₂ oxidized by soils. During
327	moisture- or nutrient-limiting conditions, a greater fraction of the population of Streptomyces
328	spp. will be in life cycle stages linked with H ₂ uptake (aerial hyphae and spores).
329	Counterintuitively, H ₂ uptake by <i>Streptomyces</i> spp. may be most significant when the
330	environmental conditions are the harshest. H ₂ uptake in spores under our experimental conditions
331	is reduced to negligible levels after about a month (Figure 1), indicating that H ₂ uptake may be
332	very low in environments where conditions are harsh for long periods, such as deserts.
333	Ultimately, the goal of studying microbial influences on trace gas fluxes is to understand
334	and predict emergent biogeochemical cycling in the environment. This study describes H_2
335	consumption by two developmentally distinct actinobacteria under nutrient-limiting conditions.
336	Field measurements along a chronosequence of recent volcanic deposits support this notion by
337	suggesting that relative uptake of H_2 by the soil microbial community (normalized by soil
338	respiration rates) is most important when soils were limited by organic carbon (King, 2003a).
339	However, insignificant or even opposing trends also exist (Conrad and Seiler, 1985; Rahn et al.,
340	2002), which may be driven by other factors. Future studies are also needed to determine the
341	impact of nutrient- and moisture-limiting conditions on H ₂ uptake by soils and to consider the
342	significance and implications of the energetic supply from H_2 for the microorganisms in the

343 competitive soil environment. A better understanding of the process-level controls on microbe344 mediated H₂ soil uptake is critical for evaluating the impact of a changing climate on the soil H₂
345 uptake and the impact of continued anthropogenic H₂ emissions on atmospheric chemistry and
346 climate.

347

348 Experimental Procedures

349 Microbial Strains

350 Streptomyces spp. were isolated from soils within the footprint of the Environmental 351 Measurement Site (EMS) atmospheric trace gas flux tower at the Harvard Forest Long Term 352 Ecological Research site in Petersham, MA ($42^{\circ}32'N$, $72^{\circ}11'W$). Atmospheric H₂ fluxes were 353 concurrently measured at the same site (Meredith, 2012). Harvard Forest is a mixed deciduous 354 forest with acidic soils originating from sandy loam glacial till (Allen, 1995). Most H₂ 355 consumption occurs within the first few centimeters of soil beneath the litter layer (Yonemura et al., 2000; Smith-Downey et al., 2008); therefore, samples were collected from the uppermost six 356 357 inches of soil after removal of the leaf litter. Sporulating soil organisms such as Streptomyces 358 spp. were enriched for using desiccation and chemical destruction (El-Nakeeb and Lechavalier, 359 1963; Schrempf, 2008). Soils were dried for 3-4 hours at 55°C. Dry soil samples (1 g) were 360 ground with a mortar and pestle and were combined with $CaCO_3$ (1 g). The soil mixtures were 361 incubated for 2 days at 28°C in 100x15 mm polystyrene Petri dishes (sterile, polystyrene, 362 100x15 mm, VWR, Radnor, PA), with moistened filter paper (11.0 cm diameter, Grade 1, 363 Whatman®, Kent, ME) fitted in the lids to maintain a humid environment. After this period, 364 incubated soil mixtures were suspended in 100 ml sterile water and thoroughly vortexed. After

settling for 30 min, soil suspensions were serially diluted, and the 10^{0} , 10^{-2} , and 10^{-4} dilutions 365 366 were spread onto R2A plates (DifcoTM R2A, BD, Franklin Lakes, NJ) that had been treated with 367 88 mg cycoheximide / L medium (Porter et al., 1960). After incubation at 30°C for 3-5 days, 368 microbial colonies were screened for the presence of any of the following four distinctive 369 Streptomyces traits: 1) antibiotic inhibition of neighboring growth (*i.e.*, zone of clearing), 2) a 370 fuzzy appearance indicating the production of aerial hyphae (Figures S1 and S2), 3) 371 pigmentation, or 4) the distinctive earthy scent of geosmin (Schrempf, 2008). Those exhibiting 372 any of the traits were serially transferred onto fresh R2A plates until pure isolates were obtained. 373 The resulting set of isolates, henceforth referred to as Harvard Forest Isolates (HFI), was 374 maintained in culture on R2A agar at room temperature. Strains HFI6, HFI7, HFI8, and HFI9 375 were deposited to the United States Department of Agriculture NRRL Culture Collection for 376 preservation as NRRL B-24941, NRRL B-24943, NRRL B-24942, and NRRL B-24940, 377 respectively. 378 Strains from culture collections that were used in this study have published genomes 379 accessible in the National Center for Biotechnology Information (NCBI) databases 380 (http://www.ncbi.nlm.nih.gov/). Streptomyces griseoflavus Tu4000 (accession NZ GG657758) 381 was kindly provided by the genome authors and collaborators (Michael Fischbach, John Clardy, 382 Joshua Blodgett). The following strains were obtained from culture collections: *Rhodococcus* 383 equi ATCC 33707TM (accession CM001149) and Streptomyces cattleya NRRL 8057 (accession 384 NC 016111).

