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by

Chong Wang

Submitted to the Department of Physics
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Doctor of Philosophy in Physics

Abstract

In this thesis, I study a class of exotic quantum matter named Symmetry-Protected
Topological (SPT) phases. These are short-range-entangled quantum phases hosting
non-trivial states on their boundaries. In the free-fermion limit, they are famously
known as Topological Insulators (TI). Huge progress has been made recently in un-
derstanding SPT phases beyond free fermions. Here I will discuss three aspects of
SPT phases in interacting systems, mostly in three dimensions: (1) Novel SPT phases
could emerge in strongly correlated systems, with no non-interacting counterpart. In
particular, I will discuss interaction-enabled electron topological insulators, including
their classification, construction, characterization and realization. (2) When strong
interactions are present, the surface of many SPT phases (including the familiar free
fermion topological insulator) can be gapped without breaking any symmetry, at the
expense of having intrinsic topological order on the surface. (3) Some topological
phases that are non-trivial in the free fermion theory become trivial once strong in-
teractions are introduced. The material of this thesis closely parallels that of Refs.
[1, 2, 3, 4, 5, 6].
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Chapter 1

Introduction

1.1 Entangled quantum phases of matter

A focus of modern quantum condensed matter physics is the study of phases of matter

whose characterization is not captured by the concepts of broken symmetry and

associated Landau order parameters[7]. Such phases often come with emergent low

energy degrees of freedom giving rise to interesting field theories. A striking example

is the fractional quantum hall states[8, 91: these states host quasi-particle excitations

that carry fractional quantum statistics that are neither bosonic nor fermionic, and

such particles are called anyons. The anyon statistics cannot be understood within

the framework of broken symmetries, and a new paradigm is clearly required to

understand them systematically.

It was realized later that the fractional quantum hall states belong to a larger

class of gapped quantum matter called topological ordered phases, with their low

energy properties described by topological quantum field theories (TQFT). These are

characterized by emergent excitations with unusual quantum statistics and ground

state degeneracies that depend on the topology of the underlying manifold[10]. Other

examples of topological order include gapped spin liquids - an exotic class of quantum

magnets, in which the magnetic order is destroyed by quantum fluctuations[11, 121.

The simplest kind of gapped quantum spin liquid - often dubbed Z2 spin liquid - is

potentially realized in a mineral called Herbertsmithite[13, 141.
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Other examples of quantum phases beyond the Landau paradigm of symmetry

breaking are gapless phases of matter, where the gaplessness is protected but is not

associated with broken symmetries and Goldstone modes. The most familiar example

of such a phase is the Landau Fermi liquid but gapless spin liquids and various non-

Fermi liquid phases provide other examples.

A common characterization of all these exotic phases is the presence of non-local

many body quantum entanglement in their ground state wave function, in the sense

that different parts of the system are necessarily entangled. More precisely, the ground

state wavefunction cannot be tuned to an unentangled product state by continuously

changing the Hamiltonian without encountering any singularity in its properties (so

called adiabatic evolution). Here a "product state" is a quantum state of the form

Io1)1 D |a2 ) 2 ... 0 IaN)N, where lai)i is a local state on site i of the underlying lattice.

Entanglement has thus become a new organization principle in classifying quantum

phases. Those exotic phases that cannot be "disentangled" without encountering a

phase transition have come to be known as highly entangled phases of matter.

On the contrary, short-range entangled phases are those that can be adiabat-

ically evolved into a simple product state. All phases described within the symmetry-

breaking paradigm fall into this category. For example, an ising ferromagnet, in the

ordered phase, can be adiabatically tuned into a product state with no entanglement:

I t) 0 1 t)... 0 ). Most of the band insulators described by free fermions can also be

tuned into a product state, with an integer number of fermions occupying each local

orbital - sometimes called the atomic insulator limit. Since a product state cannot

host any exotic excitation (such as anyons), a short-range entangled phase, which is

adiabatically connected to a product state, must also host no exotic excitation.

There is another class of phases that will not be discussed extensively in this the-

sis but is nevertheless worth mentioning: these are phases that can be adiabatically

disentangled into a product state only if the system is combined with another "mir-

ror" state - sometimes referred to as "invertible" phases. In some sense they fall in

between the two categories discussed above. In this thesis I will count them as short-

range entangled, even though they are sometimes classified as long-range entangled
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phases in the literature depending on the taste of the authors. These phases have

nothing exotic in the bulk of the system: the excitations are gapped and carry regular

statistics. However, they host non-trivial boundaries (often gapless) that cannot be

eliminated unless the bulk goes through a phase transition into a trivial state. Classic

examples include integer quantum hall states and chiral superconductors in two (spa-

tial) dimensions, and the Kitaev Majorana chain in one dimension[15]. The former

host chiral fermions on their one dimensional boundaries, and the latter host Ma-

jorana zero-modes (zero-dimensional Majorana fermions) at the ends of the system.

The boundary theories of these invertible phases cannot be realized alone without a

nontrivial bulk. In field theory language, they have gravitational anomalies.

1.2 The interplay between symmetry and topology

The organization of quantum phases according to their entanglement patterns does

not require the presence of symmetry in the picture. However, it has been known since

its discovery that symmetry can largely enrich the story of highly entangled phases

such as topological orders. The oldest example is again the fractional quantum hall

states, where the quasi-particle excitations carry not only fractional statistics, but

also fractional charge: for example, electrons filling up 1/3 of the first Landau level

(often called the Laughlin 1/3 state) has anyon excitations that carry charge-e/3. In

modern language, symmetry (here the U(1) charge conservation) is acting projectively

on the quasi-particle excitations. Projective symmetry groups (PSG) also play a key

role in understanding other exotic phases including various kinds of spin liquids[10].

Topological orders equipped with different realizations of symmetries are dubbed

symmetry-enriched topological orders (SET), and the phenomenon of symmetries

acting projectively is often called symmetry fractionalization.

It was also realized that symmetry can even enrich the story of short-range en-

tangled phases: there are states that are short-range entangled, but cannot be adi-

abatically disentangled into product states while preserving the symmetry of the

system[16, 17]. In another word, these phases are distinct from a trivial product
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state if and only if the symmetries are preserved. They are now dubbed Symmetry-

Protected Topological (SPT) phases. Similar to invertible phases, SPT phases

have no exotic excitations in the bulk - all the excitations are gapped and carry triv-

ial statistics. But the boundaries of SPT phases are necessarily nontrivial as long

as the symmetries of the system are not broken - the precise meaning of the term

"nontrivial" here shall be explained later, and is in fact one of the main themes of this

thesis. The crucial point is that the boundaries of SPT phases realize symmetries

in an anomalous way: the (d - 1)-dimensional boundary state of an d-dimensional

SPT cannot be realized in a strictly (d - 1)-dimensional system while preserving the

symmetries.

1.2.1 Topological insulators: SPT in free fermions

The interest in studying SPT phases was revived recently due to the theoretical and

experimental discovery of electronic topological insulators in two and three spatial

dimensions[18, 19, 20]. These are band insulators hosting gapless boundary modes as

long as time-reversal symmetry and charge conservation are preserved. If these two

symmetries are broken - either spontaneously or explicitly - the boundary of topo-

logical insulators will be gapped, and the distinction between topological and trivial

(atomic) insulators will vanish. This makes topological insulators perfect examples

of SPT phases.

The topological insulators realized experimentally so far can be modeled using

free lattice fermions, which makes them more accessible theoretically than general

interacting SPT phases. Indeed, topological insulators in free fermion systems have

been fully classified in any dimension and with any internal symmetry (not involving

spatial groups)[21, 221, and tremendous progress has been made in understanding the

physics of these phases within band theory. The key feature of these phases is the

emergence of gapless Dirac/Weyl/Majorana fermions on the boundaries of the gapped

bulk, and they are kept gapless as long as the relevant symmetries are unbroken.

The most famous and interesting example is the three dimensional topological

insulator{23, 24, 251. It is an insulator that cannot be adiabatically tuned to a trivial
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(atomic) insulator as long as time-reversal symmetry (T) and charge-conservation

(U(1) symmetry) are preserved. In another word, the non-triviality of the topological

insulator is protected by the U(1) x T symmetry. The surface hosts an odd number

of two component Dirac cones. In the simplest case, there is only one flavor of two-

component Dirac fermion:

'C = iPS + p/fl~?, (1.1)

where ip is the fermion field, yo = i-y, -y1 = o-,, 72 = a., and y is the chemical

potential. The Dirac dispersion spectrum has been observed experimentally using

photoemision spectroscopy[26, 27] in materials such as Bi2Se3 . Time-reversal sym-

metry acts as TOT 1 = io-,b. It is easy to check that any fermion mass term will

necessarily break a symmetry: the Dirac mass term minO will break time-reversal

symmetry, while the pairing mass term A4T(ia-)P + h.c. breaks the U(1) charge

rotation symmetry. Therefore the surface is gapless as long as the symmetries are

preserved, at least within the free fermion theory. Importantly, such a theory as in

Eq. (1.1) cannot be realized in strict two dimensions while preserving the U(1) x T

symmetry. This is known in the field theory literature[28, 29, 301 as the "parity

anomaly".

