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Abstract: Current carbon nanotube (CNT) synthesis methods include the production of 
ordered, free-standing vertically aligned arrays, the properties of which are partially 
governed by interactions between adjacent tubes. Using material parameters determined 
by atomistic methods, here we represent individual CNTs by a simple single degree of 
freedom (SDOF) “lollipop” model to investigate the formation, mechanics, and self-
organization of CNT bundles driven by weak van der Waals interactions. The 
computationally efficient SDOF model enables us to study arrays consisting of hundreds 
of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, 
bending stiffness, and surface energy, on formation and bundle size, as well as the 
intentional manipulation of bundle pattern formation, are investigated. We report studies 
with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes 
(DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local 
density distributions of the nanotube bundles and show that there exists a maximum 
attainable bundle density regardless of an increase in surface energy for nanotubes with 
given spacing and stiffness. In addition to applications to CNTs, our model can also be 
applied to other types of nanotube arrays (e.g. protein nanotubes, polymer 
nanofilaments).  
 
Submitted to: Journal of the Mechanics and Physics of Solids (accepted manuscript #: 
JMPS-D-09-00239R1) 
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1 Introduction 

 
Carbon nanotubes are among the most widely studied nanomaterials, with many potential applications 
that take advantage of their unique mechanical, electrical, thermal, and optical properties (Baughman, 
et al., 2002). There are many concurrent investigations involving carbon nanotubes, ranging from 
experimental synthesis to atomistic and continuum modeling with focus on a variety of properties, 
behaviors, and applications. The superior mechanical properties of carbon nanotubes are appealing for 
their potential use in novel nanomaterials. For instance, the Young’s modulus of a single-walled 
nanotube approaches a terapascal (1012 Pa) (Treacy, et al., 1996), implying that CNT is one of the 
strongest known synthesized materials in terms of elastic modulus and ultimate tensile strength (Li, et 
al., 2000b). For over a decade, attempts have been made to utilize the high strength of individual CNTs 
in an efficient manner. However, a well-known behavior of CNTs is intertube bonding due to weak van 
der Waals interactions, which results in formation of bundles that contain hundreds or thousands of 
individual nanotubes. The formation of these larger-scale structural features complicates investigations 
of the mechanical properties of nanotube materials, and challenges remain in understanding how to 
control and measure the properties of such large systems of CNTs. The study of the structural 
properties of larger-scale bundles of CNTs attached to a surface is the focus of this paper.  
 
1.1 Formation of bundles in nanotube arrays  
 
The interaction of individual CNTs in larger-scale structures often plays a critical role in the 
mechanical properties of CNT systems. At the nanoscale, weak van der Waals interactions govern the 
structural organization and the mechanical properties of CNT based materials. For example, the high 
axial strength of individual nanotubes is lost when nanotubes form bundles as the weak forces allow 
slippage of nanotubes within a bundle (Ajayan and Banhart, 2002; Kis, et al., 2004). Such effects are 
also found in nanotube based fibers or ropes (Dalton, et al., 2003; Zhu, et al., 2002), as well as in 
vertically aligned nanotube arrays (Li, et al., 2000a; Liu, et al., 2008; Zhang, et al., 2008). The 
importance of the interplay between adhesive forces and covalent bonding at the atomistic, molecular, 
and global material scales remains poorly understood for many CNT systems. Advancing our 
understanding of the structural arrangements and mechanisms resulting from such weak interactions is 
necessary for the development of materials and structures that take advantage of bundling of nanotubes, 
for example in self-organized CNT based surface materials. Figure 1 shows snapshots of bundled 
polymer nanotube structures (Linares, 2009; Steinhart, et al., 2002), illustrating the type of features and 
scales associated with bundle formation typically observed in nanotube systems, involving a very large 
number of nanotubes and structural features at tens and hundreds of nanometers. Modeling these 
systems requires time- and length-scales beyond the reach of conventional molecular dynamics, and the 
use of multi-scale approaches is critical to build simulation models of these structures. 
 
The molecular level interactions of adjacent carbon nanotubes has been investigated using atomistic 
methods (Chen, et al., 2003; Liew, et al., 2005; 2006; Zhou, et al., 2007; Zhu, et al., 2004), but bundle 
formation and self-organization of a large number of CNTs becomes computationally expensive at the 
atomistic level for relatively long carbon nanotubes, or multiple nanotubes (the computational cost is 
proportional to the number of atoms in the simulation). Mesoscopic “bead-spring” methods have been 
proven a viable approach to simulate arrays of CNTs (Buehler, et al., 2006; Cranford and Buehler, 
2009) and grapheme (Cranford, et al., 2009), but these approaches are still limited to hundreds or 
thousands of nanotubes in a particular nanotube array. Synthesized samples of carbon nanotube arrays 
have shown bundles consisting of hundreds of thousands of individual CNTs (Bronikowski, 2006). 
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Thus a new approach is required to investigate bundle formation of such large arrays of CNTs. The 
focal point of this paper is the multi-scale development of a single degree of freedom “lollipop” model 
for nanotube representation to enable the simulation of structural organization of very large bundles of 
CNTs. The development of this model is facilitated by a continuum elasticity model used to quantify 
the energy balance of adhered adjacent carbon nanotubes, where all parameters are identified by full 
atomistic simulation results. This simulation model has a twofold purpose: First, to confirm bundle 
formation of synthesized samples at a relatively large scale, and; second, to efficiently investigate the 
capacity to manipulate bundle formation within large nanotube arrays by introducing geometric 
changes to the geometry of constituting elements (e.g. patterning). Specifically, parametric 
investigations concerning nanotube length, spacing, diameters, and other structural and physical 
parameters can quickly be implemented to manipulate possible bundle formations and attain unique 
surface and mechanical properties of nanotube arrays. This approach can be used to engineer novel 
surface nanostructures.  
 
1.2 Outline 
 
The outline for the rest of this paper is as follows. In Section 2 the continuum theory governing 
nanomechanical bundle formation and equilibrium is described via an energy balance between bending 
strain energy, local deformation contact energy, and adhesion energy. Section 3 describes the fine-
trains-coarse multi-scale approach from full atomistic simulations, beginning with a description of the 
implemented atomistic test suite in Section 3.1. Section 3.2 discusses the limiting equations through the 
use of mesoscopic nanotube models, and Section 3.3 includes the development of a single degree of 
freedom (SDOF) model for two types of carbon nanotubes (single-walled and double-walled). Then, in 
Section 4, the simulation methodology implemented with the SDOF model is introduced. In Section 5 
we report three examples of large-scale simulations of CNT arrays. The results and implications of the 
modeling results are discussed in Section 6. 
 
2 Theoretical Nanomechanics Model 

 
Carbon nanotubes attract each other via van der Waals forces, but in an array of vertically aligned 
carbon nanotubes, each tube acts as a vertical cantilever. Thus, a balance of bending strain energy, local 
deformation energy, and adhesion energy effectively limits bundle formation and size. To facilitate the 
development of limiting equations, nanotube deformation is assumed to occur in two dimensions. For a 
cylindrical nanotube, the bending strain energy is equal in all directions, and only dependent on the 
absolute displacement of the cantilevered tip. Further, the attraction force due to van der Waals 
interactions is non-directional. Finally, the interactions between adjacent nanotubes in MD simulations 
are eventually governed by pair potentials that are evaluated between two nanotubes at a time, 
essentially resolving the interactions on a 2D plane. Thus a two dimensional formulation is considered 
adequate for the theoretical derivation, noting that the MD simulations to be presented are fully 3D.  
 