385

DNA extraction and PCR amplification

386 DNA was extracted using the PowerSoil[®] DNA Extraction Kit (MoBio Laboratories,
387 Carlsbad, CA) from colonies. PCR amplification of 16S rRNA and *hhyL* genes, respectively, was

388	performed using a Mastercycler [®] pro (Eppindorf, Hamburg, Germany) in 25 μ l reaction volumes
389	with the following reaction mixture: 12.125 μ l ddH2O, 1.25 μ l BSA (Roche, Indianapolis, IN),
390	2.5 μl 10x Ex Taq Buffer (TaKaRa), 0.125 (5 units/ $\mu l)$ Ex Taq (TaKaRa), 2 μl dNTP (2.5 mM
391	TaKaRa), 2.5 μ l of each primer suspended at 3 μ M (IDT, Coralville, IA). The 16S rRNA gene
392	was amplified using universal primers 27F:5'-AGA GTT TGA TCC TGG CTC AG-3' and
393	1492R:5'-ACG GCT ACC TTG TTA CGA CTT-3' (Lane, 1991), and hhyL gene was amplified
394	using NiFe244F:5' - GGG ATC TGC GGG GAC AAC CA -3' and NiFe-1640R:5'-TGC ACG
395	GCG TCC TCG TAC GG -3' (Constant et al., 2010). The following program was used: 5 min
396	initial denaturation at 95°C, followed by 30 cycles consisting of 30 s template denaturation at
397	95°C, 30 s hold at the primer annealing temperature, 1.5 min extension at 72°C, and a final
398	extension at 72°C for 5 min. Annealing temperatures of 50°C and 60.7°C were used for the
399	amplification of the 16S rRNA and <i>hhyL</i> genes, respectively. The <i>hhyL</i> annealing temperature
400	was optimized over a temperature gradient spanning eight temperatures between 50°C and
401	62.2°C using S. griseoflavus Tu4000 DNA as template.
402	Each HFI strain was evaluated for the presence of a putative group 5 [NiFe]-hydrogenase
403	by gel electrophoresis of the <i>hhyL</i> gene PCR reaction product. Gels were cast (1% agarose, 5µl
404	GelRed nucleic acid stain (Biotum, Hayward, CA)), loaded (5µl PCR product and 2µl DNA
405	loading dye (Fermentas, Glen Burnie, MD)), run (100 V for 1 hr), and visualized (UVP
406	MultiDoc-It TM Digital Imaging System (UVP, Upland, CA)) to verify successful PCR
407	amplification. Migration of HFI strain PCR product was compared to the S. griseoflavus Tu4000
408	hhyL gene as a positive control and to the DNA Molecular Weight Marker X (Roche,
409	Indianapolis, IN) ladder for reference.

410 Gene sequencing and sequence analysis

411	PCR products were sequenced at Genewiz (Cambridge, MA) following the
412	manufacturer's sample preparation guidelines. Both 16S rRNA and hhyL gene sequences
413	(trimmed for >Q30) were identified by BLASTN (Altschul et al., 1990) and listed in Table
414	S1. Hydrogenase <i>hhyL</i> amino acid sequences were aligned using ClustalW (Larkin et al., 2007)
415	and phylogenetic analyses were carried out in Mega 5.2 (Tamura et al., 2011). Relationships
416	were determined using a Maximum Likelihood method based on the Whelan and Goldman
417	model (Whelan and Goldman, 2001) and checked for consistency using parsimony. The hhyL
418	gene from archaeon Sulfolobus islandicus HVE10/4 was used as an outgroup. A 100 bootstrap
419	maximum likelihood tree was constructed using Mega 5.2.
420	The gene sequences obtained for strains HFI6, HFI7, HFI8, and HFI9 were deposited in
421	GenBank under accession numbers KC661265, KC661266, KF444073, and KF444074 for the
422	16S rRNA genes and under accession numbers KC661267, KC661268, KC661269, and
423	KC661270 for the <i>hhyL</i> genes. 16S rRNA gene sequences were compared with published
424	sequences in the National Center for Biotechnology Information (NCBI) gene databases
425	(BLASTN, http://blast.ncbi.nlm.nih.gov) for phylogenetic identification (Table S1).
426	H ₂ uptake assays
427	H_2 oxidation rates were determined routinely by measuring the decrease in H_2 mole

fractions in the microbial culture headspace over time. Microbial strains were cultivated
aerobically on solid (R2A) or liquid (TSB) medium inside 160 ml glass serum vials. H₂ uptake
rate measurements were initiated by isolating the serum vial headspace from the atmosphere with
a crimped stopper and vials were slightly pressurized after closure by adding 15 ml of sterile lab
air. Liquid cultures were continuously agitated at 200 rpm during the H₂ uptake assay to facilitate
gas exchange across the air-liquid interface. The change in headspace H₂ was measured three

times at approximately forty-minute intervals. H₂ uptake followed apparent first-order kinetics over the small range (0.1 to 4 ppm) of laboratory atmospheric H₂ mole fractions: H₂(t) = H₂(0) e^{-bt} . First-order rate constants were determined from the slope (-b) of the logarithmic decrease in the headspace H₂ mole fraction. H₂ oxidation rates are reported at a H₂ mole fraction of 530 ppb, the estimated global mean (Novelli et al., 1999).

439 H₂ mole fractions were measured using a Gas Chromatograph (GC, Model 2014, 440 Shimadzu Co., Kyoto, Japan) retrofitted with a Helium ionization Pulsed Discharge Detector 441 (HePDD, D-4-I-SH17-R Model, Valco Instruments Co. Inc., Houston, Texas). The instrument is 442 similar to a recently described system for measuring H₂ at atmospheric levels (approximately 530 ppb) and has an improved precision, linearity and stability compared to methods that use a 443 444 mercuric oxide detector (Novelli et al., 2009). Details of the instrument design and performance 445 are publically accessible in Meredith (2012). Stainless steel flasks containing compressed air 446 were used as working standards with ambient H_2 mole fractions. These were calibrated using the 447 GC-HePDD system against a tertiary standard (514.3 ppb H₂ in air, aluminum 150A tank, Airgas, Radnor, PA) tied to the NOAA CMD/ESRL H₂ scale. Precisions, assessed by repeated 448 449 standard measurements, were typically <1% (1 sigma) on the Shimadzu GC-HePDD. 450 The precision for H₂ oxidation rate measurements is taken as two times the standard 451 deviation of measurements of the H_2 uptake in sterile control vials containing the same (liquid or 452 solid) medium as the culture vials. This precision serves as the effective detection limit, that is, 453 the minimum H₂ oxidation rate that is distinguishable from zero by the measurement. Detection 454 limits were determined separately for the time series of H_2 uptake rates measured in control vials 455 for strain HFI8 and R. equi because of the difference in medium, and were between (±0.12 and