The free fermion description is clearly the appropriate starting point to discuss the

possibility of topological insulators/superconductors (or SPT in general) in weakly

correlated materials. In recent years however attention has turned toward materi-

als with strong electron correlations as possible platforms for similar phenomena.

These include the mixed valence compound[31, 32, 331 SmB6 , and iridium oxides on

pyrochlore lattices[34]. The exploration of topological phenomena in correlated ma-

terials brings with it a number of questions. Are the free fermion topological phases

stable to the inclusion of strong interactions? Even if they are, could they behave

very differently in strongly interacting systems? Are there intrinsically interacting

SPT phases that have no free fermion analog? Clearly in addressing these questions

there is a need to go beyond the concept of topological band structure and think more

generally about the physics of SPT phases.
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1.2.2 SPT in one dimension

The first understood SPT phase in interacting system was the Haldane spin-1 chain[35,

361 in one dimension (well before the discovery of topological insulators!). It is a chain

of localized spins, each carrying spin-1. The typical Hamiltonian has the form

H = JSj - Si+ + .. ,(1.2)

where Si is a spin-1 operator living on site i, J is a positive coupling constant, and

"..." represents longer range terms that do not affect the qualitative feature of the

system. What is surprising about this system is that a spin-1/2 degree of freedom

emerges at the end of the chain - clearly not possible for a spin-1 system in strictly

zero-dimension (a point). This gives a two-fold degeneracy at each end, and four-fold

ground state degeneracy for an open chain. It is also clear that the non-triviality exists

only if the relevant symmetry (e.g., SO(3) spin-rotation or time-reversal symmetry)

is preserved.

More recently, the systematic study of SPT phases in interacting systems was

carried out succesfully in one dimension for both bosonic[37, 38, 39] and fermionic[40,

41, 42] systems. Both the mathematical classification of phases and physical under-

standing of their properties were achieved. In bosonic systems, where the microscopic

degrees of freedom are lattice bosons/spins, the physics of Haldane chain was gener-

alized to all internal symmetries, and many new states were discovered. In fermionic

systems, where the microscopic degrees of freedom are interacting lattice fermions, it

was realized that some phases that were non-trivial in the free fermion models became

trivial once interactions were introduced. In both cases, the common feature in terms

of physical properties is that there is always a ground state degeneracy protected by

the symmetry associated with the boundary (the end of the one dimensional chain).

In other words, if the system is put on an open chain, there will be degenerate ground

states as long as the symmetries are preserved; while the system on a closed chain is

guaranteed to have a unique ground state. The degenerate states associated with each

end realizes symmetry projectively (generalization of spin-1/2 to other symmetries),
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and cannot be realized alone in a strictly zero dimensional system (a point).

1.3 SPT in interacting bosons

The complete understanding in one dimension was possible largely due to special fea-

tures of one dimensional systems and many exact results related to them. In higher

dimensions the story becomes much more complicated. For bosonic systems a break-

through was achieved using the mathematical device of group-cohomology[16, 171:

a large number of new SPT states were discovered and classified in all dimensions

with all internal symmetries. The group cohomology classification was later realized

to be incomplete in three and higher dimensions[43, 1, 44, 451, but it represents a

huge progress in classifying SPT phases. However, unlike the SPT phases in one di-

mensions, it is harder to infer the physical properties of those nontrivial SPT phases

in higher dimensions directly from the mathematical classification. For two dimen-

sional SPT phases, the physics of the one dimensional boundary were analyzed in

Ref. [46, 47, 48, 49, 50, 51]. The main features are similar to that in one dimension:

the boundary (edge) states are guaranteed to be gapless as long as the symmetries

are not broken (either spontaneously or explicitly). The symmetry implementations

on the boundary theories are anomalous, in the sense that they cannot be realized

in a strictly one dimensional system. If the symmetries involved are unitary (i.e.

not including time-reversal), these anomalies are related to gauge anomalies in field

theory literatures.

On the other hand, the theory of three dimensional boson SPT was relatively less

developed, simply because we have less theoretical tools to study those interacting

field theories on the (2 + 1) dimensional boundaries. It was suspected that the story

may be similar to those in lower dimensions: the boundary surface will be either

gapless or symmetry-breaking. Surprisingly, it was later realized[43, 52] that there is

yet another possibility: the surface could be in a topologically ordered state, in which

case it would be both gapped and symmetric! Remember the three dimensional bulk of

the SPT phase has no topological order since it is short-range entangled by definition.
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However, the surface can develop topological orders, hosting anyon excitations that

live only on the surface. Such a possibility is possible only on the two (or higher)

dimensional surface because topological order does not exist in lower dimensions. It

was later realized (by us and other groups) that even the surface of the famous free

fermion topological insulator can be symmetrically gapped and develop an intrinsic

topological order[2, 53, 54, 55].

The topological orders appeared on the surfaces of SPT states are very uncon-

ventional, in the sense that the symmetries are fractionalized in some strange ways.

While symmetry fractionalization can certainly happen even in strict 2D topological

orders (for example in fractional quantum hall states), the particular kinds of symme-

try fractionalization on the SPT surfaces are so strange that they cannot be realized

in any strict 2D system. This is a manifestation of the symmetry anomaly on the

SPT boundary.

The phenomenon of anomalous symmetry fractionalization leads us to a funda-

mental question: what kinds of symmetry fractionalization are anomaly-free, hence

allowed in strict 2D, and what are not? In Ref. [1] we tackled this question for several

symmetry groups of practical interest, including time-reversal symmetry and charge

conservation. The general idea is to examine for each pattern of symmetry fraction-

alization whether the 2D system could have an 1D boundary (edge) to the vacuum

that is consistent with the 2D bulk theory. This "edgability" criteria turned out to

be quite powerful and was able to determine which theories can happen in 2D and

which can only happen on the surface of a 3D bulk: in the former case there should

be an edge to the vacuum, while in the latter a consistent edge is clearly not required

since the boundary has no boundary. Indeed, we found that all the topological orders

realized on the SPT surfaces cannot be realized in strict 2D with their symmnetry

implementations. This approach also led very naturally to an explicit construction

of all the bosonic SPT states in three dimensions, using coupled layers of 2D-allowed

topological orders. In particular, the existence of bosonic SPT states beyond the

group-cohomology classification was explicitly confirmed.

The understanding of which kinds of symmetry-fractionalization are possible in

26



strict 2D is of great practical interest. For example, if a Z2 spin liquid is indeed

realized in Herbersmithite, one would like to know how the symmetry charges (spin,

lattice momentum, etc. ) are fractionalized. Solving this directly is very challenging

both analytically and numerically. The most practical way is to analyze possible

experimental signatures that can arise in Z2 spin liquids with different symmetry-

fractionalization, and compare with experimental observations. However, in doing

this one must first figure out what are the possible symmetry-fractionalization. In

particular, one should not try to compare experiments with phenomenologies of those

topological orders that can only appear on the surface of some 3D SPTs.

1.4 SPT in interacting fermions

Since all the strongly interacting systems in solid state are made of electrons, the

study of SPT in interacting fermions is of great practical value. In particular, the

three most important issues are classification, characterization and realization: How

many distinct phases are there? How to characterize a nontrivial phase, especially in

the laboratory? How to realize those nontrivial phases in real materials?

The understanding of SPT in interacting fermions in higher dimensions (D > 1)

is even more incomplete than the bosonic ones. Formal classifications using algebraic

tools are available for certain special symmetry groups[56, 571, but not including

the physically important case of charge conservation and time-reversal symmetry

(as is appropriate for insulators). Moreover, it is even harder to read off the physical

properties from the mathematical classifications than it is for bosonic SPT. Significant

progress has been made for 2D fermion SPT phases through the study of their (1+1)D

edge states[48, 58, 59, 60, 61], but it is very hard to generalize such approach to higher

dimensions, including the physically important case of 3D systems.

Given the difficulties of tackling the main issues (classification, characterization

and realization) using abstract mathematics, we took a more elementary approach by

coming up with various physical arguments. The physical approach turned out to be

surprisingly fruitful. In Ref. [3, 4] we presented a series of physical arguments that

27



led to complete classifications of fermionic SPT phases in 3D when the symmetry

groups contain a normal U(1) subgroup, which include the physically important case

of charge-conservation. The resulting physics was very rich: interacting SPT states

that cannot be described with non-interacting fermions were identified. On the other

hand some phases that were nontrivial in free fermion theory became trivial once

interactions were introduced. We also discussed their physics in terms of surface

states, in particular their experimental fingerprints that are measurable. In Ref. [5]

I also discussed a very simple toy model of one of those beyond-free-fermion SPT

states.