We assume that all nanotubes are geometrically identical with outer diameter d, wall thickness t, and 
length L, and equally spaced, �. We can thus determine the energy changes due to the formation of 
such a bundle with an arbitrary number of nanotubes (see Figure 2). 
 
The change of the free energy due to the formation of a bundle consisting of n nanotubes is given by: 
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where γΔ  is the work of adhesion, b
iU  is the bending strain energy, c

iU  is the strain energy due to 

local deformation,  il is the length of non-contact region. As such, it is the formulation and tacit 

balance of these energies that govern the natural formation of stable bundles in nanotube arrays. A brief 
derivation of each follows. 
 
2.1 Bending Strain Energy 
 
Under small deformation, it is assumed that a nanotube behaves as an elastic beam. Neglecting shear 
deformation, we can apply a cantilever model with zero end-rotation via elastic beam theory 
(Timoshenko and Maccullough, 1940), then: 
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where EI is the bending stiffness of the cantilever, iΔ being the bending deflection, and il  representing 

the non-contact or bent length for the ith nanotube. Using the equivalent energy approach assuming 
beam behavior holds for carbon nanotubes has been used in previous investigations for both localized 
mechanics (Buehler, et al., 2006) and array behavior (Qi, et al., 2003). 
 
2.2 Local deformation Energy stored in the contact region 
 
In general, the adhesive contact between two tubes will cause local deformation around the contact 
region, in which strain energy is stored as well. For two identical circular cylinders subject to no 
external load, this part of energy is given by (Glassmaker, et al., 2004):  
 

( ) γΔ�
�
�

�
�
�−=
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blLU i
c
i ,            (3) 

 
where )( ilL − represents the contact length, γΔ  is the work of adhesion, and b stands for the half-

width of the contact area, as shown in Figure 3(a). However, for the case of the carbon nanotubes 
considered here (that is, tubes with relatively small diameter), the equilibrium spacing due to van der 
Waals interactions is such that there is minimal contact deformation. The equilibrium distance between 
the axial centers of adjacent nanotubes is greater than the diameter – one of the contributing factors to 
the slippage observed in nanotube bundles. Local deformations are more prevalent with nanotube-
substrate interactions. In such a case, the deformation energy may govern and require contact area 
calculations. Such a contribution is included in the current discussion for completeness. Albeit, for the 
current model it can be demonstrated that the local deformation due to the inter-tube interactions is 

relatively small. We therefore neglect it by taking 0=b  (see Figure 3(b)) and 0≈c
iU  as previous 

studies did (Chen, et al., 2003; Zhou, et al., 2007). This assumption consequently turns the work of 
adhesion per contact surface area, γΔ , into adhesion energy per contact length, EL (see Section 2.3).  
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2.3 Adhesion Energy 
 
The adhesion energy is a direct consequence of van de Waals interactions and atomic attraction 
between adjacent nanotubes. The adhesion energy can be used in either energy per unit area ( γΔ ) 

when the contact surface is to be considered, or energy per unit length, EL, when there is no contact in 
equilibrium. 
 
For contact (Figure 3(a)) we let: 
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again where )( ilL − represents the contact length, γΔ  is the work of adhesion, and b stands for the 

half-width of the contact area. For non-contact (Figure 3(b)) we let: 
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where EL  represents the adhesion (or interaction) energy per unit length of nanotube, whose value is 
determined via atomistic simulations. 
 
2.4 Equilibrium Condition 
 

With minimal local deformation, or 0≈c
iU , and using adhesion energy per unit length, EL, then the 

above general free energy expression (Eq. (1)) is simplified to: 
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or, for each nanotube pair: 
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For any two nanotubes in equilibrium contact, we have      
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which gives rise to the relation between adhesion energy (EL), nanotube stiffness (EI), nanotube 
spacing (�i), and required bent length (li) of a given nanotubes (note that the nanotube spacing is equal 
to the required deflection [or bending displacement] for adhesion): 
 

L
E
EIl

L

i
i ≤	




�
�


� Δ
=

4/1218
.           (7) 

 
Note that the bent length (or non-contact length) at equilibrium is a function of a single variable, the 
bending displacement, iΔ , in addition to two constants (with respect to nanotube type): (1) adhesion 

energy per unit length, EL, and (2) bending stiffness, EI. A similar result was developed for the stability 
of adhered punching plates for microcontact printing (Hui, et al., 2002). 
 

3      Fine-Trains-Coarse Multi-Scale Approach 

 
We implement a “fine-trains-coarse” approach to develop a single degree of freedom (SDOF) model 
derived solely from atomistic calculations. A series of full atomistic calculations of mechanical test 
cases (test suite) is applied via classical molecular dynamics to derive a simplified set of parameters to 
describe the nanotube behavior at a coarser level.  
 
3.1 Full Atomistic Simulations 
 
The test suite implemented to determine the parameters required for the coarse-grain SDOF nanotube 
consists of the following three cases: (i) tensile loading to determine Young’s modulus, E; (ii) bending 
to determine the bending stiffness, EI, and; (iii) an assembly of two nanotubes to determine the 
adhesion energy, EL (the adhesion energy per unit length of any two nanotubes, or any two 
macromolecules is presumed constant, based on the fundamental physical interaction between atoms or 
molecules). The test suite is applied using two types of carbon nanotubes: (i) a (5,5) armchair single 
walled carbon nanotube, and; (ii) a multi-walled carbon nanotube consisting of an inner (8,8) armchair 
CNT with an outer (12,12) armchair CNT (a double walled carbon nanotube), as depicted in Figures 
4(a) and 4(b) respectively. We use a Tersoff potential to describe the carbon bonding within tubes, and 
a Lennard-Jones potential to describe intertube interactions. A more detailed description of the 
atomistic simulations and results for SWCNTs can be found in reference (Buehler, et al., 2006). The 
same procedure is applied here to DWCNTs. Here, we provide only a brief review of the multi-scale 
approach. 
 
A tensile test is applied to each nanotube conformation by fixing one end and applying displacement to 
the opposite end at varying speeds. The resulting force-displacement relationship is converted to a 
stress-strain relationship by assuming the force is applied to a circular cross-section of the nanotube (a 
similar approach used in (Buehler, et al., 2006)). Considering small deformation only, Young’s 
modulus is calculated by: 
 

ε
σ

ε
σ

Δ
Δ≈

∂
∂=E .           (8) 
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Similarly, a bending test is implemented by fixing one end of the nanotube and applying a lateral force 
to the opposite end, effectively cantilever bending. Through elastic beam theory, the bending stiffness 
is calculated as: 
 

Δ
=

3

3FLEI .            (9) 

 
For adhesion simulations, two nanotubes are simulated together, moved into close proximity to one 
another, and then separated, with an energy minimization procedure undertaken at discrete distances. 
The equilibrium spacing is taken as the position of minimum potential energy, while the adhesion 
energy is calculated via differences in potential at equilibrium and at separation. Table 1 summarizes 
the results of all atomistic simulations. 
 