 ± 0.24 nmol h⁻¹). H₂ uptake thresholds were determined after allowing the cultures to take up H₂ 456 457 mole fractions for at least 90 minutes until headspace H₂ mole fractions reached stable values. 458 The Michaelis-Menten substrate affinity (K_m) describes the affinity of H₂ uptake, relevant 459 to the broad range of H₂ concentrations that occur in soils (H₂ mole fractions ranging from 0.01 460 to 1000 ppm) (Schink, 1997; Constant et al., 2008). Kinetic parameters of H₂ uptake were 461 determined in sporulated Streptomyces cultures and in the stationary phase cultures of R. equi. 462 The dependency of H₂ uptake rates on initial H₂ mole fractions were determined over a range of 463 initial headspace H₂ mole fractions (set at about eight levels between 0.5 and 35 ppm H₂ by 464 injecting a 1% H₂ in N₂ mix into the sealed headspace). Headspace H₂ was measured twice, 15 465 minutes apart in each culture containing different initial H₂ concentrations, and H₂ uptake was calculated from the linear uptake rate. The K_m and the maximum reaction rate (V_{max}) for each 466 467 strain was determined from Lineweaver-Burk (LB) plots of the inverse of the uptake rate (1/V)468 versus the inverse of the substrate concentration (1/S) the initial H₂ mole fraction. K_m was 469 determined as the $K_m = -1 / x$ -intercept and Vmax as $V_{max} = 1/y$ -intercept (Constant et al., 2008). 470 As a crosscheck for the quality of the reported kinetic parameters, Eadie-Hofstee (EH) plots of V 471 versus V/S were used to determine K_m from K_m = -slope. K_m and V_{max} values were reported for a 472 given strain only if the LB and EH K_m values methods agreed within 50%. A typical LB and EH 473 plot is shown in Figure S7. H_2 uptake thresholds were determined after allowing the cultures to 474 take up H₂ mole fractions for at least 90 minutes until headspace H₂ mole fractions reached 475 stable values.

476

Lifecycle analysis of Streptomyces spp.

477 The life cycle of *Streptomyces* spp. cultures was tracked in parallel with the H₂ uptake to
478 test the influence of developmental stage on atmospheric H₂ uptake. Serum vials (160 mL)

479 containing 10 ml of R2A medium were inoculated with 100 µl of the spore suspension onto the
480 agar surface. Control vials were supplemented with 100 µl sterile H₂O. The developmental stages
481 were assessed by microscopy, using a Zeiss Axio Imager.M1 microscope and Axio Cam MRm
482 camera using Axio Vision (4.8) software (Zeiss, Peabody, MA).

483 Growth rates of filamentous organisms grown on solid media are difficult to measure; instead, photographs of the fractional area covered by *Streptomyces* colonies in the serum vial 484 485 were used as an indication of growth rate. Final aerial biomass was quantified by a protein assay. 486 Aerial biomass was aseptically harvested using a metal spatula and transferred to 1.5 ml tubes 487 containing 0.3 g of glass beads (0.2 mm diameter) and 0.7 ml water. Cells were vortexed for 5 488 min at 2000 rpm followed by cooling on ice and then sonicated with three 30 s bursts and 1 min 489 intermittent cooling on ice. Residues of membranes and nucleic acids were removed by transferring 0.5 ml of the protein extract to Costar[®] Spin-X[®] microcentrifuge filter tubes 490 491 (Corning, Inc., Corning, NY) and centrifuging at 10,000 rpm for 15 minutes. Protein 492 concentrations were determined using the Pierce BCA protein assay kit (Thermo Scientific, 493 Rockford, IL) and a Synergy 2 Microplate Reader (BioTek, Winooski, VT) controlled by Gen5 494 (1.04.5) software.

To determine whether H_2 uptake in the aerial fraction (containing hyphae and spores) of a *Streptomyces* culture would continue to take up H_2 when separated from the substrate mycelium and medium, H_2 uptake rates were measured before and after by gently rolling between 2.5 and 10 g of 4 mm glass beads (Table 2) over *Streptomyces* sp. HFI8 lawns of various ages (2-15 days). The lawns grew on R2A solid medium in a serum vial and the aerial biomass was transferred to a sterile glass serum vial containing no medium (Figure S5). H_2 uptake rates were measured in the original culture vial, the lawn was treated with the glass beads and aerial

502 biomass was transferred immediately by moving the glass beads to a sterile vial. H₂ uptake rates 503 were measured over the next 2-4 h in the sterile vial containing the isolated aerial biomass on 504 glass beads, and in the original vial containing medium and the remaining substrate mycelium. 505 The amount of biomass that was transferred was quantified using the protein assay described 506 above. This procedure was performed for six replicates at different time points after sporulation 507 and with different amounts of glass beads (Table 2, Samples 1-6). In addition, the effect of the 508 glass beads on H₂ uptake in the absence of transfer was tested in six control samples. These 509 samples were treated with the glass beads, but the beads remained in the original vials (Table 2, 510 Samples 7-12) and H_2 uptake rates were measured in the same vials before and after disruption 511 by glass beads.

512

Growth phase analysis of R. equi

513 The relationship between the growth phase and H_2 uptake of *R. equi* was assessed in 514 liquid cultures. R. equi was inoculated by adding 100 µl of a cell suspension into 20 ml sterile TSB (Bacto[™] Triptic soy broth, BD) liquid medium in 160 ml glass serum vials. All cultures 515 516 were incubated at 30°C and shaken at 200 rpm. Growth was monitored by measuring the optical 517 density (OD) of *R. equi* cultures as the absorbance at 600 nm at 25°C in the Synergy 2 518 Microplate Reader. The relationship between OD and protein concentration was established by 519 constructing a calibration curve between OD measurements of serial dilutions with known 520 protein concentrations. R. equi protein concentrations were determined using the same general 521 procedure as described for the *Streptomyces* spp. The growth phase in *R. equi* cultures were 522 established using the semilogarithmic plot of the growth curve (Figure 2), where the exponential 523 growth phase is taken as the period with the maximum, sustained positive slope. Late 524 exponential phase was defined as the time when the growth rate slowed down, as identified by a

decreasing slope of the growth curve. Finally, stationary phase occurred where the growth curveslope was zero.

