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We present a means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive
materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array
of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the
lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation
of the phonon band structure at high frequencies results in a strong confinement of phonons. The applications of
this regime for phonon waveguides, vibrational energy storage, and phononic transistors is examined.
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Light-matter interactions are of great utility for many
of applications. For mechanical vibrations (phonons) these
applications encompass creating or destroying phonons using
light (optomechanics [1,2], Raman scattering [3–7]), creating
or destroying light using phonons (vibronic spectroscopy [8],
blackbody radiation [4]), and shifting the refractive index using
phonons (acousto-optics [9–11]). However, the last quadrant
of this interaction (Table I), the control of phonon properties
(e.g., speed of sound cs) using light remains unexplored. As a
result, acousto-optic devices (filters, modulators) are common,
whereas controlling phonons remains difficult. Fundamentally,
phononic devices require more than the manipulation of
phonon populations, but also the tunable manipulation of
speed and transmission (phase and amplitude) [12–14]. Optical
control, a fast, noncontact technique, is a natural candidate
for this. The absence of existing optical control methods for
phonons is surprising, as it is well known both that light
can tune other material properties (particularly magnetic and
electronic properties) by means of inducing structural phase
transitions (also known as nonlinear phononics, ionic Raman)
[5–7,15–19], and that other signals (pressure, temperature) can
control cs and phonon dispersion (often by phase transitions)
[12–14,20–29]. As far as we are aware, the only research
that came close to the problem of optical control were
Refs. [30–32]. Reference [30] showed that the vibrational
properties of a material can be optically switched in pho-
toresponsive liquid crystal polymers, but the optical excitation
was intense enough for complete switching, so their focus was
rather on the thermal and strain (rather than the optical) tuning
of this switching. In contrast, Ref. [31] considered fs laser
pulses on bismuth, where photoinduced thermal expansion
induces an optical fluence-dependent redshift in some of the
phonon modes. The effect is limited by the system melting, as
it is an expected signature of materials near a phase transition
[33]. It is also similar to the earlier work of Ref. [32] on
chalcogenide glasses, where the photosoftening was associated
with the approach of a glass-liquid melting transition. There
have been other scenarios where optical driving has affected
phonon dynamics, such as Ref. [34], but these have been
switches between discrete phases (and therefore not tunable)
or changed particular resonant modes (i.e., polaritons).

Here, we analyze an approach to controlling cs via optical
intensity. We present a theoretical model of an array of generic
photoswitches and demonstrate its use at modulating the

phonon band structure, tuning cs . A numerical analysis of
the dynamics reveals additional confinement effects at high
frequencies which may prove useful for vibrational energy
storage or phononic transistors.

Considering a solid under illumination, there exist three
photon-phonon coupling mechanisms. If the basis atoms are
polar, then there is a coupling to the electromagnetic field,
inducing a localized vibration (direct Raman). If there exists
an infrared-active phonon mode, then photons can excite
that (ionic Raman). Absent these couplings, light can excite
electrons, which excite phonons via electron-phonon coupling
(indirect or stimulated Raman). After this initial excitation
of a single mode, nonlinearities (electron-phonon coupling or
phonon anharmonicity) will disperse this energy into a thermal
phonon population. For some materials, these excitations
can also induce a structural change, driving the vibrations
about some new equilibrium position in ionic Raman or
softening a phonon mode in stimulated Raman. Structural
changes necessarily change the phonon band structure. To
avoid conflating the creation of thermalized phonons and
the tuning of the band structure (distinguishable effects for
sufficiently weak anharmonicity [35]), we concentrate on
nonphotoactive modes and neglect thermalization except for
its effect in structural transitions. For consistency, this requires
neglecting phonon-phonon couplings, so we concentrate on
harmonic phonons. Hence we confine attention to a chain
of one-dimensional (1D) simple harmonic oscillators (SHOs)
without further loss of generality.

We therefore model a system of n masses (m ≡ 1) joined
to N = n + 1 photoswitchable SHOs (ground state spring
constant kD , excited kU ) with a mechanical driving force
F = F0 cos(ω0t) at frequency ω0. Driving pumps a constant
supply of energy into the system, so it is helpful to modify
the standard clamped boundary conditions (u0 = 0 = un, u is
displacement) by sandwiching this system between impedance
matched systems of n damped (damping rate γu ≡ 1) SHOs
(k = kD) and clamping these ends (see Fig. 1). In the more
general case, exciting any SHO will not produce switching
elsewhere (i.e., no cascades). This is plausible for sufficiently
separated photoisomerizing molecules and composite or multi-
layed structures where only some portion is photosensitive (see
the bottom of Fig. 1). However, if there are no photoswitching
cascades, then the order and timing of (de)excitation greatly
influence the dynamics. To avoid a biased order, switching
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TABLE I. The quadrants of light-matter interaction. The first row
is light used to control phonons, and the second is sound used to
control photons. The first column is changing populations, and the
second is changing dispersion.