3.2 Mesoscale Bead-Spring Model 
 
The single degree of freedom model is developed directly from the atomistic simulations, without the 
need for the development of a mesoscale, bead-spring model. However, to substantiate the parameters 
determined by full atomistic simulations, the bead-spring model is a useful tool to confirm the 
governing equations described in Section 2. Further, a bead-spring model allows the degrees of 
freedom necessary to correlate the non-contact lengths of bundled nanotubes as described by Eq. (7). 
Only a brief description of the formulation of the bead-spring model is given for brevity. For a more 
detailed description and application see (Buehler, et al., 2006; Cranford and Buehler, 2009). The basis 
of the mesoscale model is represented by a function of the total energy of the system expressed as 
 

weakBTSystem φφφφ ++= ,          (10) 

 

where Tφ  is the energy stored in the chemical bonds due to axial stretching, Bφ  is the energy due to 

bending, and weakφ  is the energy due to weak interactions. The total energy contribution of each is 

calculated by a sum over all pair-wise (distance) and triple (angular) interactions in the system. For 
axial stretching a simple harmonic spring is used to determine the energy between all pairs of particles 
in the system, given by 
 

( )2

0
2

1
)( rrkr TT −=φ ,           (11) 

 
with kT  as the spring constant relating distance, r,  between two particles. For bending, the bending 
energy is given by a sum over all triples in the system, given by 
 

( )2

0
2

1
)( ϕϕϕφ −= BB k ,           (12) 

 
with kB as the spring constant relating bending angle, ϕ,  between three particles. Weak interactions 
(vdW) are defined by a Leonard-Jones 12:6 function, given by 
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where r is the atomic separation, LJ,*ε  represents the energy minimum at equilibrium and LJ,*σ  as the 

distance parameter. 
 
Thus, the mesoscopic model is defined by 6 parameters: kT; r0; kB; ϕ0; LJ,*σ , and; LJ,*ε . The results from 

the above atomistic simulations are used to determine the six parameters via equilibrium conditions (r0; 
ϕ0; LJ,*σ ) and energy conservation (kT; kB; LJ,*ε ). For a more detailed description of the parameter 

derivations, the reader is referred to reference (Buehler, et al., 2006). All parameters are defined solely 
from the atomistic results given in Table 1, and given in Table 2. It is noted that the formulation using 
simple harmonic potentials is suitable for small deformations only. However, for investigations 
concerning bundle formation, the small deformation assumption is valid. 
 
The simulations are carried out using the massively paralyzed modeling code LAMMPS (Plimpton, 
1995)1 capable of running on large computing clusters. The mesoscale investigations reported were 
carried out on single CPU Linux workstations. 
 
3.2.1 Mesoscale Simulations and Limiting Equations 
 
We perform a series of simulations to test the validity of Eq. (7), and illustrate the bundling behavior of 
carbon nanotubes. Relatively small-scale simulations of nanotube arrays consisting of hundreds of 
bead-spring elements are implemented to investigate the parameters of Eq. (7) (See Figure 5 for an 
illustrative array). The simulations are focused on: (1) the independence of bent length with respect to 
total length of the nanotube; (2) the correlation between required bending displacement (i.e. adjacent 
nanotube spacing), and adhered length; (3) the effective difference in bending stiffness and adhesion 
strength (i.e. SWCNT compared to DWCNT). 
 
To confirm the bent length is independent of total length, two simulations of pairs of (5,5) SWCNTs 
are presented. The first pair is 50 nm in length, while the second pair is 100 nm in length. Both pairs 
are spaced 5 nm, requiring a bending displacement of =Δ 2.5 nm. Via Eq. (7), the bent length is 
calculated to be approximately 134 Å. Simulated results depict a bent length of 141 Å and 151 Å for 
the first and second pair respectively (Figure 6(a)). The bead-spring model is considered in “contact” 
when adjacent beads are within the equilibrium distance (9.35 Å for SWCNT) ± 10% to account for 
dynamic fluctuations in the simulation. The slight deviation from the calculated value is attributed to 
the asymmetry in the bending of the nanotubes. If the bending displacement of one is increased (e.g. 

>Δ 2.5 nm), the nanotube requires an increased bent length. It is noted that by Eq. (7), Δ∝l , so a 
slight deviation in Δ  resulting from the random dynamics of the simulation results in discrepancy in 
bent lengths from theoretical values.  
 
To confirm the relation with required displacement, nanotube spacing is varied from 3 nm to 5 nm. The 
results of pairs of (5,5) SWCNT with equal height (50 nm) are shown in Figure 6(b). Calculated bent 

                                                 
1 See: http://lammps.sandia.gov/ 
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lengths are 104 Å for 3 nm spacing and 134 Å for 5 nm spacing, compared to the simulation results of 
115 Å and 141 Å respectively. As before, slight deviations from the calculated value is attributed to 
asymmetric bending of nanotube pairs. 
 
Finally, a pair of DWCNTs is compared to the equivalent geometry of SWCNTs (both 50 nm in height, 
5 nm spacing). As shown in Figure 6(c) the increase in stiffness of a DWCNT greatly increases the 
required bent length both calculated (231 Å For DWCNT compared to 134 Å for SWCNT) and 
simulations (230 Å and 141 Å respectively). 
 
When multiple nanotubes are simulated, the increase in displacement for the outer nanotubes towards 
the “bundle center” requires an increase in bent length (as anticipated). However, the same tubes are in 
contact with adjacent nanotubes with approximately the calculated bent lengths (see Figure 6(d)). This 
creates a hierarchy of smaller bundles aggregating in larger bundles. Irrespective, the final bent (or 
contact) length between any pair of nanotubes is well described by the derived governing equation. It is 
also noted that the formed bundles are stable under relatively long simulations (approaching a scale of 
micro-seconds). We further note that a large cutoff of 200 Angstroms (with interactions between all 
particles) was used in the simulations.  
 
The results from these relatively small simulations depict accurate prediction of non-contact lengths. 
Thus, validated by simple mesoscale bead-spring simulations, the relation described by Eq. (7) is used 
as the basis for formulation and behavior of a single degree of freedom (SDOF) lollipop model.   
 
3.3 SDOF “Lollipop” Model 
 
Unlike the mesoscopic bead-spring model, the SDOF model need only represent the behavior of a 
carbon nanotube at the global level – i.e. total elastic deformation (deflection) and inter-tube adhesion. 
It is again stressed that the SDOF model is not derived from the bead-spring model, but rather from the 
full atomistic simulations, essentially reducing the mechanical properties of a carbon nanotube to a set 
of equations describing the motion and interaction of single masses (Figure 7). Similarly, the SDOF 
model is represented by a function of the total energy of the system expressed in Eq. (11), or: 
 

weakBTSystem φφφφ ++= .          (14) 

 
However, unlike the mesoscopic bead-spring model, which develops potentials for the nanotube in a 
piece-wise manner, the formulation of each term of the SDOF model considers the entire nanotube. 
The model itself consists of three particles, which are required to calculate relative angles. However, 
two of the particles are fixed, massless “dummy” particles (Figure 7), which do not affect the 
simulation process. 
 