It is much harder to say anything certain about the issue of realizing those exotic

interacting states in real materials, simply because most realistic interacting mate-

rials are described by Hamiltonians that are extremely hard to solve. However, we

were able to give some suggestive arguments in Ref. [6], suggesting that frustrated

spin-1 magnets in three dimensions might be a good place to find some of these exotic

phases. This class of magnets are largely unexplored so far both theoretically and

experimentally. It is will be exciting if one can indeed identify a topological param-

agnet in these materials, through, for example, surface measurements suggested by

us in Ref. [3].

1.5 From SPT to spin liquids

As mentioned above in Sec. 1.3, the study of SPT phases led to an understanding

of what kind of topologically ordered spin liquid is allowed in strict two dimensions,

and what is not. Surprisingly enough, the study of SPT phases also shed new light

on another aspect of spin liquids: different spin liquids can be obtained by gauging

different SPT. Here "gauging" means promoting the global symmetry of the SPT (or

a subgroup of it) to a gauge symmetry, by coupling a dynamical gauge field to it via

minimal coupling.

Such a line of thinking was first developed for the free fermion topological insu-

lators in both two[62, 63] and three[64, 65, 66, 67] dimensions. The most famous
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example is the three dimensional topological insulator coupled with a U(1) gauge

field. It is well known[64] that when the fermions are in a topological band, the

effective action of the gauge field will contain a e-term at E = 7r:

Le = &V A &AA,. (1.3)
81r

Such a gauge theory was proposed as an interesting quantum spin liquid dubbed

"topological Mott insulator"[65], where the fermionic charge and the dynamical gauge

field are emergent fields at low energy. The most interesting feature of such a spin liq-

uid is that the monopole excitations of the gauge field (which is necessarily compact)

becomes a charge-1/2 dyon due to Witten effect[681.

Similar phenomenon was also discovered for bosonic SPT states in both two[47

and three[691 dimensions, where coupling the bosonic matter fields to gauge fields led

to various interesting gauge theories.

In Ref. [1], we carried out an analysis along this line specifically for a physically

motivated case: U(1) spin liquids in three dimensions with time-reversal symmetry.

By putting the matter fields ("charge" and "monopole") into different possible SPT

phases, we were able to answer the question: what kinds of time-reversal symmet-

ric U(1) gauge theories (spin liquids) are possible to emerge from a magnet (a spin

system)? This is a relevant and important question for real materials including Py-

rochlore quantum spin ice.

The result in Ref. [1] is a partial classification, and we will carry out a more

complete classification in a future work[70.

1.6 Plan of the Thesis

The rest of the thesis is organized as follows: in Chapter 2 I will discuss bosonic

SPT states in three dimensions and their surface topological orders. Along the way

(Sec. 2.4) I will give an explicit construction of various SPT states using coupled layers

of two dimensional topological orders. The latter half of Chapter 2 discusses time-

reversal symmetric U(1) spin liquids, obtained through coupling different boson SPT
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states with U(1) gauge fields (Sec. 2.8). In Chapter 3 I will discuss gapped symmetric

topological order on the surface of the famous free fermion topological insulator. In

Chapter 4 I discuss in detail SPT phases in interacting electronic insulators, which is

a physically well motivated case: I will discuss both the classification and character-

izations of different interacting topological insulators. In Chapter 5 I generalize the

work in Chapter 4 to interacting fermionic systems with other symmetries, including

topological superconductors with time-reversal symmetry. In Chapter 6 I discuss a

very simple toy model for some of the SPT phases in interacting fermions. In Chap-

ter 7 I discuss the possibility of realizing a nontrivial SPT phase in frustrated spin-1

magnets in three dimensions.

The work in the remaining parts of the thesis is a synthesis of Refs. [1, 2, 3, 4, 5, 6].
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Chapter 2

Bosonic topological insulators and

their surface topological orders

In this chapter we will study several aspects of the realization of symmetry in exotic

quantum phases - both gapped and gapless, primarily in two dimensions. Of par-

ticular importance to us are the results of Ref. [43] on the protected surface states

of three dimensional bosonic SPT phases. The surface phase diagram was argued to

admit a phase with surface topological order though the bulk itself has no such order.

Furthermore this surface topological order implements the defining global symmetry

in a manner not allowed in strictly two dimensional systems.

We are thus lead to consider in detail consistent implementation of global sym-

metries in several highly entangled quantum phases. First we obtain several new

results and insights into both gapped and gapless phases that are allowed to exist in

strictly 2d systems. These results have immediate application to theories of quantum

spin liquid insulators and of non-fermi liquid metals. Along the way we also obtain

an explicit construction of the various 3d symmetry protected topological insulators

of bosons studied recently in Ref. [43]. In particular we construct a time reversal

symmetric 3d SPT phase that was suggested to exist in Ref. [43] but is not currently

part of the cohomology classification of Ref. [16, 17].

Second we study symmetry realization in three dimensional gapless quantum spin

liquids with an emergent photon. Focusing on time reversal symmetry and on phases
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that can exist in strictly 3d systems we show that different such spin liquids may

be distinguished by whether the emergent electric charge excitation is a Kramers

singlet/doublet and its statistics. We show that this distinction is nicely captured by

viewing these phases as different SPT insulators of the dual 'magnetic' particle (the

monopole).

Ref. [71] proposed a formal classification of two dimensional topological order de-

scribed by a deconfined Z2 gauge theory in the presence of global symmetries. The

topological quasiparticles can in principle carry fractional quantum numbers of the

global symmetry. More formally this means that they are allowed to transform pro-

jectively under the global symmetry group. The approach of Ref. [711 involves finding

all consistent ways of assigning projective representations to the different topological

quasiparticles. A different classification has also appeared[72] that considers topolog-

ical order with unitary symmetry but restricts to phases where one of the bosonic

quasiparticles has trivial global quantum numbers. Earlier Refs. [73, 74, 75] clas-

sified all two dimensional time reversal invariant gapped abelian insulators using a

Chern-Simons/K-matrix approach. It is expected that all such insulators can al-

ways be described by a multicomponent Chern-Simons theory. The key idea of Refs.

[73, 74, 751 is that the bulk two dimensional theory can be completely characterized

by studying the 1 + 1 dimensional edge theory at the interface with the vacuum (or

equivalently a topologically trivial gapped insulator). This is a multi-component Lut-

tinger liquid theory in which operators corresponding to various bulk quasiparticles

can be easily identified. In particular constraints coming from global symmetries can

be straightforwardly implemented. This approach has recently been used to study

other symmetry enriched 2d topological order in Refs. [76, 77].

How does the interplay of symmetry and topological order that is only allowed

at the surface of 3d systems fit in with the emerging results on the classification of

2d topological order with symmetry? In the first part of this chapter we address

this question in detail for a few examples. Specifically we restrict attention to boson

systems with a few simple internal global symmetries. We also restrict to topological

order described by a deconfined Z2 gauge theory. We first use the procedure of
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Ref. [71] to obtain all distinct allowed implementation of the global internal symmetry.

Some of these can be realized at the surface of 3d SPT phases. Then we use elementary

arguments and the results of Ref. [751 to determine which ones of the phases are

allowed in strictly 2d systems. Interestingly the remaining phases are all shown to be

realized at the surface of 3d SPT phases.

Why does the Chern-Simons/edge theory approach select out only those phases

that can exist in strict 2d while the approach of Ref. [711 does not? The key point

is that the former approach assumes that the state in question can have a physical

edge with the vacuum (equivalently a topologically trivial gapped insulator) while

preserving the symmetry. For topological order realized at the surface of a 3d SPT

phase this possibility simply does not exist. A trivial gapped symmetry preserving

state to which the surface topological ordered state can have an interface is forbidden

at the SPT surface. In contrast the methods of Ref. [711 only worry about consistent

assignment of symmetries to the various topological quasiparticles. The requirement

that the state allow a physical edge to the vacuum is not part of the considerations

of this method.

We will denote states which allow a physical edge to the vacuum as 'edgable'. The

topologically ordered states at the surface of a 3d SPT phase are not edgable while

those allowed in strictly 2d are edgable. The concept of edgability will prove to be

a powerful criterion in deciding which topological ordered states with symmetry are

allowed in strictly 2d systems and which not.

