Realization of the Harper Hamiltonian with Ultracold Atoms in Optical Lattices

Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody Burton, and Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
hmityake@alum.mit.edu

Abstract: We experimentally realized the Harper Hamiltonian with charge neutral, ultracold atoms in optical lattices using laser-assisted tunneling and a potential energy gradient. The energy spectrum of this Hamiltonian is the fractal Hofstadter butterfly.

© 2014 Optical Society of America
OCIS codes: 020.1475, 020.4180.

Systems of charged particles in magnetic fields have led to many discoveries in science such as the integer [1] and fractional quantum Hall effects [2] and have become important paradigms of quantum many-body physics. Generalizations have led to the study of topological insulators, initially in condensed matter [3] but also more recently in photonic systems [4, 5]. We have proposed and implemented a scheme which realizes the Harper Hamiltonian [6], a lattice model for charged particles in magnetic fields, whose energy spectrum is the fractal Hofstadter butterfly [7].

We experimentally realize this Hamiltonian with ultracold, charge neutral bosonic atoms of 87Rb in a two-dimensional optical lattice by creating an artificial gauge field using laser-assisted tunneling and a potential energy gradient provided by gravity [8]. A schematic of our setup is shown in Fig. 1 (a),(b) and (c). The laser-assisted tunneling process is characterized by studying the expansion of the atoms in the lattice as shown in Fig. 1 (d).

In a uniform lattice, atoms are free to tunnel. However, in the presence of a uniform energy offset between neighboring lattice sites, tunneling along the offset direction is suppressed. Applying a pair of laser beams that are frequency
detuned to the offset induces Raman transitions which re-establish tunneling and create the Harper Hamiltonian,

$$H = -\sum_{m,n} (Ke^{-i\phi_{m,n}}\hat{a}_{m+1,n}^{\dagger}\hat{a}_{m,n} + J\hat{a}_{m,n}^{\dagger}\hat{a}_{m+1,n} + H.c.),$$

(1)

where $\hat{a}_{m,n}^{\dagger}$ ($\hat{a}_{m,n}$) is the creation (annihilation) operator of a particle at lattice site (m,n) and $\phi_{m,n} = \delta k \cdot R_{m,n} = m\phi_x + n\phi_y$ is a spatially varying phase, where the energy offset is in the x-direction. For our particular experimental setup, the magnitude of the tunneling amplitudes in terms of the bare tunneling amplitudes J_x, J_y, the energy offset Δ, and the two-photon Rabi frequency in energy units Ω can be written $K = J_x J_1(2\Omega/\Delta)$ and $J = J_y J_0(2\Omega/\Delta)$, where $J_n(x)$ are Bessel functions of the first kind of order n. The experimentally determined atomic cloud width qualitatively agrees with the Bessel function behavior as shown in Fig. 2 (a). We can also suppress nearest-neighbor tunneling while inducing next-nearest-neighbor tunneling with the appropriate laser detuning as shown in Fig. 2 (b).

![Fig. 2. (a) In situ cloud width expansion as a function of resonant Raman laser intensity shows the laser-assisted tunneling rate K along the tilt direction (blue circles) and the tunneling rate J along the transverse direction (red squares). Data taken at lattice depths of $9E_r$ and hold time of 1500 ms. Inset: Theoretical prediction for the tunneling rates K and J in terms of Bessel functions. (b) Next-nearest-neighbor tunneling induced and observed. The center is at 2Δ (compare to Fig. 1 (d)).](image)

Furthermore, this scheme can be extended to realize spin-orbit coupling and the spin Hall effect for neutral atoms in optical lattices by modifying the motion of atoms in a spin-dependent way by laser recoil and Zeeman shifts due to magnetic field gradients [9]. One major advantage of our scheme is that it does not rely on near-resonant laser light to couple different spin states. Our work is a step towards studying novel topological phenomena with ultracold atoms.

References