3.3.1 Pair Potential & Structural Rigidity 
 
For axial behavior a simple harmonic potential is implemented, where: 
 

( )2

0
2

1
)( LLKL TT −=φ .          (15) 
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As seen, the potential is formulated in terms of total length of the nanotube (rather than equilibrium 
spacing of the beads/spring), with Lo equaling the unloaded, relaxed length of the tube, and L 
representing current tube length. Again, small deformation is assumed, as bundle formation will not 
impose large axial strains.  
 
3.3.2 Rotational and Bending Stiffnesses 
 
Rather than a simple harmonic potential to represent bending energy, the potential is formulated 
through beam theory for a fixed-fixed cantilevered beam (Figure 8(a)). The length of the beam is taken 
as the bent length of each nanotube (li). The applied moment at the fixed ends is thus: 
 

2

6

il
EIM Δ= ,            (16) 

 
while the equivalent force is taken as: 
 

il
MF = .            (17) 

 
It can be easily shown that the bending energy from this formulation is the same bending energy as 
shown in Eq. (2).  We then related the force to the total angle due to the bending displacement. From 
Figure 8(b): 
 

EI
Fl

LL
i

6

1
tan

3

==Δ θ ,           (18a) 

 
where L is the total length of the nanotube. Leading to: 
 

θtan
6

3 	



�
�


�
=

il
EILF ,           (18b) 
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i

b

l
LKF ,          (18c) 

 
where li is the required bent length calculated from Eq. (7), L is the total length of the nanotube, Kb  is 
the bending stiffness of the entire nanotube (theoretically equivalent to EI; used to distinguish from 

traditional elastic bending stiffness), ϕ the angle of the nanotube, and 0ϕ  the equilibrium angle ( 0ϕ  = 

180°). 
 
The above bending force (or resistance to bending) relation is only for specific fixed-fixed 
conformations of the nanotube. Before bundling, the nanotube is free to bend in any arbitrary manner. 
What is known is only the end conformation, when the nanotubes are bundled. As the resistance to 
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bending and bending stiffness is a limiting parameter for bundle formation, and knowledge of the tubes 
propensity to bundle can be used to formulate suitable force-bending relationship. As the bending 
resistance is inversely proportional to the bent length, it follows that the force approaches a minimum 
as the bent length approaches the total length of the tube. Due to the adhesion of nanotubes, when 
adjacent nanotubes are separated, the bent length can be considered to approach the total length, as 
depicted in Figure 8(c). 
  
It is an assumption of the model that this force ultimately determines if two adjacent nanotubes remain 
adhered. Implementing this assumption a priori as the force required to effectively “unbundled” two 
adhered nanotubes, then: 
 

 ( )02min tan
6 ϕϕ −	


�
�
�=

L
KF b

.          (19) 

 

Thus, instead of two parameters to define the bending potential (kb and 0ϕ ) as in the bead-spring 

model, three are required for the SDOF model: Kb, 0ϕ , and L. An increase in length of the nanotube 

changes resistance to bending, reducing the bending stiffness of the entire nanotube. The bent (or non-
contact) length, li, however, is only explicitly defined at equilibrium, and is free to vary while the 
nanotube is in intermediate, non-bundled states.  
 
3.3.3 Adhesion Interactions 
 

A common representation of van der Waals interactions between carbon nanotubes is obtained again 
via the Lennard-Jones 12:6 potential (see Eq. 13). 
 
For bundled tubes, the energy minimized energy between two tubes in equilibrium changes as a 
function of the bent length and contact region. The model assumes that the interaction between the non-
contact regions of the nanotubes is negligible. For carbon, van der Waals force becomes negligible 
once the atom exceeds a distance on the order of one nanometer (Brenner, et al., 1993). Using the 
deflection profile from the assumed elastic beam model, the increase in interaction energy was 
calculated numerically for nanotube spacing (center-to-center) from 1.0 to 4.0 nm, using the bending 
stiffness and adhesion energy parameters for (5,5) SWCNT at a length of 50 nm. The maximum 
increase in potential energy was approximately 7% when the nanotubes where within close proximity 
to each other (a relatively shallow bending profile). The increase dropped to less than 3% when the 
nanotubes were spaced over 2 nm. Such a minimal increase does not significantly change the total 
interaction energy, and thus considering the contact region only is deemed adequate, an assumption 
also presumed by previous studies (Chen, et al., 2003).  
 
Considering the contact region at equilibrium distance, the equilibrium energy is expressed as: 
 

LEL
2

1*
LJ =ε ,            (20) 

 
*
LJLJ εμε ×= ,            (21) 
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where μ is a scaling parameter defined by the contact length: 

 

L
lL i−

=μ ,            (22) 

 
where L is the total length of the nanotube, EL is the adhesion energy per unit length, and li is the bent 
length for each tube as calculated by Eq. (7). This results in a modified Lennard-Jones potential: 
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LJ*
LJ4)(
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ijweak rr

r σσμεφ ,        (23) 

 

where r and LJσ  are defined as before, μ determined by Eq. (22), and *
LJε  from Eq. (20) . 

 
3.4  Computational approach 

 
The SDOF model is implemented using a modified version of the modeling code LAMMPS (Plimpton, 
1995). The LAMMPS code was extended to enable the treatment of the nanotube interactions discussed 
in Section 3.3, specifically the functions for angle and pair potentials, which significantly differ from 
traditional molecular dynamic implementations. The angle function was modified according to Eq. 

(19), while the pair potential implements an on-the-fly modification of the energy parameter, LJε , of 

the Lennard-Jones potential via Eq. (23) according to the required bending length of Eq. (7).  
 
Arrays are generated with specified regular spacing, nanotube height, and nanotube type (SWCNT or 
DWCNT). An NVT ensemble (Hoover, 1985) is implemented with a temperature of 300K. Arrays are 
simulated with a time step of 10 fs, with a total time of 5.0 ns. Although a relatively short molecular 
simulation, longer runs are not required for the current investigation as the goal is merely attaining 
equilibrium. As some parameters are a function of the length of the nanotube model, Table 3 presents 
the parameters for nanotubes 1000 nm in length. It is noted that the tubes are simulated in a vacuum, 
thereby neglecting any effects from the surface or array substrate. 
 
3.5  Comparison Between Bead-Spring and SDOF “Lollipop” Models 

 

Both the mesoscopic bead-spring model and the SDOF “lollipop” models are developed under the 
assertion of energy conservation between full atomistic and equivalent coarse-grain potential behavior 
via explicit potentials for axial stretching, bending, and intra-molecular interactions (e.g. Eq. (10) and 
Eq. (14) respectively). The approach for each differs in the implementation of the coarse-grain 
parameters. For the bead-spring model, each potential describes local behavior (on the order of 10 Å to 
20 Å), and the mesoscale model is segmented into multiple bead-spring elements. Such a representation 
has the advantage of modeling the deformation of a nanotube under a number of loading conditions. 
However, the number of degrees of freedom is scaled with the length of the nanotube, and becomes 
computationally expensive when either large arrays (e.g. thousands of nanotubes) or long nanotubes 
(approaching micrometers) are considered. The SDOF “lollipop” model attempts to circumvent this 
limitation by asserting energy conservation to the global behavior of the nanotube. With each nanotube 
represented by a single moving particle the degrees of freedom to simulate scales with the number of 



Acc
ep

te
d m

an
usc

rip
t 

A Single Degree of Freedom ‘Lollipop’ Model for Carbon Nanotube Bundle Formation 

  
14

nanotubes rather than physical represented dimensions (i.e. there is the same number of degrees of 
freedom for nanotubes of 100 Å or 100 �m in length). 
 