Below we will flesh all this out in several concrete examples. We first study 2d

gapped Z2 topological order with a few different symmetries in Sections. 2.1, 2.2 and

2.3. Next we use the insights from these results to provide an explicit construction of

SPT phases with the same symmetries in a system of coupled layers in Sec. 2.4. We

provide a brief discussion of the relationship between the possible surface topological

order in a 3d SPT and its bulk topological field theory in Section 2.5. We turn our

attention then to highly entangled gapless phases. In Section. 2.6 we argue that a pre-

viously proposed gapless vortex fluid (dubbed the 'Algebraic Vortex Liquid') cannot

exist with time reversal symmetry in strictly 2d systems, but could arise on the sur-
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face of a 3d SPT state. In Sec. 2.7 we describe the surface Landau-Ginzburg theories

for the 3d SPT phases of interest in terms of dual vortices with non-trivial structure

and discuss the surface phase structure. We also provide an explicit derivation of this

dual surface vortex theory. We conclude in Section 2.9 with a discussion.

2.1 Topological ordered boson insulators: Symmetry

U(1) X ZT

We begin by considering a system of bosons with a global U(1) symmetry and time

reversal (Z2). The bosons are taken to have charge 1 under the global U(1) symmetry.

In this section we assume that the boson destruction operator b -+ b under ZT. This

means that the global symmetry group is U(1) x Zj. We will assume that the

topological order in question has 2 non-trivial bosonic particles (dubbed e and m,

in analogy with the familiar three dimensional U(1) gauge theory) and a fermion

(dubbed E). Any two of these are mutual semions. Further any one of these may

be thought of as a bound state of the other two. This corresponds precisely to the

excitation structure of a deconfined Z2 gauge theory in two space dimensions. What

are the allowed topological phases with Z2 gauge structure according to the analysis

of Ref. [711? The time reversal operation T when it acts on physical states of the

bosons must satisfy T2 = 1. Let us denote by T,m the action of time reversal on the

e and m particles. The only restriction on these is that they satisfy

T =Pe (2.1)

'Q =AM (2.2)

with pe,m +1. A value -1 of either of these means that the corresponding particle

forms a Kramers doublet, i.e. a two-fold degeneracy protected by time-reversal due

to the fact that T2 = -1. What about symmetry under global U(1) rotations? Here

the distinct possibilities correspond to whether the (e, m) particles carry integer or

fractional charge. In the latter case their charge must be shifted from an integer by I.
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These possibilities are nicely distinguished by asking about the action of a 27r global

U(1) rotation R2 ,- On physical states R 2 , = 1. Let us again denote by R'" the

action on the e and m sectors. We then have

RSl = Oe (2.3)

R" m (2.4)

with Oe,m = +1. The realization of the symmetry in this topologically ordered state

is thus described by the numbers (Oe, Ie, Um, Im). Naively this gives 16 phases but

we must remember that interchanging e and m is simply a relabeling of particles and

does not produce a new phase. This removes 6 possibilities so we are left with a total

of 10 phases for this symmetry.

In Table 2.1 we display the quantum numbers of the e and m excitations of these

10 phases. We label these phases by the excitations that carry non-trivial charge (C)

or time reversal (T) quantum numbers. Thus eOmO means both the e and m particles

carry trivial quantum numbers, while mT refers to a phase where the m particle is

Kramers doublet and neither e nor m cary half-integer charge, etc.

Phase Te Um Pe Am Comments

eOmO 1 1 1 1 No fractionalization

eT 1 1 -1 1 No fractional charge but Kramers

eC -1 1 1 1 b <D
eCT -1 1 -1 1 b= Eapfafp; f0 in trivial band

eCmT -1 1 1 -1 b = cpfjf;fa in topological band

eTmT 1 1 -1 -1 3d SPT surface
eCmC -1 -1 1 1 3d SPT surface

eCTmC -1 -1 -1 1 eCmC E eCmT
eCTmT -1 1 -1 -1 eTmTEeCmT

eCTmCT -1 -1 -1 -1 eCTmCEDeCTmT

Table 2.1: Symmetry action of U(1) > Zj (charge is T-even) for Z2 topological ordered

states. The first 5 are allowed in strict 2d while the last 5 can only be realized at

surface of 3d SPT phases (or derived from them). Interchanging e and m on each

rolls is simply a relabeling of particles and does not lead to a new phase.

Note that the discussion above made no reference to the edgability of the state.
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To consider only edgable states, let us now switch gears and consider the possibilities

for Z2 topological order with the same symmetry as above but within the Chern-

Simons/edge theory approach of Ref. [751. This naturally selects out edgable states

and hence will enable us to decide which of the 10 states in Table 2.1 can be realized

in strictly 2d systems. We will show that only the first 5 of these are captured in the

Chern-Simons approach.

In the Chern-Simons description of an abelian two dimensional insulator the ef-

fective Lagrangian is given by a multi-component Chern-Simons term

L = Kj EAVnaTIa + TIJ" ASVa (2.5)
47r 2-x

where the current density of quasiparticle I is given by j, = ". The integer

matrix K1j - usually called the K-matrix - gives the topological information of the

system, while the charge vector T1 is an integer valued charge of each quasi-particle

through coupling with the external gauge field A. The allowed quasiparticles carry

integer charge under the different gauge fields a1 which can be expressed in terms of

an integer valued vector 1. The mutual statistics of two quasiparticles labeled by I

and 1' is 01w = 2rlK-1l while the self-statistics of a quasiparticle is 0 = wlTK-l.

To describe Z2 topological order we begin with a 2 x 2 K-matrix

K = (2.6)
2 0)

which captures the statistics of the e and m particles. We will determine the distinct

ways in which the U(1) x ZT symmetry can be realized. First of all note that the

electrical Hall conductivity is given by o, = TTK-T = T172. Thus time reversal

invariant states must necessarily have at most one of T 1 ,2 f 0. Henceforth without

loss of generality we will therefore set T1 = 0 and r2 = t. Next the physical charge

of a quasiparticle labeled by 1 is given by q, = ltK-T = . Since we only want to

distinguish half-integer physical charge from integer the distinct possibilities corre-

spond to t = 0, 1. Let us now demand time reversal invariance of the Chern-Simons
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Lagrangian. The symmetry realizations classified by the first approach above assume

that the symmetry transformation does not interchange e and m particles. Therefore

we restrict attention to that subclass here. For the first term to be time reversal

invariant it must be that the spatial components a1 , a2 i transform oppositely under

time reversal. Further if T2 = t is non-zero, then ef 3&aa2j must be even under time

reversal. Thus we choose the action of time reversal on the af to be af -* Tijaj with

-1 0
T =)(2.7)

=(0 1

As described in Ref. [75] we also need to describe the transformation of the quasi-

particle creation operators. This is conveniently accomplished by using the standard

edge theory that corresponds to the bulk Chern-Simons Lagrangian:

1 1
L = - (Kij8,#16t#j + ....... ) + -ej1P&p# 1Av (2.8)

4-x 27r

Quasiparticle creation operators corresponding to 1 = (1, 0) and I = (0, 1) are e'01 and

ei9k2 respectively. The time reversal transformation of a1 i fixes the transformation of

q1 upto an overall phase. Thus we write

e -÷ ei(O1+a1) (2.9)

ei-2 ÷ e-i(-2+a2) (2.10)

However by a shift of q1 we can always set a, = 0. This is not possible for a2 . A

further constraint comes from requiring that all physical operators transform such

that T 2 = 1. In particular 72 should take e 2
02 -+ e2 42. This imposes the restriction

that a2 = ' with x = 0,1. If x = 0 then the particle created by e'02 is a Kramers
2

singlet. If x = 1 however T2 takes e'02 -+ -ei0 so that the particle is a Kramers

doublet.

Thus within this 2 x 2 K-matrix we have four possible states corresponding to the

four possible values of the pair t, x. In terms of Table 2.1 these correspond to the four
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phases e0mO, eT, eC, eCmT. Actually a fifth phase eCT is also allowed in strict 2d

but requires a 4 x 4 K-matrix. To see why this is so it is useful to better understand

the physics of the 4 states described so far.

First note that with the K-matrix in Eqn. 2.6 the edge phase fields #1, #2 satisfy

commutation relations such that the fields f+ = ei(k1 02) satisfy fermion anti com-

mutation relations. Indeed these correspond to 1 = (1, 1), 1 = (1, -1) and describe

the bulk fermionic e particle. f are the right and left moving fermions of the one

dimensional edge Luttinger liquid theory. Under a global U(1) symmetry rotation UO

by angle 0 and time reversal, the f transform as

Uf Uo = eV f (2.11)

T-f T = fF (2.12)

Note that as the E particle may be regarded as a bound state of e and m , it has

quantum numbers a, = c-lff and j1f = peplf . For the four cases described above in

terms of edge Lagrangians this is consistent with the symmetry transformation of the

edge fermion fields.