Create/destroy Harden/soften

Photon → phonon Optomechanics, Raman ?
Phonon → photon Vibronics, fluorescence Acousto-optics

is randomized with Poisson statistics (excitation rate RD =
BDUH and deexcitation RU = Aspont + BUDH , where H is
photon fluence at a point and A and B are the Einstein
coefficients [4]). This is plausible in the case of sufficiently
low intensity photoexcitation that shot noise dominates (i.e.,
individual photon trajectories are relevant, not an ensemble of
photons) but is also a technique for ensuring the robustness
of the response to changes in the switching order. Switching
dynamics is typically complicated, but because the photoexci-
tation is much faster than any structural rearrangement, these
complexities can be neglected (to lowest order) by integrating
out the shorter time scales to give

k̇(t) = −γk(k(t) − kSS(w)), (1)

where γk determines the rate of the structural reaction
[typically O(ω0)], kSS is the new steady state, and w denotes
the stochastic variable describing switching. In principle,
a change in the equilibrium position of the lattice is also
possible. But our system models a photoswitch embedded
in a matrix and does not describe the (realization-dependent)
dynamics of modes shorter than one supercell, so this shift is
negligible. Hence, the displacement obeys

üi(t) = ki(t)[ui−1(t) − ui(t)] + ki+1(t)[ui+1(t) − ui(t)], (2)

where i indexes the site.

Damped DampedPhoto-switches

=kU
kD=

h 1

h 2/

Mechanical
Driving

Optic
al 

Driv
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g

FIG. 1. (Color online) Schematic model of system. Photo-
switches (green) sandwiched between damped regions (brown) which
are clamped at the far ends. Light (orange curves) is applied to the
photoswitches, which are also driven mechanically (blue arrow) to
produce phonons. Photoswitches are modeled as a series of 1D SHOs
composed of photosensitive materials (e.g., anthracene, see bottom)
embedded in a matrix, creating a bistable system with two spring
constants.

At steady state this system’s eigenmode distribution is
solvable using random matrix theory (RMT) [36]. However,
this does not describe the effects of changing composition
(i.e., traversing the RMT’s solution space [37]). Moreover,
the eigenfunctions for a single equation can be solved—
exponential wave functions when no switching is occurring
and modified Bessel functions of imaginary order when
switching is occurring—but the inconsistency of this basis
set impedes an analytic solution for any nontrivial realization.
As such, we integrate the solutions numerically. Switching
times/locations, being stochastic, are computed using the
Gillespie algorithm [38], and the system can be integrated
analytically between switchings. The initial conditions are
u(x,0) = 0 = u̇(x,0) and ki(0) = kD . We use natural units: a

is the equilibrium site separation for length and tγ = 1/γu for
time. Using kD = 1/t2

γ , kU = 2/t2
γ , RU = 1.5/tγ , RD = 2/tγ ,

F0 = 1a/t2
γ , a sample of size n = 29 is calculated for interval

T = 100tγ , giving u(x,t) and k(x,t) at various ω0.
Given the connection between u(x,t) and k(x,t), plotting

them together is useful. Hence we present an unusual visual-
ization scheme in Fig. 2 (alternatively, see the movies in the
Supplemental Material [39]). The x axis denotes the position
along the chain (0 to N ), y time, colored isoval curves are the
oscillator amplitude u, and the rectangles are the lattice com-
position k (gray = ground state, white = excited). For clarity,
Fig. 2(a) is supplemented with two subplots. The bottom
subplot shows u(i,t) and k(i ± 1,t) for fixed position i. The
side subplot shows u(x,t0) and k(x,t0) for fixed time t0. This is
early in our simulation, so the driving signal (from x = 0) has
not yet propagated along the lattice. Since at low frequencies
[Fig. 2(a)] we expect wavelengths λ � a, thus the effect of the
switching is a weak perturbation that distorts u. For shorter
wavelengths [Fig. 2(b)], the solutions are more sensitive to
lattice composition and may be scattered at the composition
boundaries (reflecting incident phonons). However, because
the lattice composition changes, transmission and reflection
fluctuate, giving intervals of strong transmission or reflection.
This constitutes a potential mechanism for ultrafast control of
thermal conductivity. For even higher frequencies [Fig. 2(c)]
the system is above the band edge of one state but not the
other [i.e., above ωmin(kmax) ≡ ωg = 2/tγ ]. This implies that
oscillations decay in one state but freely propagate in the other,
allowing tunneling. In this case changing composition allows
standing waves to be trapped and so could potentially store or
steer vibrations. This could also be a form of phononic memory
or (detailed later) a phononic transistor. Finally, at frequencies
above the band edge of both configurations (ω > 2