The SDOF “lollipop” model lacks any description of local behavior of the nanotube as compared to full 
atomistic or bead-spring models. The application of a SDOF representation is practical when local 
behavior is known a priori, and the focus of investigation is on a global, intramolecular scale. This 
occurs for carbon nanotube bundling, when the deformed shape of the nanotube is of little concern and 
the interest is specifically in modeling the overall larger-scale structural organization of the nanotube 
system.  
 
Comparing a simple simulation of nanotubes, 100 nm in length and spaced 3 nm (Figure 9), with both a 
mesoscopic bead-spring and SDOF “lollipop” representation illustrates the critical difference: while the 
bead-spring representation depicts an accurate deformed shape of the carbon nanotubes, both 
simulations resulted in similar bundle formation (or adhered nanotubes). The deformation and 
intramolecular interactions of the SDOF model is implicit in its development. The diameters of the 
clusters are taken directly from the simulation results for comparison. The bead-spring representation 
results in an average cluster diameter of approximately 80 Å while the SDOF “lollipop” representation 
results in an average diameter of 70 Å. The bead-spring simulation results in slightly larger cluster 
sizes as the freedom of motion of the model allows for more dynamic configurations. It is noted the 
bead-spring representation required over one hundred times more elements and computational time 
than the SDOF representation. It is noted that the variation is on the order of one “concentric ring” of 
nanotubes to the cluster (the nanotubes in question are on the order of 7 Angstroms in diameter). 
Although the number of tubes within the cluster is larger, the bundle density does not change 
significantly. 
 

4 Examples and Analysis 

 

Simulations are prepared to investigate nanotube arrays of different aspect ratios (defined as the ratio of 
height to diameter) and the effectiveness of the SDOF model. 
 

4.1 Example 1: Large Scale, Small Aspect Ratio Homogeneous Arrays 
 
To illustrate the relative efficiency of a SDOF representation of a nanotube array, a relatively large-
scale array consisting of one million (1000 × 1000) nanotube representations is simulated. Each 
“lollipop” nanotube model is 100 nm in height, with an aspect ratio of approximately 150. The spacing 
is 20 Å in each direction center-to-center, and periodic boundary conditions are implemented. Other 
initial patterns were simulated, including a regular triangular grid, and a “pseudo”-random grid (20 Å 
spacing in each direction with a randomly generated offset of 0 to 5 Å). The slight changes in initial 
arrangements did not significantly affect the bundling behavior. Only results corresponding to regular 
spacing is presented here for consistency.   
 
It is noted that in the present study we implemented a uniform, regular array of carbon nanotubes to 
allow for a direct comparison with the specific parameters we varied (s.a. spacing, aspect ratio, 
stiffness, etc.). Furthermore, due to the relatively high aspect ratios of the nanotubes, minor deviations 
from regular spacing will still result in a close-packed hexagonal arrangement at the bundle tips (see 
Figure 9, for example). Significant deviations from regular spacing or their radius could be easily 
implemented to intentionally manipulate such bundles, but the current investigation was focused on 
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model verification. Such investigations could be carried out in future studies that could be focused on a 
vast amount of other variables and heterogeneous systems, such as geometric grid arrangement, 
varying height within the same array, random assortment of SWCNTs with DWCNTs, and others.  
 
If full atomistic methods were implemented on such an array, it would consist of approximately 16 
billion atoms, associated potentials, and required calculations. Thus, such a large-scale array is beyond 
the reach of traditional all-atom molecular dynamics, in particular in light of the required time-scales 
needed to simulate the self-organization of the tubes. The “lollipop” SDOF representation was 
simulated on a single CPU with a computational time of under 48 hours for a simulation time of 5 ns. 
 
As depicted in Figure 10(b), relatively small aspect ratios do not result in large bundle formation. The 
interaction between adjacent nanotubes results in irregular spacing and nanotube adhesion, without 
distinct clusters of nanotubes. 
 
4.2 Example 2: Large Aspect Ratio Homogeneous Arrays 
 
To investigate the bundling phenomena, arrays of the dimensions depicted in Example 1 are not 
required. To simulate an array with an increased aspect ratio, an array of 200 × 200 nanotubes with 
periodic boundary conditions is implemented. Each “lollipop” nanotube model is 1000 nm in height, 
with an aspect ratio of approximately 1500. Again, the spacing is 20 Å in each direction center-to-
center, and periodic boundary conditions are implemented. 
 
Increasing the height of the nanotubes to 1000 nm effectively reduces the resistance to bending (e.g. 
Eq. (19)). As a result, as the aspect ratio increases, bundles are more distinct and the nanotubes form 
denser clusters (Figure 10(d)).  
 
4.3 Comparison Through Local Density Distribution 
 
To quantify the effect of increasing the aspect ratio (nanotube height), a radial distribution function 
(RDF) is calculated for the simulations described in Section 5.1 and 5.2. It is the intent that a 
comparison between local density and global trends can discriminate between random and clustered 
arrangements, and further provide a methodology of evaluating the extent of cluster sizes. Similar local 
density approaches have previously been implemented in the characterization of clustering in 
discontinuously reinforced composites (Cetin and Kalkanli, 2009; Scalon, et al., 2003). The radial 
distribution function is a means to account for the molecular distributions arising from the forces 
particles exert on each other. Traditionally, the radial distribution function is given by: 
 

( ) ( )
0ρ

ρ rrg = ,            (24) 

 

where ( )rg  is simply the ratio of the local particle density at a distance r, ( )rρ , to the global density 

of the particles in the simulation box, 0ρ . Any deviation of ( )rg  from the initial distribution reflects 

correlation between particles due to intermolecular interactions (i.e. nanotube clusters). To compare the 

two simulations with vastly different simulation box sizes (and thus difference of global densities, 0ρ ) 

the local density is preferred, where: 
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( ) ( ) 0ρρ rgr = .           (25) 

 
The radial density is calculated for each particle in the system by considering each particle as the center 
of expanding volumetric shells. The local density is taken as the average RDF multiplied by the global 
density of all particles in the simulation. A propensity to cluster will lead to peaks in the local density at 
equilibrium spacing(s). It is noted that the local density is calculated under a volumetric spherical shells 
of discrete radii, but the SDOF bundles are essentially planar. A high density at a given radius 
correlated to a large number of nanotubes clustered about the particle, as shown in Figure 11.  

 

For the 100 nm nanotubes (Example 1, Section 5.1) there is a single peak in local density at a distance 

equal to the equilibrium “contact” distance ( 0r ). This reflects the nanotubes inclination for attraction. 