527 H₂ uptake by *R. equi* was low. A concentration/dilution experiment was performed to test 528 whether the negligible H₂ oxidation rates at low cell densities in early exponential growth phase 529 were the result of a lack of H₂ oxidation activity or the low signal-to-noise ratio due to the small 530 number of active cells. R. equi cultures were inoculated at the beginning of the experiment, 531 concentrated in exponential phase on day 1.9 by centrifugation at 8000 rpm for 10 min, and re-532 suspended into either fresh TSB or in sterile H₂O to final densities of 160 and 110-µg protein ml⁻ ¹ in TSB and H_2O , respectively. This was within the range of densities observed in late 533 exponential and stationary phases (100-230 μ g protein ml⁻¹). Additionally, a sample was taken 534 535 on day 7.8 in stationary phase (at a density of 190 μ g protein ml⁻¹) and was diluted in TSB or sterile H₂O to cellular densities of 45 and 38 μ g protein ml⁻¹ respectively, to match the density in 536 the early exponential phase (10-100 μ g protein ml⁻¹). For both the concentration and dilution 537 538 experiments, the cell pellets resulting from centrifugation were not washed during the procedure 539 so that some extracellular material and original culture medium (< 1 ml) was diluted into fresh TSB or H₂O to a maximum final concentration of $1/5^{\text{th}}$. H₂ uptake rates in the headspace of the 540 541 concentrated or diluted samples were measured as described above.

542

Acknowledgements

543 The authors are grateful to Paula Welander for advice in the lab and to Diane Ivy for 544 assistance with measurements. Strain *Streptomyces griseoflavus* Tu4000 was kindly contributed 545 to this study by genome authors Michael Fischbach and John Clardy via Joshua Blodgett. L.K.M. 546 is grateful for the opportunity to attend the MBL Microbial Diversity Course. L.K.M. was 547 supported by from the following funding sources: NSF Graduate Research Fellowship, multiple

548	grants from NASA to MIT for the Advanced Global Atmospheric Gases Experiment (AGAGE),
549	MIT Center for Global Change Science, MIT Joint Program on the Science and Policy of Global
550	Change, MIT Martin Family Society of Fellows for Sustainability, MIT Ally of Nature Research
551	Fund, MIT William Otis Crosby Lectureship, and MIT Warren Klein Fund. D. R. was funded
552	through MIT Undergraduate Research Opportunities Program (UROP) with support from the
553	Lord Foundation and Jordan J. Baruch Fund (1947) and was supported by the Harvard Forest
554	REU Program.
555	
556	Conflict of Interest
557	Authors and co-authors have no conflicts of interest to declare.
558	
559	References
560	Allen, A. (1995) Soil science and survey at Harvard Forest. Soil Surv Horiz 36
561	Altschul, S.F., Gish W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic Local Alignment
562	Search Tool. J Mol Biol 215: 403–410.
563	Bergey, D.H. and Gibbsons, N.E. (1957) Bergey's manual of determinative bacteriology, 7th
564	edn. Baltimore, USA: Williams & Wilkins Company.
565	Berney, M. and Cook, G.M. (2010) Unique flexibility in energy metabolism allows
566	mycobacteria to combat starvation and hypoxia. PloS ONE 5: e8614.
567	Conrad, R and Seiler, W. (1981) Decomposition of atmospheric hydrogen by soil
568	microorganisms and soil enzymes. Soil Biol Biochem 13: 43-49.

569	Conrad, R. and Seiler, W. (1985) Influence of temperature, moisture, and organic carbon on the
570	flux of H_2 and CO between soil and atmosphere: field studies in subtropical regions. J
571	Geophys Res 90: 5699–5709.
572	Conrad, R., Aragno, M., and Seiler, W. (1983a) Production and consumption of hydrogen in a
573	eutrophic lake. Appl Environ Microbiol 45: 502-510.
574	Conrad, R., Aragno, M., and Seiler, W. (1983b) The inability of hydrogen bacteria to utilize
575	atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiol
576	Lett 18: 207–210.
577	Conrad, R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H ₂ , CO, CH ₄ ,
578	OCS, N ₂ O, and NO). Microbiol Rev 60: 609–640.
579	Conrad, R. (1999) Soil microorganisms oxidizing atmospheric trace gases (CH ₄ , CO, H ₂ , NO).
580	Ind J Microbiol 39: 193–203.
581	Constant, P., Poissant, L., and Villemur, R. (2008) Isolation of Streptomyces sp. PCB7, the first
582	microorganism demonstrating high-affinity uptake of tropospheric H ₂ . ISME J 2: 1066–
583	1076.
584	Constant, P., Poissant, L., and Villemur, R. (2009) Tropospheric H ₂ budget and the response of
585	its soil uptake under the changing environment. Sci Total Environ 407: 1809–1823.
586	Constant, P., Chowdhury, S.P., Pratscher, J., and Conrad, R. (2010) Streptomycetes contributing
587	to atmospheric molecular hydrogen soil uptake are widespread and encode a putative
588	high-affinity [NiFe]-hydrogenase. Env Microbiol 12: 821-829.
589	Constant, P., Chowdhury, S.P., Hesse, L., and Conrad, R. (2011a) Co-localization of atmospheric
590	H ₂ oxidation activity and high affinity H ₂ -oxidizing bacteria in non-axenic soil and sterile
591	soil amended with Streptomyces sp. PCB7. Soil Biol Biochem 43: 1888–1893.