√
2/tγ , not

shown), no propagation is possible and the solution decays.
Analyzing u(x,t ; ω0) shows that photoswitching dramati-

cally affects the transmission and dynamics, but this frequency
dependence is also useful for finding the dispersion and
thereby cs . To generate the dispersion, we Fourier transform
u(x,t), giving u(q,ω). The location of the maxima of u(q,ω)
indicates the mode ω(q) that was excited by driving at ω0.
(To generate a smooth dispersion rather than a series of
discrete normal modes, n = 124 is used.) This is repeated
for Nrep = 10 times with T = 200tγ for ergodicity, and ω and
q are averaged. Because at high frequencies the waves can
be narrowly confined, this will artificially introduce Fourier
components near the � point. Since these are not features of
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FIG. 2. (Color online) Phonon amplitude under photoswitching.
The x axis denotes the distance along the 1D chain, and the y

axis denotes time. Contours (colored) are isoval curves of phonon
amplitude ui(t) (see the side bar). Gray segments are the ground
state (no illumination), white segments are excited (illuminated),
and gradients are transitions. (a) Low frequency (ω = 0.5/tγ ). The
bottom inset (red, vertical slice) shows u(N/2,t) (red, solid curve)
and k(N/2,t),k(N/2 + 1,t) (black, dashed curves) as a function of
time. The side inset (blue, horizontal slice) shows a snapshot u(x,t0)
(blue, solid curve) and k(x,t0) (black dots) as a function of position.
(b) Midfrequency (ω = 1.5/tγ ). (c) High frequency (ω = 2.5/tγ ).

the wave form itself, but of its confinement, we exclude these
terms from the average. Repeating this for multiple frequencies
allows us to construct the dispersion, which is repeated for
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FIG. 3. (Color online) Dispersion ω(q) for a 1D chain of photo-
switches. The color denotes the strength of illumination from blue (no
illumination, all in the ground state) through red (full illumination, all
in the excited state). Dotted lines and dots (with error bars) indicate
numerical results. Solid lines denote fits to the sinusoid dispersion.
Inset: Speed of sound as a function of fraction in the excited state.
The colored, solid line is the numerical fit (the color corresponds to
dispersion) and the black, dashed line is the kinetic model.

various combinations of RU/RD in Fig. 3. Note that for
points above ωg (i.e., in the confinement regime), some of the
dispersions show a pronounced drop in q. This is an artifact
of the exponential decay regions, which lower the effective
wavelength. Ergo, this jump is a result of limitations in defining
a wavelength for such a heterogeneous system. So when we fit
the dispersion ω(q; RU/RD) to a sine curve cs,eff sin(aeffq)/aeff

(the dispersion for a homogeneous 1D chain, cs,eff and
aeff are fitting parameters) it is helpful to exclude these
points.

From the fitted dispersion we can extract the effective cs,eff

by expanding for small q, giving (in units of a/tγ )

cs,eff = 0.997 + 0.177NU/N + 0.227(NU/N)2, (3)

where NU is the excited state population, cs,D = 1a/tγ is
the ground state’s speed of sound, and cs,U = √

2a/tγ is the
excited state’s (see Fig. 3 inset). From the master equation

ṄD = −RDND + RUNU = −ṄU , (4)

the steady state compositions are

NU

N
= RD

RD + RU

= (gU/gD)H

S(ων) + (1 + gU/gU )H
, (5)

where gU,D are the mode degeneracies, S = 2�ω3
ν/πc3, and ων

is the photon frequency (the last relation comes from a detailed
balance of the Einstein coefficients [4]). Changing RU/RD

changes NU/ND , so increasing the optical intensity increases
the equilibrium population in the excited state (to some
limiting fraction given by the mode degeneracies). Therefore,
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changing illumination gives direct control of cs . Now, consider
a simple kinetic model where cs in the ground (excited) state is
cs,D (cs,U ). The average speed for an inhomogeneous system
would be the weighted average cs,DND/N + cs,UNU/N or

c(kin)
s = cs,D + (cs,U − cs,D)NU/N, (6)

i.e., linear with composition. This disagrees with our observed
relation, which falls below this kinetic limit except for the
homogeneous cases of NU/N = 0 or 1, which agree with the
analytic results to within 99% accuracy (see Fig. 3 inset). This
is expected, though, as reflections delay a pulse and decrease
its effective velocity.