Lack of a second peak, and the relatively uniform local density for 0rr >  indicates relatively small 

cluster formation. The results for the 1000 nm nanotubes (Example 2, Section 5.2) reflect a significant 
increase in local density at the equilibrium distance, approximately five times greater than the shorter, 
100 nm nanotubes, correlating to a higher percentage of adhered nanotubes. Further, there is a reduced 
peak between approximately 1.4-2.1 times the equilibrium distances, followed by a smaller peak at 
approximately 2.5 the equilibrium distance, indicating adhesion and clustering of next-nearest 
neighbors (See Figure 11(a)). For both simulations, the local density is calculated with a cutoff distance 
of 40 Å. For comparison, the initial local density distribution is calculated via the initial configuration 
(i.e. shown in Figure 10(c)). 

 
The definition of a nanotube cluster can be subjective with respect to number of included nanotubes, 
however the presence of clustering can be inferred when the local density about a particular nanotube 
exceeds a certain threshold value (Cetin and Kalkanli, 2009; Prodanov, et al., 2007). Such a threshold 
can be dependent on the intended application of the nanotube array.  A comparison of the local 
densities via the radial density function is an effective discriminator of cluster size and can successfully 
be used for quantitative characterization of nanotube clusters. 
 
4.4 Effect of Surface Energy on Relative Cluster Size 
 
Carbon nanotubes form large and stable clusters due to the weak van der Waals interactions between 
carbon atoms. It had been shown that the surface energy of carbon nanotubes can be intentionally 
manipulated in fabrication (Al-Haik, et al., 2005) or in situ (Rueckes, et al., 2000). Similar inter-tube 
attraction and adhesion also occurs on nanotube arrays (Linares, 2009). The surface energy of 
nanotubes provides the driving force for bundling and cluster formation. As described in Section 2, 
nanotube bundling is dictated by the competition between strain/deformation energy and the adhesion 
energy.  
 
To investigate this dependence the surface energy is subsequently varied to show the effect on bundling 
and cluster size. Equivalent simulations of Example 1 were undertaken, varying the surface energy 
from 25% to 250% of the actual value of 2.31×10-10 J/m for (5,5) SWCNT. For each value of surface 
energy, the local density distribution is calculated, and the peak local density determined at the 
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equilibrium spacing, which is indicative of cluster formation and relative cluster size. The results are 
then normalized based on the actual nanotube results. 
 
As shown in Figure 12, decreasing the surface energy effectively ceases the formation of bundles or 
clusters, reducing the attraction between adjacent tubes such that resistance due to bending stiffness is 
dominant. Increasing the surface energy causes an increase in cluster size, but reaches a saturation 
point. Increasing the surface energy 200% to 250% only increases the local density by approximately 
30%. This saturation occurs due to the relatively short range of the peak of van der Waals forces. The 
forces due to long-range interactions decay quickly, and the tubes are tightly bonded in clusters at high 
surface energy. The spacing between each cluster is too great a distance to attract the next nearest 
tubes, which are strongly adhered to other formed clusters. The maximum cluster size then becomes 
dependent on the initial geometry of the array (such as nanotube spacing and density) and nanotube 
properties (aspect ratio and bending stiffness).  
 
4.5 Example 3: Large Aspect Ratio Mixed Arrays 
 
An array of mixed carbon nanotubes (both SWCNT and DWCNT) is generated with alternating strips 
of DWCNTs. Again each “lollipop” nanotube model is 1000 nm in height, a spacing of 20 Å in each 
direction center-to-center, and periodic boundary conditions. Due to the increase in diameter, the 
DWCNT has a lower aspect ratio (approx. 625), but an increase in surface energy and thus attraction to 
adjacent nanotubes. Further, the bending stiffness of the DWCNTs is an order of magnitude greater 
than the SWCNTs (See Table 3). Essentially, the stiffer, more energetic DWCNT’s attract the 
SWCNTs, creating bands of dense nanotube bundles (Figure 13).  
 
It is noted that the initial 20 Å spacing is approximately the equilibrium spacing of the DWCNTs, 
which consequently maintain their initial “striped” patterning.  
 
5 Discussion and Conclusion 

 

An understanding of the structure-property relationship at the meso- and macro-scale constitute a 
fundamental challenge of atomistic and molecular investigations of materials due to inherent 
limitations of both time and length scales. The concept of reducing a complex system to a minimal 
number of degrees of freedom is a common practice in structural engineering, ranging from nodal 
analysis of moment frames (McGuire, et al., 2000) to lumped-mass idealizations for seismic 
engineering (Chopra, 2000). The approach is intended to provide an efficient means for first-order 
analysis and design, providing the foundation for more comprehensive analysis. The inherent 
complexity of molecular systems such as an array of carbon nanotubes or other complex systems 
promotes and necessitates such simplifications. The importance of the interaction and the consequential 
bundling of nanotubes at the atomistic, molecular, and global material scales are critical for the 
development of materials and systems taking advantage of the surface characteristics of such arrays. 
Pertinent behaviors such as field emission properties (Fan, et al., 1999), thermal conductivity (Shaikh, 
et al., 2007), and array-substrate adhesion (Qu, et al., 2008) could possibly be coupled to this simplified 
model, enabling efficient simulations, optimization, and/or first-order designs.  
 
The single-degree-of-freedom model is meant to reduce the effective mechanical behavior of a 
nanotube to the fewest parameters possible, for efficient molecular dynamic simulations, representing a 
“coarse-graining” approach in the superlative sense. It is noted that a simplified modeling technique is 
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not capable of reproducing detailed atomic and nanoscale behavior of carbon nanotube arrays, but such 
behavior is not the goal. Rather, the current model is intended for large-scale modeling of bundling. 
The simple “lollipop” model reported here opens up several possibilities for future studies, including 
surface patterning, and/or transmission phenomena (such as thermal or electrical conductivity). Further, 
the SDOF approach can possibly be applied to other “self-similar” systems (in the sense of consistent 
interactions between system components), extending the time and length scales of effective molecular 
dynamic investigations. 
 
In general, theoretical nanomechanical models similar to those described for nanotube adhesion can be 
implemented in other high-aspect-ratio nanostructrual arrays wherein bundling and inter-tube attraction 
is not of critical concern. Such simplification techniques could theoretically be utilized for an 
assortment of nanotube phenomena, including arrays with mechanomutable or magnetically active 
surface properties (Cranford and Buehler, 2009; Evans, et al., 2007), or nanotube assemblies 
implemented for sensing applications (Artzi-Gerlitz, et al., 2009; Dai, et al., 2002; Dijkstra, et al., 2005; 
Sotiropoulou and Chaniotakis, 2003), or other systems that can be elucidated by global rather than 
local behavior of individual nanotubes.  
 