592 Constant, P., Chowdhury, S.P., Hesse, L., Pratscher, J., and Conrad, R. (2011b) Genome data 593 mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity 594 and ecological importance of presumptive high affinity H₂-oxidizing bacteria. Appl 595 Environ Microb 77: 6027-6035. 596 Ehhalt, D.H. and Rohrer, F. (2009) The tropospheric cycle of H₂: a critical review. Tellus B 61: 597 500-535. 598 El-Nakeeb, M.A. and Lechevalier, H.A. (1963) Selective isolation of aerobic Actinomycetes. 599 Appl Microbiol 11: 75–77. 600 Flärdh, K. and Buttner, M.J. (2009) Streptomyces morphogenetics: dissecting differentiation in a

- 601 filamentous bacterium. Nat Rev Microbiol 7: 36–49.
- Guo,R. and Conrad,R. (2008) Extraction and characterization of soil hydrogenases oxidizing
 atmospheric hydrogen. Soil Biol Biochem 40: 1149–1154.
- Häring, V. and Conrad, R. (1994) Demonstration of two different H₂-oxidizing activities in soil
- 405 using an H₂ consumption and a tritium exchange assay. Biol Fert Soils 17: 125–128.
- Hardisson, C., Manzanal, M.B., Salas, J.A., and Suarez, J.E. (1978) Fine structure, physiology
- and biochemistry of arthrospore germination in *Streptomyces* antibioticus. *J. Gen. Microbiol.* 105: 203–214.
- 609 Hirsch, C.F. and Ensign, J.C. (1976) Nutritionally defined conditions for germination of
- 610 *Streptomyces viridochromogenes* spores. *J. Bacteriol.* 126: 13–23.
- Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) Practical
 Streptomyces genetics. Norwich, UK: John Innes Foundation.
- 613 King, G.M. (2003a) Contributions of atmospheric CO and hydrogen uptake to microbial
- 614 dynamics on recent Hawaiian volcanic deposits. Appl Environ Microb 69: 4067–4075.

615	King, G.M. (2003b) Uptake of carbon monoxide and hydrogen at environmentally relevant
616	concentrations by mycobacteria. Appl Env Microbiol 69: 7266–7272.
617	Lane DJ (1991) 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics.
618	Stackebrandt, E. and Goodfellow, M. (eds). John Wiley and Sons, New York, pp. 115-
619	148.
620	Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H.,
621	Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and
622	Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford,
623	England) 23: 2947–8.
624	Madsen, E.L. (2005) Identifying microorganisms responsible for ecologically significant
625	biogeochemical processes. Nat Rev Micro 3: 439–446.
626	Meredith, L.K. (2012) Field Measurement of the Fate of Atmospheric H_2 in a Forest
627	Environment: from Canopy to Soil. Doctor of philosophy thesis, Massachusetts Institute
628	of Technology, MIT Center for Global Change Science, 250 pp.
629	(http://globalchange.mit.edu/research/publications/2366)
630	Miguélez, E.M., Hardisson, C., and Manzanal, M. (1999) Hyphal death during colony
631	development in Streptomyces antibioticus: morphological evidence for the existence of a
632	process of cell deletion in a multicellular prokaryote. J Cell Biol 145: 515–525.
633	Novelli, P.C., Lang, P.M., Masarie, K.A., Hurst, D.F., Myers, R., Elkins, J.W. (1999) Molecular
634	hydrogen in the troposphere: Global distribution and budget. J Geophys Res 104: 30,427-
635	30,444.

Novelli, P.C., Crotwell, A.M., and Hall, B.D. (2009) Application of gas chromatography with a
pulsed discharge helium ionization detector for measurements of molecular hydrogen in
the atmosphere. Environ Sci Technol 43: 2431–2436.
Porter, J.N., Wilhelm, J.J., and Tresner, H.D. (1960) Method for the preferential isolation of
Actinomycetes from soils. Appl Microbiol 8: 174-178.
Prescott, J.F. (1991) Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4:
20–34.
Rahn, T., Eiler, J. M., Kitchen, N., Fessenden, J. E., and Randerson, J. T. (2002) Concentration
and δD of molecular hydrogen in boreal forests: Ecosystem-scale systematics of
atmospheric H ₂ . Geophys Res Lett 29: 1–4.
Scherr N and Nouven I (2009) Mycobacterium versus Strentomyces - we are different we are

- 646 Scherr, N. and Nguyen, L. (2009) *Mycobacterium* versus *Streptomyces* we are different, we are
 647 the same. Curr Opin Microbiol 12: 699–707.
- 648 Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol
 649 Mol Biol Rev 61: 262-280.
- 650 Schrempf, H. (2008) Streptomycetaceae: life style, genome, metabolism and habitats.
- 651 Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, pp 1–7.
- 652 Schuler, S. and Conrad, R. (1990) Soils contain two different activities for oxidation of
- hydrogen. FEMS Microbiol Ecol 73: 77–83.
- 654 Smeulders, M.J., Keer, J., Speight, R.A., and Williams, H.D. (1999) Adaptation of
- 655 *Mycobacterium smegmatis* to stationary phase. J Bacteriol 181: 270-283.
- 656 Smith-Downey, N.V., Randerson, J.T., and Eiler, J.M. (2008) Molecular hydrogen uptake by
- soils in forest, desert, and marsh ecosystems in California. J Geophys Res 113: 1–11.

637

638

639

640

641

642

643

644

658	Straight, P.D. and Kolter, R. (2009) Interspecies chemical communication in bacterial
659	development. Ann Rev Microbiol 63: 99–118.
660	Szabó, G. and Vitalis, S. (1992) Sporulation without aerial mycelium formation on agar medium
661	by Streptomyces bikiniensis HH1, an A-factor-deficient mutant. Microbiol. 138: 1887-
662	1892.
663	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5:
664	molecular evolutionary genetics analysis using maximum likelihood, evolutionary
665	distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–9.
666	Ueda, K., Kawai, S., Ogawa, H., Kiyama, A., Kubota, T., Kawanobe, H., and Beppu, T. (2000)
667	Wide distribution of interspecific stimulatory events on antibiotic production and
668	sporulation among Streptomyces species. J Antibiot 53: 979–982.
669	Whelan, S. and Goldman, N. (2001) A general empirical model of protein evolution derived
670	from multiple protein families using a maximum-likelihood approach. Mol Biol 18: 691–
671	9.
672	Xiao, X., Prinn, R.G., Simmonds, P.G., Steele, L.P., Novelli, P.C., Huang, J., Langenfelds, R.L.,
673	O'Doherty, S., Krummel, P.B., Fraser, P.J., Porter, L.W., Weiss, R.F., Salameh, P. and
674	Wang, R.H.J. (2007) Optimal estimation of the soil uptake rate of molecular hydrogen
675	from AGAGE and other measurements, J Geophys Res, 112: 1-15.
676	Yonemura, S., Yokozawa, M., Kawashima, S., and Tsuruta, H. (2000) Model analysis of the
677	influence of gas diffusivity in soil on CO and H_2 uptake. Tellus B 52: 919–933.
678	