Finally, consider again the confined regime. In the homoge-
neous cases the transmittivity of the material should be nearly
1 (i.e., no loss) or 0 (i.e., perfect damping) for a sufficiently
thick sample. Switching between these compositions (possible
when gU � gD and the photon intensity is large, or stochas-
tically possibly for RD > RU and N ≈ gU/gD) allows for
illumination controlled switching between transmission and
reflection. Dynamically changing RD/RU therefore allows for
controlled phonon transmission. This switching mechanism
is therefore a potential phononic transistor using the optical
analog indirect control scheme presented in Ref. [14] (i.e.,
a light source instead replaces the electromagnet). Such an
indirect transistor is more easily tuned than the direct designs,
which rely upon phonon-phonon couplings [29] that are
not dynamically accessible. To show the feasibility of this
proposal, we repeat our calculations for a pulsed illumination
[R(on)

D = 4/tγ , R
(off)
D = 0]. Pulse widths are selected such that

a homogeneous composition is produced for each state. Since
complete, monotonic switching of a sample has the expectation
value

RU,Dτ
(N)
U,D = N

N∑

1

1

v
= NHN ≈ N ln N, (7)

where HN is the harmonic function, we use a sample size of
n = 9 for these simulations (illumination period 200tγ , dark
period 200tγ , total run time 2000tγ , RD = 4/tγ = 8RU ). Plot-
ting the amplitude at the far end of the sample (normalized to
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FIG. 4. (Color online) Transmitted signal (amplitude vs time) of
photoswitches in a switch/transistor regime. The blue curve is the
response, the black curve is the rms average over dark period, and
the red curve is the rms average over the illuminated interval. The
separation of the black and red curves is the switch’s efficacy.

the maximum amplitude without damping max[u0(L,t)]) gives
Fig. 4 for a ω = 2.1/τγ . The horizontal lines indicate the rms
average amplitude during each period of darkness or illumi-
nation (including switching intervals, therein underestimating
the difference). For frequencies below ωg there is transmission
for both states, so the ratio of these averages is nearly 1 (not
shown), whereas for frequencies just above ωg there is a large
difference between the states and so a large separation is ob-
served (Fig. 4). As frequency increases above ωg , transmission
drops and the ratio again approaches 1 (not shown). Comparing
these results with Fig. 2(c) reveals a crossover from confine-
ment to transmission with increasing photon intensity. For con-
finement to be effective, there should be narrow domains of the
propagating configuration, which is best achieved with weak
driving.

In summary, we have demonstrated an approach controlling
the phononic properties of a system, using light to tune
the phonon band structure. This reverses the acousto-optic
formulation of phonons modulating the index of refraction, and
instead light modulates cs . The shifting of the dispersion that
this allows opens several interesting possibilities for phononic
devices. Delay lines and, by extension, phase control gates
can be constructed by tuning the speed of sound. Thermal
conductivity modulation is clearly achievable by the controlled
scattering of short-wavelength phonons from the configuration
boundaries. Vibrational energy storage or phononic memory
are possible in the high frequency regime with phonon
confinement under weak optical driving, and under the same
regime with strong optical driving, an optophononic switch or
indirect phononic transistor is feasible. The control of the speed
of sound could also improve the short-term storage (RAM)
of phononic information through delay line memory, similar
to Ref. [40]. Furthermore, the patterning of photoswitches
in a system—or their patterned photoexcitation—allows for
real-time, adaptable phononic materials, including phononic
crystals and metamaterials. This can be particularly useful
(in the confinement regime) for creating waveguides that
dynamically control the propagation of phonons or for tuning
the thermal conductivity by selectively introducing scatterers.
Such an approach would also be experimentally feasible, as an
optically controlled bandpass filter was proposed using a su-
perlattice of resonant cavities with chalcogenide glasses in [41]
(only light or dark states were simulated and so no intensity-
dependent tunability was observed). Similar approaches for
experimentally realizing these devices could be achieved by
superlattices of photosensitive materials (e.g., photoisomers
[30], ionic Raman-active materials [31], photoelastic glasses
such as chalcogenides [32]) separated by inactive layers or
by embedding these photosensitive materials (particularly
photoisomers, which are generally small organic molecules)
within an inactive matrix (the scenario illustrated in Fig. 1).
Finally, the prevalence of phonon couplings in quantum
computing, electronics, phoxonics, and spintronics [42–46]
implies that these effects may have further applications in
the optical control of a great many signals in a cavalcade of
fields.

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. 1122374.
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