An understanding of the effects of surface energy and cluster formation can facilitate the development 
of devices that attempt to manipulate the energy and inter-tube interaction of nanotubes, including 
nanotube actuators (Baughman, et al., 1999) or computing devices (Rueckes, et al., 2000). Further, 
such phenomenon occurs in general in nanotube arrays of other materials, such as polymer 
nanofilaments (Linares, 2009), or polymer-coated composite nanotubes (Star, et al., 2001). The current 
model framework can also be implemented to investigate the environmental effects on surface energy 
and bundle formation, such as changes in pH for nanotube arrays (or free nanotubes) in solution (Saleh, 
et al., 2008), or the energetic effects of the nanotube-substrate interface. We have shown that although 
surface energy is critical for the attraction of adjacent nanotubes, cluster density reaches a saturation 
point based on the initial geometry and mechanical properties of individual nanotubes. Understanding 
of such behavior is critical in the development of novel nanotube displays (Wang, et al., 1998) and 
electronic devices (Li, et al., 1999; Murakami, et al., 2000) that depend on the ordered arrangement and 
density of such arrays. 
 
The system level behavior of nanotube systems is a complex problem, involving a tacit accord between 
surface density, height, spatial arrangement, and other parameters. Here we have focused on relatively 
homogeneous arrays to validate our nanomechanical model, as well as manipulating surface energy to 
determine the effect on cluster formation. Future areas to study could be heterogeneity in surface 
density and height, and geometric spatial arrangement, as well as incorporating the potential 
modification/manipulation of surface energy in situ.  
 
In summary, we derived a continuum model for the relation between elastic energy (via bending 
stiffness) and intermolecular interaction energy for carbon nanotubes, resulting in a prediction of the 
required bent and contact lengths of a pair of adjacent nanotubes at equilibrium. The model was 
confirmed via coarse-grain molecular simulations implementing a bead-spring representation of carbon 
nanotubes. A single-degree-of-freedom “lollipop” model was developed from the continuum theory 
and parameters obtained from full atomistic simulations. The approach is fundamentally multiscale, 
and provides a new technique for the simulation and investigation of arrays of carbon nanotubes 
approaching length-scales of micrometers, greater than traditional molecular dynamics or current 
coarse-grain techniques. 
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The bundle formation of carbon nanotubes involves a balance between surface energy, intertube 
spacing, bending stiffness, and aspect ratio. Deliberate manipulation or each parameter can manipulate 
the final configuration of a nanotube array. It has been illustrated that changes in nanotube length affect 
cluster density, while mixing of single-walled carbon nanotubes with stiffer, double-walled carbon 
nanotubes illustrated a propensity for regular patterns. Subsequently, one can alter the self-organization 
of nanotube arrays with design and intent. Effective simulation methods are critical when the self-
assembly process of the system is inherently stochastic. The single degree of freedom “lollipop” model 
presented here provides an efficient means to engineer the self-organization and principal behavior of 
nanotube arrays.  
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Tables and table legends 
 
 

Table 1: Summary of Results from Full Atomistic Simulations (for specific CNT geometries) 

Parameter Value Units 

1. SWCNT   
Young’s modulus, 

E 
2.0 × 1012 N/m2 

Bending stiffness, 
EI 

6.65 × 10-26 Nm2 

2. DWCNT   
Young’s 

Modulus, E 
1.3 × 1012 N/m2 

Bending stiffness, 
EI 

8.30 × 10-25 Nm2 

3. Adhesion Energy and Equilibrium Spacing* 
2.31 × 10-10 J/m SWCNT (5,5) 

13.1 Å 

3.30 × 10-10 J/m DWCNT  
(8,8)-(12,12) 22.1 Å 

* The defined adhesion energy is per unit length. The equilibrium spacing is defined here as the center-to-
center spacing of the nanotubes at equilibrium, not the spacing between adjacent nanotube walls. The 
adhesion energy for larger tubes may be affected by additional effects s.a. CNT flattening that may further 
increase the adhesion energy. These effects are not considered here and the results are only valid for the 
specific CNT geometries under investigation.  
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Table 2: Summary of Bead-Spring Parameters for Mesoscale Model † 

Parameter SWCNT (5,5) DWCNT (8,8)-(12,12) 
kT 1000 kcal/mol/ Å2 1880 kcal/mol/ Å2 

r0 10 Å 20 Å 

kB 14,300 kcal/mol/ rad2 90,000 kcal/mol/ rad2 

ϕ0 180° 180° 

σLJ,* 
9.35 Å  19.7 Å  

ε LJ,* 15.1 kcal/mol  43.2 kcal/mol  
† The adhesion parameters in the mesoscale model depend on the size and structure of the tubes considered. The 

parameters reported here are only valid for the specific CNT geometries modeled here.  
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Table 3: Summary of Parameters for a 1000 nm SDOF “Lollipop” Model * 

Parameter SWCNT (5,5) DWCNT (8,8)-(12,12) 

KT 1,000,000 kcal/mol/ Å2 1,880,000 kcal/mol/ Å2 

r0 10000 Å 10000 Å 

KB 95,800 (kcal/mol)- Å 1,195,600 (kcal/mol)- Å 

ϕ0 180° 180° 

L 10000 Å 10000 Å 

σ LJ 9.35 Å 19.7 Å 
*
LJε  16625 kcal/mol  23750 kcal/mol 

EL 2.31 × 10-10 J/m 3.30 × 10-10 J/m 

Note: EL is required for Eq. (7) 
* The adhesion parameters in the “lollipop” model depend on the size and geometry of the tubes considered. 

The parameters reported here are only valid for the specific CNT geometries modeled here.  
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Figure legends  
 
Figure 1: Illustration of bundle formation in nanotube systems. The images show scanning electron 
microscopy (SEM) characterization of polymer nanofilament bundles (Linares, 2009). Image reprinted 
with permission from: Linares, A.V., et al., 2009. Polymer films composed of surface-bound 
nanofilaments with high aspect ratios, molecularly imprinted with small molecules and proteins. 
Advanced Functional Materials 19, 1299-1303. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 
Reproduced with permission. 

 
Figure 2: 2D bundle representation for governing equations in the continuum nanomechanics model 
where L is total length, l  is bent length, and �  is inter-tube spacing. 
  
Figure 3: Contact and non-contact cases for surface deformation energy. 

 
Figure 4: Full atomistic models of: (a) (5,5) armchair single-walled carbon nanotube; (b) (8,8) inner, 
(12,12) outer double-walled carbon nanotube. 
Figure 5: Mesoscale bead-spring nanotube simulation, 40 DWCNTs (height of 50 nm, spacing of 5 
nm), illustrating the propensity of nanotubes to form bundles via van der Waals interactions. 

 
Figure 6: Meso-scale simulation confirmation of the theoretical nanomechanical model: (a) Variable 
length (5,5) SWCNT pairs (50 nm and 100 nm); (b) variable spaced (5,5) SWCNT pairs (50 nm height 
with 3 nm and 5 nm spacing); (c) DWCNTs with 50 nm height and 5 nm spacing; bent length of 230 Å; 
(d) Hierarchical bundle formation; SWCNTs with 100 nm height and 5 nm spacing. The dashed lines 
and numbers are predictions from the theoretical nanomechanical model. The agreement between the 
simulation results and the model can be seen in the images.  

 
Figure 7: Single degree of freedom “lollipop” model of CNTs. An entire CNT of length L is 
represented by a single particle.  

   
Figure 8: Beam theory assumptions: (a), Fixed-fixed beam under displacement; (b), Bending angle 
approximation; (c), Changing of bent length, l, with bundle conformation: i) Nanotube in bundled 
conformation, equilibrium bent length, l = le; ii) Intermediate conformation, bent length le < l < L; iii) 
Final adhered conformation, bent length equal to total length, l = L. 
 