Table and Figure Legends

Table 1. H_2 oxidation rates weighted by biomass (final protein mass) for Harvard Forest Isolate (HFI) strains and strains from culture collections (*S. cattleya*, *S. griseoflavus*, *R. equi*) at typical atmospheric (~0.53 ppm) H_2 mole fractions. H_2 uptake affinity (K_m), the maximum reaction rate (V_{max}), and the minimum threshold for consumption are listed for each culture.

684

685 Table 2. Effect of physical disturbances of the aerial structure on H₂ oxidation rates in 686 sporulated cultures of *Streptomyces* sp. HFI8. Gently rolling 4 mm diameter glass beads over culture lawns (Figure S5) reduced the observed H₂ uptake. The H₂ oxidation rates (the 5th 687 688 column) in twelve whole cultures of strain HFI8 growing in serum vials on solid R2A medium 689 were measured between 2 and 15 days after inoculation (the 2nd column). In samples 1-6, the 690 aerial biomass was isolated from substrate biomass using glass beads to transfer aerial biomass to an empty, sterile vial. The amount of transferred biomass was measured by protein assay (the 4th 691 692 column). We tested using different amounts (2.5 and 10g) of 4 mm diameter glass beads (the 3rd 693 column). H₂ uptake is reported for the fraction of aerial biomass transferred to glass beads (the 694 6^{th} column) and for the fraction of the lawn remaining in the original vial in the medium (the 7^{th} 695 column) measured within 2-4 hours. In samples 7-12, all biomass was left in the original vial, and H₂ oxidation rates were measured before and after treatment with glass beads. The difference 696 in uptake due to the procedure (the sum of the uptake rates reported in the 6th and the 7th column 697 minus the uptake before transfer in the 5^{nd} column) is reported in the 8^{th} column. 698

699

Figure 1. High-resolution time series of H₂ uptake in three replicate cultures of *Streptomyces* sp. HFI8. The lettered arrows at various time points correspond to the micrographs
of the life cycle shown in Figure S4: (A) the substrate mycelium, (B) the formation of aerial

hyphae and onset of sporulation, (C-H) cultures contain mainly spores. Enlarged inset shows the higher resolution measurements taken during the first four days. The detection limit (dashed lines) of ± 0.24 nmol h⁻¹ is reported as the double standard deviation of four values measured in uninoculated control vials (black dots).

707

708 Figure 2. Consumption of H₂ by *Rhodococcus equi* in liquid culture. (a) H₂ oxidation 709 rate, (b) cell biomass (protein concentration). All data are shown for three liquid culture replicates. The detection limit (dashed lines) is of ± 0.12 nmol h⁻¹ and calculated as the double 710 711 standard deviation of ten values measured in uninoculated control vials (black dots). Colored 712 triangles show the results of concentration and dilution experiments. Cells in exponential phase 713 were concentrated in either fresh TSB medium (green) or water (orange) to match protein 714 concentrations in late exponential and stationary phase. Alternatively, cells from stationary phase 715 were diluted in either fresh TSB medium (green) or water (orange) to protein concentrations 716 similar to those in exponential phase cultures.

717

718 Table S1. The top database matches for strain HFI6 - HFI9 16S rRNA gene and *hhyL* 719 nucleotide sequences indicate that the strains are *Streptomyces* spp. containing *hhyL* sequences. 720 The GenBank accession number is listed for each deposited sequence. The results of NCBI 721 Megablast BLAST search are listed for each sequence, where queries were made for the 16S 722 rRNA sequences against the 16S rRNA gene sequence database and for the *hhyL* sequences 723 against the entire nucleotide sequence database. The top match for each BLAST search is listed 724 along with the total score, E value, and maximum identity of the match. Strain HFI6 - HFI9 16S 725 rRNA gene sequences were 100% identical to several different strains of *Streptomyces* spp.

726	Strain HFI6 - HFI9 <i>hhyL</i> sequences are highly similar to published cultured and uncultured <i>hhyL</i>
727	sequences, of which some were submitted to public databases as <i>hydB</i> -like genes, though the
728	hhyL terminology has been more recently adopted (Constant et al., 2011b).
729	
730	Figure S1. Photographs of Streptomyces griseoflavus Tu4000 and Streptomyces sp. HFI6
731	- HFI9 soil isolate colonies on R2A medium plates. S. griseoflavus Tu4000 had the smooth and
732	waxy appearance of a <i>bld</i> (bald) <i>Streptomyces</i> mutant, while strains HFI6 - HFI9 formed fuzzy
733	colonies consistent with the presence of aerial hyphae. The pigmentation of strains HFI6 - HFI8
734	was light pink and strain HFI9 was darker with a brown exudate secreted into the surrounding
735	medium. HFI6 - HFI9 strains had the strong scent of geosmin, while S. griseoflavus Tu4000 did
736	not.
737	
738	
739	Figure S2. Photomicrographs of Streptomyces griseoflavus Tu4000 and Streptomyces sp.
740	HFI6 - HFI9 soil isolate cultures on R2A medium plates. The same samples are photographed in
741	Figure S1. Only substrate mycelia are visible in the S. griseoflavus Tu4000 colony, while HFI6 -
742	HFI9 strains had plentiful aerial hyphae.
743	
744	Figure S3. Molecular phylogenetic analysis of <i>hhyL</i> sequences by the Maximum
745	Likelihood method. The diversity of the high-affinity group 5 [NiFe]-hydrogenase (hhyL)
746	sequences of the strains (bold) we tested for H_2 uptake (Table 1) are compared with <i>hhyL</i>
747	sequences from the NCBI microbial genome database in this amino acid tree. The hhyL-
748	containing Streptomyces sequences form two distinct clusters at a deep 99% bootstrap branch:

749	Cluster 1 and Cluster 2. Isolates that have been tested for H ₂ uptake are marked to indicate
750	whether (*) or not (†) high-affinity H_2 uptake was observed. Culture collection strains
751	investigated in this study were selected to broaden representation across the clusters and genera:
752	Streptomyces griseoflavus Tu4000 (Cluster 1), Rhodococcus equi (Actinobacterium, Cluster 1),
753	and Streptomyces cattleya (Cluster 2). Strains HFI6, HFI7, HFI8, and S. griseoflavus Tu4000
754	<i>hhyL</i> are closely related to Cluster 1 <i>Streptomyces</i> spp. soil isolates that take up H ₂ (summarized
755	in Constant et al., 2011b), while strain HFI9 <i>hhyL</i> is more closely related to the <i>R. equi hhyL</i> .
756	Cluster 2 S. cattleya hhyL is closely related to Streptomyces sp. AP1 hhyL, which also consumes
757	H_2 (Constant et al., 2011b). Other culture collection strains that have been tested for H_2 uptake
758	include Ralstonia eutropha H16 (Conrad et al., 1983b) and Mycobacterium smegmatis (King,
759	2003). The evolutionary history was inferred by using the Maximum Likelihood method based
760	on the Whelan and Goldman, 2010 model. The <i>hhyL</i> gene from an archaeon <i>Sulfolobus</i>
761	islandicus HVE10/4 was used as the outgroup. The bootstrap values are shown next to the
762	branches. Initial tree(s) for the heuristic search were obtained automatically by applying
763	Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a WAG
764	model, and then selecting the topology with superior log likelihood value. A discrete Gamma
765	distribution was used to model evolutionary rate differences among sites (5 categories (+G,
766	parameter = 1.2590)). The tree is drawn to scale, with branch lengths measured in the number of
767	substitutions per site. The analysis involved 58 amino acid sequences. There were a total of 427
768	positions in the final dataset. Evolutionary analyses were conducted in MEGA5 (Tamura et al.,
769	2011).

771	Figure S4. Microscopic observations of the development of Streptomyces sp. HFI8 show
772	that strain HFI8 underwent the full lifecycle from spore to spore in less than 1.8 days, after
773	which nearly all the viable cells existed as spores. Each panel shows a representative micrograph
774	of the culture taken on a different day after the inoculation. Image A shows the substrate
775	mycelium that grows after the germination of inoculated spores. By day 1.8 (B), septated aerial
776	hyphae (punctuated tubular branches) and fully formed spores (round cells) are present. Mainly
777	spores are present from day 2.9 to 22 (C-H) and the same persists until day 44 (not shown).
778	
779	Figure S5. Photograph of serum vials during the aerial biomass removal experiments
780	(Table 2, Samples 1-6) illustrates the separation of the aerial hyphae and spores from the
781	substrate mycelium: a) vial containing an <i>whole</i> intact strain HFI8 culture (Table 2, column 5);
782	b) vial from which the aerial biomass had been isolated using glass beads leaving behind the
783	remaining substrate mycelium (Table 2, column 7); and c) vial containing the isolated aerial
784	biomass on the surface of the glass beads (Table 2, column 6). In some samples, glass beads
785	were rolled on the whole colony surface (a) and were left in the same vial with no biomass
786	transfer (Table 2, Samples 7-12).

Figure S6. Scatter plot of the initial H_2 oxidation rate versus the reduction in H_2 uptake by *Streptomyces* sp. HFI8 during the glass bead procedure (Table 2; 5th and 8th columns). The larger the initial H_2 oxidation rate, the larger percentage reduction by the glass beads (R^2 =0.93), regardless of culture age or the amount of glass beads used for transfer.

792

793	Figure S7: Determination of H ₂ uptake kinetic parameters by the Lineweaver-Burk (LB)
794	and Eadie-Hofstee (EH) methods for <i>Streptomyces</i> sp. HFI8. The H_2 uptake rate (V) nmol h^{-1}
795	and initial H_2 concentration (S) in ppm are used to generate the LB plot as $1/V$ versus $1/S$ and
796	EH as V versus V/S. K_m was determined from the LB plot as the $K_m = -1 / x$ -intercept (38 ppm)
797	and V_{max} as $V_{max} = 1/y$ -intercept (30 µmol min ⁻¹ g ⁻¹). K _m was determined from the EH plot as K _m
798	= -slope (22 ppm). K_m and V_{max} values were reported for a given strain only if the LB and EH
799	K _m values methods agreed within 50%

Table 1. H_2 oxidation rates weighted by biomass (final protein mass) for Harvard Forest Isolate (HFI) strains and strains from culture collections (*S. cattleya*, *S. griseoflavus*, *R. equi*) at typical atmospheric (~0.53 ppm) H_2 mole fractions. H_2 uptake affinity (K_m), the maximum reaction rate (V_{max}), and the minimum threshold for consumption are listed for each culture.

Strain	H ₂ oxidation rate	K _m * V _{max} *		Threshold	
	$[nmol min^{-1} g^{-1}]$	[ppm]	$[\mu mol min^{-1} g^{-1}]$	[ppm]	
Streptomyces sp. HFI6	780	80	180	< 0.15	
Streptomyces sp. HFI7	420	60	78	< 0.12	
Streptomyces sp. HFI8	240	40	30	< 0.15	
Streptomyces sp. HFI9	100	40	14	< 0.12	
Streptomyces	0	-	-	-	
griseoflavus Tu4000					
Streptomyces cattleya	130	**	**	<0.45	
Rhodococcus equi	10	**	**	< 0.30	

* Determined by the Lineweaver-Burke method over a 0-35 ppm H_2 range, which is less precise than the non-inverse approach, but avoids interference by low-affinity hydrogenases.