Further insight is obtained by understanding how the four phases corresponding

to the four choices of (t, x) are obtained within a slave particle (parton) construction

in the bulk. Consider a slave particle (parton) construction obtained by writing the

boson operator b, = a,s, at each site r of the lattice. Here a, destroys a bosonic

parton with charge 1 while s, is an Ising parton (with charge 0). We may take them

to belong to the e sector. Under time reversal a,, s, remain invariant. Further as the

a., s, carry only integer charge, oe = pe = 1. First we take the a, to form a simple

bosonic Mott insulator and s, to form a simple Ising paramagnet. Then the vison

of the Z2 gauge field associated with the slave particle construction will have trivial

quantum numbers so that or =hm = 1. This corresponds to Phase eOmO in Table.

2.1.

Phase eT can be likewise constructed if we start with two species of physical bosons

b1 ,2 and require b 1 ++ b2 under time-reversal (e.g. spin-half bosons). Then we write
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the boson operators as b,2= a1 ,2 s 1 ,2 and put the system into a state such that time

reversal is implemented through (ai, a 2 ) -+ (-a 2, ai) and (s1, S2) -+ (-s2, si). The e

particles in this phase (ai,2 and s1,2) are Kramer's doublets, while the M particle (the

vision) transforms trivially under time-reversal. Nothing carries fractional charge in

this phase.

Phase eC is a familiar one and can be obtained in a slave particle construction

by writing b, - <b2&. The <D, destroys a charge-1/2 bosonic parton (denoted "chargon"

in the literature). Under time reversal 4D, is invariant. Explicit microscopic models

for the corresponding phase were studied in Refs. [78, 79, 801 with the standard

implementation of time reversal symmetry for bosons (b -+ b).

Phase eCT is also a familiar one. It can be obtained through a parton construction

by writing the boson operator as b, = Ea/frafr with frQ a fermion. We will refer

to a = 1, 2 as a pseudospin index. The fermions carry charge -1/2. Time reversal is

implemented through fr,, -+ i (uT)a, frf. Now consider a mean field ansatz where the

fermion fra forms a (topologically trivial) band insulator that preserves time reversal

but does not conserve any component of the fermion pseudospin. The result is aZ2

topologically ordered state with symmetry implemented as defined for Phase 4.

Phase eCmT is obtained from the same parton construction as for Phase eCT

but when the f,, band structure is topologically non-trivial, i.e the fermions form a

2d topological insulator. Then a 7r flux seen by the fermions (which we may take to

be the m particle) is known to bind a Kramers doublet[62, 63]. Indeed in the edge

theory above if we choose t = 1, x = 1 the edge Lagrangian becomes identical to

that of a fermionic topological insulator formed by the e particle. Thus this parton

construction has the symmetries of Phase 5. Three dimensional analogs of these

phases were studied in Refs. [66, 67].

It is clear now that the phase eCT can exist in strictly 2d systems but is not

captured by a Chern-Simons/edge theory description with a 2 x 2 K-matrix. This can

also be seen by noting that since the physical charge is invariant under time-reversal,

one cannot have a particle that's non-trivial under both U(1) and T symmetries

within this 2 x 2 K-matrix formulation.
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Note that for eCmT the edge theory is gapless so long as the global symmetry is

preserved. In contrast for the phases eOrnO, eT, eC the edge theory can be gapped by

adding symmetry allowed perturbations. Similarly from the parton construction we

know that though the E particle carries the same quantum numbers for both eCmT

and for eCT the edge theory for eCT can be gapped. From the theory of the fermion

topological insulator it follows that trivial band structure for the e can be built up

from the topological band structure by taking 2 copies and allowing all symmetry

allowed perturbations. This suggests that the the minimal description of eCT uses a

4 x 4 K-matrix. Specifically consider

0 0 1 1 -1 0 0 0

0 01 -1 0 10 0
K = ,' T = (2.13)

1 1 0 0 0 0 0 1

1 -1 0 0 0 0 1 0

with the charge vector T = (0,1,0,0). Time reversal is implemented on the edge

boson fields /i through #, -+ Tij (#, + a,) with a = (0,0, 7r, 0). It is readily seen

that this describes the eCT phase.

In passing we note that we can easily generate other 2d Z2 topological phases with

this symmetry by simply adding a layer of the 2d SPT phase allowed with U(1) >1 Z2j

symmetry to one of the 5 examples discussed above. This obvious extension does not

affect our subsequent discussion and we will not consider it further.

In Sec. 2.1.1 we will explain in detail why all the other phases are not possible

within the K-matrix formulation. In the next section we argue that, independent

of the K-matrix formulation, the existence of those phases on SPT surfaces implies

their non-existence in strict 2d systems.

2.1.1 K-matrix descriptions of Z2 topological order

In this subsection we consider 2d states in detail. In most cases a 2 x 2 K-matrix

is enough to describe the state because we can identify all particles with the same
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symmetry and topological properties through condensing appropriate combinations

of them, and there remains only one species of e and m particle, respectively. For

example, consider a Kramer's doublet carrying spin-1/2 b , the combination b+b- is

a singlet under time-reversal and carries no spin, so we can condense it and identify

b_ ~ b+, and time-reversal could be realized through b+ -* ibl, so that T2 = -1.

The 2 x 2 K-matrix was considered thoroughly in the previous discussions, and

it was straightforward to get all the possible states within the framework. It is also

clear from the analysis above that 2 x 2 K-matrix is enough to describe every state

with Z2 and U(1) x Z2 (spin) symmetries. For U(1) X Zj (charge) symmetry, the

2 x 2 K-matrix describes most of the states, except when there is at least one particle

that carries both half-charge and Kramer's doublet, in which case there is no particle

bilinear that preserves all symmetries, and we should really consider two species of

such particles. For these states, a 4 x 4 K-matrix is needed.

The general form of such K-matrices was given in Ref. [751, with slight modifica-

tions due to the bosonic nature of our systems here. There are three possible forms

of K and T matrices. The simplest one of them

0 A2x2 -12x2 0 (2.14)

(A2x2 0 0 12X2

does not work because the T matrix does not allow a particle to carry both charge

and Kramer's doublet structure. The next possibility

71

K = (K 2 x 2  W2 x 2  (2.15)

W2 2 -K 2 x2 )1

72

T = 0 12x2

12X2 0

with W2x2 anti-symmetric, does not work either. To see this, simply look at the charge
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carried by any particle q, = 11KfjTj. The entries of K-1 are either integers or half-

integers. From the structure of the T-matrix and the assumption that time-reversal

doesn't interchange e and m particle, we find that the only half-integer entries of K-1

are K1 K , K1  = K, K = K-, K- 1  K-. Then from the structure of

the T vector it is easy to see that the charge q, = lK JTJ must be an integer for any

integer vector 1, so there's no quasi-particle that carries half-charge.

The only possibility left is thus

0

A

B

B

-1

0

0

0

A

0

C

-C

0

1

0

0

B

C

D

0

0

0

0

1

B

-C

0

-D

,T

0

T2

T3

T3

(2.16)

0

0

1

0

with detK = (AD - 2BC)2 = 4. The inverse of the K matrix is thus

K- 1 = sgn(AD - 2BC)
2

0

D

-C

-C

D

0

-B

B

-C

-B

A

0

-C

B

0

-A

(2.17)

Therefore to have the right self and mutual statistics, we need A = 4m, D = 2n,

and B, C odd, which makes particle-1 (I = (1, 0, 0, 0)) or 2 (1 = (0, 1, 0, 0)) having

ir-statistics with particle-3 (I = (0, 0, 1, 0)) or 4 (1 = (0, 0, 0, 1)), and all the other

mutual or self statistics trivial.

It is clear from the T matrix that particle-2 is time-reversal trivial. Since the

bound state of particle-1 and particle-2 (1 = (1, 1, 0, 0)) has trivial statistics with any

particle from the structure of K- 1, it must be physical hence time-reversal trivial,
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which implies that particle-1 should also be time-reversal trivial. Now consider the

charge of these two particles. It is straightforward to see that with the given charge

vector T, the charge carried by particle-1 or 2 q1,2  TiK1 J j, (J 1, 2) can only

be an integer. Hence particle-1 and 2 carry neither fractional charge nor Kramer's

doublet.

Recall that our purpose here is to describe phases with a particle that carries

both charge-1/2 and Kramer's doublet. Hence particle-3 and particle-4 must form a

Kramer's doublet and carries charge-1/2. So we want the charge vector that makes

q = TIKjJhlj half-integer when 1 E {(O, 0,1, 0), (0, 0, 0, 1)}. It is then straightforward

to show that we need T2 to be odd and T3 = r4 to be any integer.

What we have shown above is that if the e-particle carries both charge-1/2 and

Kramer's doublet structure, the m-particle must be trivial under both symmetry

transforms, i.e. the phase has to be eCT.