Figure 9: Comparison of bundle formation characteristics, obtained using the bead-spring model and 
the SDOF model. The images show top views of nanotubes of 100 nm length and 3 nm spacing. (a), 
Bead-spring mesoscale model, resulting in an average cluster diameter of approximately 80 Å. (b), 
SDOF “lollipop” representation, with an average cluster diameter of approximately 70 Å. The SDOF 
“lollipop” model results in clusters of approximately the same size as the bead-spring representation, 
validating the approach.  

    
Figure 10: Large-scale array of SWCNT depicting cluster formation with variable aspect ratios. (a) 
aspect ratio = 150, dimensions: approx. 1.0 �m × 1.0 �m; micrometer array used to illustrate the extent 
of scale for applications; (b) aspect ratio = 150, dimensions: approx. 0.1 �m × 0.1 �m; (c) aspect ratio = 
1500; dimensions: approx. 0.15 �m × 0.15 �m, initial configuration depicted for comparison; (d) aspect 
ratio = 1500; dimensions: approx. 0.15 �m × 0.15 �m, bundled configuration. Comparison of bundled 
configurations (b) and (d) indicates an increase in bundle size and density for the higher aspect ratios. 

 



Acc
ep

te
d m

an
usc

rip
t 

A Single Degree of Freedom ‘Lollipop’ Model for Carbon Nanotube Bundle Formation 

  
27

Figure 11: (a), Local density distributions for CNTs of length 100 nm (Example 1) and 1000 nm 
(Example 2), for SWCNT simulations. (b), Schematic of local density distribution. 

 
Figure 12: Normalized peak local densities versus surface energy ratio for 1000 nm array of (5,5) 
SWCNT; surface energy values from 25% to 250% actual value of 2.31×10-10 J/m. Peak local density 
at equilibrium spacing of approximately10.5 Å. Insets depict top view of array clusters at 75% and 
225% values. The density saturates as surface energy approaches 250% actual value, as a significant 
decrease in van der Waals forces with distance prevents attraction of next-nearest neighbors.  
 
Figure 13: Heterogeneous array of SWCNTs (aspect ratio 1500, in white) and DWCNTs (aspect ratio 
= 625, in green); dimensions: approx. 0.2 �m × 0.1 �m. (a), Initial configuration. (b), Bundled 
configuration. This result shows that the utilization of heterogeneous arrays can be employed to 
intentionally manipulate the bundle density and configuration to form specific surface structures. 
 



Acc
ep

te
d m

an
usc

rip
t 

A Single Degree of Freedom ‘Lollipop’ Model for Carbon Nanotube Bundle Formation 

  
25

Figures and figure legends  
 
 

 
Figure 1: Illustration of bundle formation in nanotube systems. The images show scanning electron 
microscopy (SEM) characterization of polymer nanofilament bundles (Linares, 2009). Image reprinted 
with permission from: Linares, A.V., et al., 2009. Polymer films composed of surface-bound 
nanofilaments with high aspect ratios, molecularly imprinted with small molecules and proteins. 
Advanced Functional Materials 19, 1299-1303. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 
Reproduced with permission. 
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Figure 2: 2D bundle representation for governing equations in the continuum nanomechanics model 
where L is total length, l  is bent length, and �  is inter-tube spacing. 
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Figure 3: Contact and non-contact cases for surface deformation energy.
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Figure 4: Full atomistic models of: (a) (5,5) armchair single-walled carbon nanotube; (b) (8,8) inner, 
(12,12) outer double-walled carbon nanotube.

 
 
 
 

(a)

(b)
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Figure 5: Mesoscale bead-spring nanotube simulation, 40 DWCNTs (height of 50 nm, spacing of 5 
nm), illustrating the propensity of nanotubes to form bundles via van der Waals interactions.
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Figure 6: Meso-scale simulation confirmation of the theoretical nanomechanical model: (a) Variable 
length (5,5) SWCNT pairs (50 nm and 100 nm); (b) variable spaced (5,5) SWCNT pairs (50 nm height 
with 3 nm and 5 nm spacing); (c) DWCNTs with 50 nm height and 5 nm spacing; bent length of 230 Å; 
(d) Hierarchical bundle formation; SWCNTs with 100 nm height and 5 nm spacing. The dashed lines 
and numbers are predictions from the theoretical nanomechanical model. The agreement between the 
simulation results and the model can be seen in the images.  
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Figure 7: Single degree of freedom “lollipop” model of CNTs. An entire CNT of length L is 
represented by a single particle.  
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Figure 8: Beam theory assumptions: (a), Fixed-fixed beam under displacement; (b), Bending angle 
approximation; (c), Changing of bent length, l, with bundle conformation: i) Nanotube in bundled 
conformation, equilibrium bent length, l = le; ii) Intermediate conformation, bent length le < l < L; iii) 
Final adhered conformation, bent length equal to total length, l = L.
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Figure 9: Comparison of bundle formation characteristics, obtained using the bead-spring model and 
the SDOF model. The images show top views of nanotubes of 100 nm length and 3 nm spacing. (a), 
Bead-spring mesoscale model, resulting in an average cluster diameter of approximately 80 Å. (b), 
SDOF “lollipop” representation, with an average cluster diameter of approximately 70 Å. The SDOF 
“lollipop” model results in clusters of approximately the same size as the bead-spring representation, 
validating the approach.  
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Figure 10: Large-scale array of SWCNT depicting cluster formation with variable aspect ratios. (a) 
aspect ratio = 150, dimensions: approx. 1.0 �m × 1.0 �m; micrometer array used to illustrate the extent 
of scale for applications; (b) aspect ratio = 150, dimensions: approx. 0.1 �m × 0.1 �m; (c) aspect ratio = 
1500; dimensions: approx. 0.15 �m × 0.15 �m, initial configuration depicted for comparison; (d) aspect 
ratio = 1500; dimensions: approx. 0.15 �m × 0.15 �m, bundled configuration. Comparison of bundled 
configurations (b) and (d) indicates an increase in bundle size and density for the higher aspect ratios. 
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Figure 11: (a), Local density distributions for CNTs of length 100 nm (Example 1) and 1000 nm 
(Example 2), for SWCNT simulations. (b), Schematic of local density distribution. 
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Figure 12: Normalized peak local densities versus surface energy ratio for 1000 nm array of (5,5) 
SWCNT; surface energy values from 25% to 250% actual value of 2.31×10-10 J/m. Peak local density at 
equilibrium spacing of approximately10.5 Å. Insets depict top view of array clusters at 75% and 225% 
values. The density saturates as surface energy approaches 250% actual value, as a significant decrease 
in van der Waals forces with distance prevents attraction of next-nearest neighbors.  
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Figure 13: Heterogeneous array of SWCNTs (aspect ratio 1500, in white) and DWCNTs (aspect ratio = 
625, in green); dimensions: approx. 0.2 �m × 0.1 �m. (a), Initial configuration. (b), Bundled 
configuration. This result shows that the utilization of heterogeneous arrays can be employed to 
intentionally manipulate the bundle density and configuration to form specific surface structures. 