** Kinetic parameters determination did not pass quality check (Experimental Procedures).

Table 2. Effect of physical disturbances of the aerial structure on H₂ oxidation rates in sporulated cultures of *Streptomyces* sp. HFI8. Gently rolling 4 mm diameter glass beads over culture lawns (Figure S5) reduced the observed H₂ uptake. The H₂ oxidation rates (the 5th column) in twelve whole cultures of strain HFI8 growing in serum vials on solid R2A medium were measured between 2 and 15 days after inoculation (the 2nd column). In samples 1-6, the aerial biomass was isolated from substrate biomass using glass beads to transfer aerial biomass to an empty, sterile vial. The amount of transferred biomass was measured by protein assay (the 4th column). We tested using different amounts (2.5 and 10g) of 4 mm diameter glass beads (the 3rd column). H₂ uptake is reported for the fraction of aerial biomass transferred to glass beads (the 6th column) and for the fraction of the lawn remaining in the original vial in the medium (the 7th column) measured within 2-4 hours. In samples 7-12, all biomass was left in the original vial, and H₂ oxidation rates were measured before and after treatment with glass beads. The difference in uptake due to the procedure (the sum of the uptake rates reported in the 6th and the 7th column minus the uptake before transfer in the 5nd column) is reported in the 8th column.

ID	Day	Beads	Aerial	H_2 oxidation rate [nmol h ⁻¹]			
		[g]	biomass	Whole	Aerial +	Substrate	Change in net
			[mg]		glass		uptake (%)
					beads		
1	2	10	na	4.1	0.6	1.5	-1.9 (-48%)
2	8	10	0.3	6.8	0.3	2.9	-3.6 (-52%)
3	15	10	0.1	6.9	0.3	1.7	-4.9 (-71%)
4	9	2.5	1.5	3.6	0.1	2.1	-1.4 (-40%)
5	9	5	0.6	3.8	0.1	2.2	-1.4 (-37%)
6	9	10	1.1	3.8	0.1	2.1	-1.6 (-43%)
				Whole	Whole +	glass beads	
7	9	10	na	2.2		1.3	-0.9 (-41%)
8	9	10	na	2.8		2.1	-0.7 (-25%)
9	9	10	na	2.4		1.5	-0.9 (-38%)
10	9	10	na	1.5		2.0	-0.3 (-20%)
11	9	10	na	2.4		2.0	-0.4 (-18%)
12	9	10	na	2.2		1.9	-0.3 (-13%)

1 Table S1. The top database matches for strain HFI6 - HFI9 16S rRNA gene and *hhyL* nucleotide sequences indicate that the strains are

2 Streptomyces spp. containing hhyL sequences. The GenBank accession number is listed for each deposited sequence. The results of

3 NCBI Megablast BLAST search are listed for each sequence, where queries were made for the 16S rRNA sequences against the 16S

4 rRNA gene sequence database and for the *hhyL* sequences against the entire nucleotide sequence database. The top match for each

5 BLAST search is listed along with the total score, E value, and maximum identity of the match. Strain HFI6 - HFI9 16S rRNA gene

sequences were 100% identical to several different strains of *Streptomyces* spp. Strain HFI6 - HFI9 *hhyL* sequences are highly similar
 to published cultured and uncultured *hhyL* sequences, of which some were submitted to public databases as *hydB*-like genes, though

to published cultured and uncultured myL sequences, or which some were submitted to public databases as hyab-fike genes, the hhyL terminology has been more recently adopted (Constant et al., 2011b).

9

Strain	Gene	Nucleotide sequence	BLAST results				
		Accession number	<i>Top database match (accession number)</i>		Ε	Max	
				Score	value	ident	
HFI6	16S rRNA	<u>KC661265</u>	Streptomyces lavendulae subsp. lavendulae	2532	0.0	100%	
			strain NBRC 12344 (<u>AB184081.2</u>)				
HFI7	16S rRNA	<u>KC661266</u>	Streptomyces roseochromogenus strain	2532	0.0	100%	
			MJM9261 (<u>GU296744.1</u>)				
HFI8	16S rRNA	<u>KF444073</u>	Streptomyces roseochromogenus strain	2532	0.0	100%	
			MJM9261 (<u>GU296744.1</u>)				
HFI9	16S rRNA	<u>KF444074</u>	Streptomyces sanglieri strain NBRC 100784	2521	0.0	100%	
			(<u>NR 041417.1</u>)				
HFI6	hhyL	<u>KC661267</u>	Streptomyces sp. MP1 NiFe-hydrogenase large	1838	0.0	95%	
			subunit ($hydB$) gene (<u>GQ867040.1</u>)				
HFI7	hhyL	<u>KC661268</u>	Streptomyces sp. MP1 NiFe-hydrogenase large	1866	0.0	96%	
			subunit ($hydB$) gene (<u>GQ867040.1</u>)				
HFI8	hhyL	<u>KC661269</u>	Streptomyces sp. MP1 NiFe-hydrogenase large	1432	0.0	97%	
			subunit ($hydB$) gene (<u>GQ867040.1</u>)				
HFI9	hhyL	<u>KC661270</u>	Streptomyces sp. S9n30 partial hhyL gene for	2207	0.0	99%	
			[NiFe]-hydrogenase (<u>HF677116.1</u>)				

Streptomyces griseoflavus Tu4000

Streptomyces sp. HFI6

Streptomyces sp. HFI8

Streptomyces sp. HFI7

Streptomyces griseoflavus Tu4000

Streptomyces sp. HFI6

Streptomyces sp. HFI7

Streptomyces sp. HFI8

Streptomyces sp. HFI8

10 µm

Kinetic Parameter Determination for Strain HFI8