For now we make a few comments. Note that in the first four phases the m particle

has trivial quantum numbers. It is only natural that such states where one of the

e or m particles have trivial quantum numbers have trivial quantum numbers can

always be realized in strictly 2d systems. From such states we can always destroy

the Z2 topological order by condensing the m particle to produce a trivial symmetry

preserving insulator. This will not be possible for states that can only be realized at

the surface of 3d SPT phases. In Phase eCmT both the e and m carry non-trivial

quantum numbers. Despite this as we have seen it can be realized in strict 2d.

2.1.2 Surface Equivalence

Now lets move to the last 5 phases of Table. 2.1. Ref. [431 showed that phases eTmT

and eCmC both arise at the surface of 3d SPT phases. To discuss the other phases

we first define the concept of "surface equivalence" of topologically ordered phases.

We say that two topologically ordered states at the surface of a 3d SPT phase

are "surface equivalent" if one can be obtained from the other by combining with a

strictly 2d states with the same symmetry. The notion of combining two states will

be described in detail below. Consider two Z2 topologically ordered states - say states
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A and B - with distinct realizations of the global symmetry. This means that at least

one of the e, m particles transform differently under the global symmetry for the two

states. Assume now that A and B have the same symmetry for the e particle or -

in obvious notation - that (UeA, [LeA) - (UeB, PeB) (e, pe). Then we must have

(9.A, l.A) # (9mB, imB)-

Now consider the composite system A + B. We allow A and B to couple through

all symmetry allowed short ranged interactions. For weak interaction strengths the

2 states will be decoupled, and the combined system will have deconfined Z2 x Z2

topological order. However for stronger interactions eA can mix with eB as they have

the same symmetry. This partially confines the Z2 x Z2 topological order to a simpler

topological ordered state with just a single deconfined Z2 gauge structure. We will

denote this new phase A D B. In this new state the m particles of A and B will be

confined together to produce a new particle mA9B ~ MAmB. Thus A D B has the

quantum numbers (oe, UmAgmB, l'e, PmAlmB)-

This concept of combining phases enables us to see several equivalences in Table

2.1. For instance it is clear that Phase eCT can be obtained as eC P eT (by letting

the m particles mix). Let us now consider surface equivalence. Phase eCmC and

eCmT share the same quantum numbers for the e particle. Thus we may combine

them to produce a new Z2 phase eCmC D eCmT which, by inspection, has the same

symmetries as Phase eCTmC (after a relabeling of e and m). This means that Phases

eCmC and eCTmC are surface equivalent. Specifically consider the 3d SPT phase

with Phase eCmC as its surface topological ordered state. We may then deposit a

layer of Phase eCmT (which is allowed in strict 2d) at its surface, and then let the

e particles mix. This mixing will induce a surface phase transition where the surface

topological order becomes that of Phase eCTmC. It follows that Phase eCTmC can

also only be realized at the surface of the 3d SPT boson insulator.

Similarly the m particle of Phase eTmT has the same quantum numbers as the m

particle of Phase eCmT. Letting them mix we get Phase eCTmT. Phase eCTmCT

is also readily seen to be eCTmC D eCTmT.

Thus we see that the last 5 phases of Table 2.1 are all obtained at the surface
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of 3d SPT phases. All these 5 phases are obtained from two "root" phases (Phase

eTmT and eCmC) by combining with phases that are allowed in strict 2d or with

each other.

It is interesting to notice that the realization of the 5 phases at the SPT surfaces

implies their absence in strict 2d systems, independent of K-matrix consideration.

One can understand this as follows: if a surface state can also be realized in strict 2d,

then one can deposit such a 2d system onto the surface. The quasi-particles in the two

systems (call them (ei, e2 ) and (Mi, M 2 )) will then have exactly the same symmetry

properties, and the bound states of two particles of the same kind in the two systems

(eie2 and mim2 ) will be trivial under all symmetries. Moreover, e1 e2 and mim 2 are

mutual bosons to each other. Hence one can condense both eie2 and mim 2 without

breaking any symmetry. However, this will confine all the fractional quasi-particles

since any one of them will have mutual 7r-statistics with either eie2 or mim 2 , and

the surface will become a trivial phase, i.e. symmetric, gapped and confined. By

definition, the corresponding bulk cannot be a SPT state. Hence the states at SPT

surfaces must not be realizable in strict 2d. This will have interesting implications

for 2d systems, and an example will be given toward the end of this chapter.

It is also interesting to view this result from a different point of view which inverts

the logic followed above. Consider the problem of identifying 3d boson SPT states

with this symmetry. The results of this section show that there are precisely two

distinct 'root' Z2 topological orders that can only occur at the surface of SPT phases.

phases . This then gives us two "root" 3d SPT states with this symmetry. This is

the same conclusion arrived at by direct consideration of surface theories in Ref. [43],

and ties in nicely wth the formal cohomology classification (which also gives 2 root

states). Note in particular that of the 2 root states eTmT is simply inherited from

the 3d SPT with Z2 symmetry alone. Thus the only non-trivial SPT state that is

unique to the extra U(1) symmetry is the one with surface topological order eCmC

as was suggested in Ref. [43].
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2.2 Topological Z2 spin liquids

Here we repeat the excercise above for symmetries appropriate to quantum spin sys-

tems. We consider two cases: symmetry U(1) x Z' and symmetry Z2. The former

describes time reversal symmetric quantum spin Hamiltonians with a conserved com-

ponent of spin. In the latter we only assume time reversal symmetry. The consistent

symmetry assignments for Z2 topological order with bosonic e and m particles are

given in Tables. 2.2 and 2.3.

Let's first consider U(1) x ZT, in which case the U(1) charge goes to minus itself

under time-reversal. The analysis of Ref. [71] again gives the same 10 phases as

before and we will use the same labels. However a difference appears in the K-matrix

classification. For this symmetry class we will see that a 2 x 2 K-matrix is enough to

describe all the 2d states. We have again

0 2 -1 0
K = ,T= (2.18)

(2 0 ) (0 1

but now the charge vector must be taken to be T - (t, 0) with t = 0, 1 due to

the different transformation of the density of the global U(1) charge under time

reversal. Time reversal on the edge boson fields continues to be implemented as

< 1, -+ Tj (0, + a) with a = (0, !) (x = 0, 1). With this symmetry implementation

we see that the edge field e 42 creates a particle that can either carry 1/2 charge or

be a Kramers doublet or both. The other edge field e*' creates a particle with trivial

quantum numbers. This leads to four phases corresponding to eOmO, eT, eC and eCT.

The standard slave boson/fermion construction of Z2 spin liquids - as in the classic

work of Refs. [81, 82] - give (when the spin symmetry is U(1)) the state eCT. The

spinon in these constructions both carries spin-1/2 and is a Kramers doublet. The

easy axis Kagome lattice spin model of Ref. [83] provides an explicit microscopic

model for a Z2 spin liquid with U(1) x Z2j symmetry. In the standard interpretation

the spin S, of that model labels the two members of a Kramers doublet states of

a microscopic Ising spin. Time reversal is then implemented in terms of the spin
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operators as usual through S -* -S. In that case in the Z2 spin liquid phase the

spinons are readily seen to both carry S- = ! and be Kramers doublets to realize the

eCT class. There is a different implementation of time reversal symmetry in this easy

axis Kagome spin model. If the S, labels two members of a microscopic non-Kramers

doublet then we must interpret the S as a 'pseudo spin' 1/2 operator that acts in this

two dimensional Hilbert space at each site. Time reversal takes S, -+ -S, S+ -+ S-.

In that case the spinons in the Z2 spin liquid phase will have spin S. = 1 but will

be Kramers singlets. Thus we have a realization of the eC phase in the model of

Ref. [83].

Phase eCmT which was allowed earlier in Sec. 2.1 now does not appear. Physically

this is because the "topological band" in the U(1) x Zj symmetry becomes trivial in

the U(1) x Z2Tcase. The easiest way to see this is to consider the edge theory, which

has two counter-propagating fermions. With U(1) x Z2 symmetry, one can mix the

two fermions (hence gap out the edge) without breaking any symmetry, even if the

fermions form Kramer's pairs.

The absence of the eCmT phase in strict 2d modifies the equivalence relation

established in last section. In particular, the last three phases in Table 2.1 will not be

equivalent to either eTmT or eCmC. Actually in Ref. [431, three distinct 'root' SPT

phases were discussed corresponding to those with surface topological orderseTmT,

eCTmT and eCTmCT. The last three phases in Table 2.2 are thus surface topological

orders corresponding to other SPT phases that may be obtained by combining these

root phases. This is in perfect agreement with the results of Ref. [431.

Next we consider ZT symmetry alone, which is much simpler. It is straightforward

to see that the phases eOmO and eTmO can be realized in strict 2d, while eTmT can

only appear on an SPT surface. The corresponding table is simply a subset of the

previous two.
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Phase Ue 9rn Pe [Im Comments
eOmO 1 1 1 1 No fractionalization
eT 1 1 -1 1 No fractional charge but Kramers
eC -1 1 1 1 b= 2

eCT -1 1 -1 1 b= aff3

eTmT 1 1 -1 -1 3d SPT surface
eCTmT -1 1 -1 -1 3d SPT surface

eCTmCT -1 -1 -1 -1 3d SPT surface
eCmT -1 1 1 -1 eTmTeeCTmT

eCTmC -1 -1 -1 1 eCTmTE)eCTmCT
eCmC -1 -1 1 1 eCTmCeeCmT

Table 2.2: Symmetry action of U(1) x Z2T (charge is T-odd) for Z2 topological ordered
states. The first 4 are allowed in strict 2d while the last 6 can only be realized at
surface of 3d SPT phases (or derived from them)

Phase p, pm Comments
eOmO 1 1 No fractionalization
eT -1 1 Kramers

eTmT -1 -1 3d SPT surface

Table 2.3: Symmetry action
are allowed in strict 2d while
phases

(Z2T) for Z2

the last one
topological ordered states. The first two
can only be realized at surface of 3d SPT
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2.3 All fermion Z2 liquids

We now extend our analysis to a very interesting topological order where there are

three distinct topological quasi-particles, all of which are fermions fl,2,3, and there's

a mutual 7r-statistics between any two of them. This can be viewed as a variant of

the usual Z2 liquid, in which both the e and m particles become fermions. Since

they have a mutual 7r-statistics, the bound state e = em is still a fermion and has

ir-statistics with both e and m.

The statistics of this phase is perfectly compatible with time-reversal symmetry,

but the realization in strict 2d turns out to be always chiral and hence breaks time-

reversal. One way to understand this is to start from a conventional Z2 topologically

ordered liquid with bosonic e and m particles. Then put the fermionic C particle into

a band structure such that the vison also becomes a fermion. This may be fruitfully

discussed in terms of the edge Lagrangian for the c field. The vison operator appears

as a 'twist' field that creates a 7r phase shift for e. For a single branch of chiral

(complex) fermion on the edge ei'k,R the twist operator is eiek,R/ 2 . This has conformal

spin +1/8 so that in this case the vision is an anyon with fractional statistics. Very

generally take a theory with nR right moving and nL left moving fermions all of which

correspond to the same bulk E particle which see a single common vison. This acts as

a common twist field for all the edge fermions and hence has conformal spin 'R 8"n.

Therefore to make the vison fermionic one needs nL - nR= 4 mod 8. One such

realization is given by the 4 x 4 K-matrix

2 -1 -1 -1

-1 2 0 0
K= (0(2.19)

-1 0 2 0

-1 0 0 2

which has chiral central charge 4. Since the chiral central charge is non-zero this

phase clearly cannot arise in a time reversal invariant strictly 2d system.

However Ref. [431 suggested that such an all fermion Z2 topological order can
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arise at the surface of a 3d SPT phase with time reversal symmetry. In this state if

the surface is gapped by breaking time reversal symmetry then there is a quantized

thermal Hall conductivity K,, = 4. However if time reversal symmetry is present

and the surface is gapped, there will be surface topological order. Ref. [43] proposed

that this is a Z2 topological order which is a time reversal symmetric all fermion state.

To understand why this is reasonable consider starting from the all fermion surface

topological ordered state. What should we do to confine all the fermion excitations in

the surface? It is clear from the discussion above that if we take one of the fermions

and put it in a Chern band such that the surface v., = 4 then the other two

topological quasiparticles will become bosons. These bosons can now be condensed

to get a confined surface state. However this clearly requires broken time reversal

symmetry and will give a K., = 4 which is indeed the right Z broken surface state

for this proposed SPT. This kind of 3+1-D SPT phase with Z2j symmetry is not

present in the cohomology table of Ref. [16, 171. Including this 3d SPT surface state

and using the language in the last few sections, we have a new table (Table 2.4).

Phase ye Am Comments
efOm0 1 1 All fermions, singlets
efTmfT -1 -1 e0mrOEDeTmT

Table 2.4: Symmetry action (Z2T) for all- fermionic Z2 states. Both states can only
be realized at surfaces of 3d SPT phases

The second phase in the table is obtained from the first by adding a usual Z2

liquid in the eTmT phase, then condense the bound state of the Ed = efm1 in the

fermionic liquid and the e = em in the eTmT liquid. Since the eTmT phase cannot

be realized in strict 2d, the two phases eAOmfO and efTmfT should be viewed as

inequivalent, hence give rise to two distinct SPT phases with time-reversal symmetry

in addition to the one with the eTmT surface Z2 topological order. Thus in total

with ZT symmetry we actually have 3 non-trivial SPT phases corresponding to a

Z2 classification. (The cohomology classification of Ref. [16, 17] gives instead aZ2

classification).

50



2.4 Constructing SPT with coupled layers of Z2 liq-

uids

From the considerations in the previous sections, it is clear that to construct a 3+1-

D SPT state, we only need to construct the corresponding topological order on the

surface but have a confined bulk with gapped excitations. In this section we give

one such explicit construction using coupled layers of 2d Z2 liquids. Specifically we

consider a system of stacked layers where each layer realizes a Z2 topological order

that is allowed in strictly 2d systems. Then we couple the different layers together

in such a way that the bulk is confined and gapped. But we show that the surface

layer is left unconfined and further corresponds to the surface Z2 topological order of

an SPT phase. A similar coupled-layer construction of the free fermion topological

insulator was proposed[84] to obtain the single Dirac cone on the surface. We first

illustrate this by constructing the eTmT with ZT symmetry, and it will be clear later

that this can be generalized to all the SPT states mentioned in this chapter.

Consider stacking N layers of Z2 liquids in the eT state which is allowed in strictly

2d. Now turn on an inter-layer coupling to make the composite particles eimi+1ei+2

condensed, where i is the layer index running from 1 to N-2. Note that the eimi+1ei+2

all have bosonic self and bosonic mutual statistics so that they may be simultaneously

condensed. As illustrated in Figure 2-1, this procedure confines all the non-trivial

quasi-particles in the bulk. However four particles on the surfaces survive as the

only deconfined objects: el, mie2 , eN, mNeN-1. Notice that el and m1e2 are mutual

semions and have self-boson statistics. Thus they form a Z2 liquid at the top surface.

Similarly eN and mNeN-1 are self bosons, have mutual semion statistics and form a

Z2 liquid at the bottom surface. The key point however is that all these particles

have 72 = -1. Thus either surface is in the eTmT state though the bulk has no

exotic excitations. By the analysis above we identify this with the 3d SPT state with

Zj symmetry.

This construction can be immediately generalized to other SPT states. For exam-

ple, to get the eCmC (or eCTmCT) state with U(1) A Z2j or U(1) x Zf symmetry,
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just stack layers of eC (or eCT) states and condense eim i+1i+2-

Most interestingly, the all-fermion Z2 surface topological state with global ZT

symmetry, which is quite hard to construct using other methods, can also be con-

structed in this way: simply start with stacked 2d Z2 liquids where all particles

e, m, E are invariant under T-reversal. Such a Z2 state is obviously allowed in strict

2d. Now condense cEifi+1Ei+ 2 instead of eimi+1 ei+ 2 in the above constructions, where

Ei = eim is the fermion in the 2d Z2 gauge theory. Again the imi+le i+ 2 have both

self and mutual boson statistics so that they may be simultaneously condensed. This

confines all bulk topological quasiparticles. The surviving surface quasi-particles will

be ci, mie2 at the top surface and EN, mNEN-1 at the bottom surface. These particles

are all fermions, and the two particles at either surface have mutual semion statistics.

It follows that either surface realizes the all-fermion Z2 topological order but now in

the presence of Z2j symmetry. We have thus explicitly constructed the SPT phase

discussed in Section. 2.3.

This coupled layer construction gives very strong support to the results of Ref. [431

on the various SPT phases. In particular it removes any concerns on the legitimacy

of the state of Sec. 2.3 with Zj symmetry not currently present in the cohomology

classification.

2.5 Relation with bulk topological field theories

Here we provide an understanding of the results obtained above from topological field

theories in the bulk. It was shown in Ref. [43] that bosonic topological insulators in

3d with (U(1))N symmetry has a bulk response to external 'probe' gauge fields A'

characterized by a 6-term with 6 = 7r:

LO 8 2 KIEiEkiAkA1. (2.20)

If under symmetry transformations (e.g. time-reversal) the 6-angle transforms as

0 -+ -0, then the 9 = 7r term is symmetric in the bulk, but on the boundary it
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Figure 2-1: Coupled-layer construction of SPT states. The particle composite in
the ellipses are condensed, and only the four surface particles in the dotted ellipses
survived as deconfined topological quasi-particles.

reduces to a (mutual) Chern-Simons term with symmetry-violating responses. This

was a familiar issue in the non-interacting fermionic topological insulator, where a

single Dirac cone was introduced on the boundary to cancel the time-reversal violating

response through parity anomaly.

In our cases let us understand how this works out when the surface is in a symmetry

preserving gapped topological ordered phase of the kind studied in this chapter. We

will show that the symmetries of the topological order on the boundary are such as

to cancel the Chern-Simons response arising from the 6-term. To illustrate the idea

we take K1j = a., which applies to a large class of SPT phases in 3d. This will give

a mutual Chern-Simons term on the boundary

1 ..
Lcs = -- ' Al ,& A2,k. (2.21)

47r

This term alone would give a response that breaks time-reversal symmetry. To cure

it we put a Z2 topological liquid on the boundary, with the e and m particles coupling
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to A 1 ,2 respectively. The Lagrangian is given by

LZ = -E ijkaioja2,k ~ I ( iijkAjk 2,ija2,k (2.22)
T 27r

Integrating out a1 ,2 induces a mutual Chern-Simons term for A 1,2 which exactly can-

cels what arose from the bulk 0-term and hence restores time-reversal symmetry.

The topological ordered states with symmetry that are forbidden in strict 2d real-

ize the symmetry in an 'anamolous' way. The corresponding topological field theories

cannot be given consistent lattice regularizations which implement the symmetry in

a local manner. The discussion in this section illustrates how these theories can

nevertheless be given a higher dimensional regularization as the boundary of a non-

anomalous field theory. This has the same essence with the anomaly cancellation in

free fermion TI. It will be interesting for the future to have criteria to directly identify

such 'anamolous' symmetry in a topological field theory.

2.6 Constraints on gapless 2d quantum spin liquids:

Absence of Algebraic Vortex Liquids

We now turn to gapless quantum liquids in two space dimensions. Examples are

gapless quantum spin liquid phases of frustrated quantum magnets, or non-fermi

liquid phases of itinerant fermions or bosons. Symmetry plays a very crucial role in

the stability of these phases. The example of the topologically ordered gapped states

considered in previous sections lead us to pose the question of what kinds of putative

gapless phases/critical points are allowed to exist with a certain symmetry in strictly

2d systems. First of all we note that in contrast with gapped topologically ordered

phases global symmetries typically play a much more important role in protecting

the gaplessness of a phase. The symmetry may forbid a relevant perturbation to the

low energy renormalization group fixed point that, if present, may lead to a flow to a

gapped fixed point. Here however we are interested in a more general question. We

wish to consider gapless fixed points that can be obtained by tuning any finite number
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of relevant perturbations. This includes not just bulk 2d phases but also critical or

even finitely multi critical quantum systems. We are particularly interested in such

gapless 2d fixed points with symmetry that cannot exist in strict 2d but may only

exist at the surface of a 3d insulator (SPT or otherwise).

To set the stage consider a simple and familiar example in a free fermion system.

The surface of the celebrated time reversal symmetric electron topological insulator

(symmetry U(1) x ZT has an odd number of Dirac cones. Such a gapless state cannot

exist in strict 2d fermion systems with the same symmetry even as a multi critical

point. However if we give up time reversal symmetry this state is allowed as a critical

point in strict 2d. An example is provided by a 2d free fermion model poised right

at the integer quantum Hall transition. Thus symmetry provides a strong restriction

on what gapless fixed points are allowed in strict 2d.

We focus now on a very interesting gapless state proposedf85, 86, 871 to exist

in strict 2d in frustrated XY quantum magnets (symmetry U(1) x Z2) or in boson

systems (symmetry U(1) x Z2). This state - dubbed an Algebraic Vortex Liquid

(AVL) - was obtained in a dual vortex description by fermionizing the vortices and

allowing them to be massless. A suggestive approximation was then used to derive a

low energy effective field theory consisting of an even number of massless 2-component

Dirac fermions (the vortices) coupled to a non-compact U(1) gauge field. The AVL

state has been proposed to describe quantum spin liquid states on the Kagome and

triangular lattices. In terms of development of the theory of gapless spin liquids/non-

fermi liquids the AVL proposal is extremely important. To date the only known

theoretical route to accessing such exotic gapless phases of matter (in d > 1) is

through a slave particle construction where the spin/electron operator is split into a

product of other operators. If some of the resulting slave particles are fermions, they

can be gapless. In contrast the AVL presents a new paradigm for a gapless highly

entangled state which is likely beyond the standard slave particle approach. It is

therefore crucial to explore and understand it thoroughly.

We now argue that the AVL state cannot exist in strictly 2d models with either

U(1) x Z2j or U(1) x Z2 symmetry. This is already hinted at by several observations.
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First it has never been clear how to implement time reversal in a consistent way in the

AVL theory. The AVL is obtained from the usual bosonic dual vortex theory through

a flux attachment procedure to fermionize the vortices. This leads to an additional

Chern-Simons gauge field that couples to the fermionized vortices. However this new

gauge field can be absorbed into the usual dual gauge field to leave behind a three

derivative term for a residual gauge field. It was argued that this three derivative

interaction is formally irrelevant in the low energy effective theory. This argument

is delicate though. In the simplest context [881 where such an approximation was

made an alternate description89 in terms of a sigma model revealed the presence of

a topological 0 term at 0 = 7r. The topological term also has three derivatives but

its coefficient is protected by time reversal symmetry and does not flow under the

RG. It's presence presumably crucially alters the physics of the model. Thus one may

worry about the legitimacy of the approximations invoked to justify the AVL phase.

Note that the fundamental issue that needs to be addressed with the AVL phase

is whether it realizes symmetry in a manner that is allowed in 2d spin/boson systems.

This is of course the kind of question that is the essence of this chapter. A final hint

that the AVL phase may not exist in strict 2d comes from recent work[43] showing

that gapless quantum vortex liquids with fermionic vortices can actually arise at the

surface of time reversal symmetric 3D SPT phases. This strongly suggest that such

phases cannot arise in strict 2d with the same symmetries. Below we will sharpen

these arguments.

Consider the proposed effective field theory for the AVL phase:

L = (i$ - i 4, a )2 + 1 + A fx (2.23)

Here V?,b (a = 1, ..... 2N) are the fermionized vortices, a, is a non-compact U(1) gauge

field whose curl is 27r times the global U(1) current, and A'xt is an external probe U(1)

gauge field. Note that the vortices themselves do not carry physical U(1) charge. As

mentioned above the realization of time reversal in terms of these fermionized vortex

fields has always been a tricky issue for the AVL theory. To sharpen the issue we now
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consider a phase that is accessed from the AVL phase by pairing and condensing the

,0, fields. In the original AVL literature[85, 86, 871 a number of phases proximate to

the AVL were studied by assuming that four fermion interactions were strong enough

to give a mass to the fermions. A number of different such mass terms leading to

various symmetry breaking orders were examined. Here instead we imagine a mass

term that corresponds to vortex pairing that preserves the global internal symmetry.

The vortex pair condensation will gap out the gauge field a, and will give an

insulator. However as the 0V-a fields are vortices of the original boson this is a phase

with Z2 topological order. The fermionized vortices survive as 'unpaired' gapped

quasiparticles in this topological phase. We may identify them with the e particle

which in this case has zero global U(1) charge. In the notation of previous sections

oE = 1. Furthermore the pair condensation will quantize the gauge flux V x a in units

of 7r so that one of the topological quasiparticles (which we take to be the e particle)

has 1/2 charge, i.e oe = -1.

Now it is clear from Tables 2.1 and 2.2 of the previous sections that in strict 2d

such a state can exist only if the e particle also carries 1/2 charge, i.e a, = -1.

However we just argued that the Z2 topological ordered state realized from the AVL

state has a, = 1, i.e it carries zero global U(1) charge. It follows that such a Z2

topological ordered state cannot exist in strict 2d. Note that we did not explicitly

rely on time reversal symmetry in our analysis (though it is implicit in deciding which

Z2 states are allowed in 2d).

Thus the Z2 topological ordered states that descends from the AVL is not allowed

to exist in strict 2d. This then implies that the AVL itself cannot exist in strictly 2d

systems so long as both global U(1) and Z2 symmetries are present.

Can gapless quantum vortex liquids ever exist in strictly 2d? One option is to

break time reversal symmetry. Then our arguments do not prohibit the formation of

fermionic vortices which can then be in a gapless fluid state. Indeed such a gapless

magnetic-field induced vortex metal state was proposed to exist in 2d superconducting

films in Ref. [901. A different option - which we elaborated in Ref. [911 - that preserves

internal symmetries is obtained by fractionalizing the vortices into fermionic partons
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which can then be gapless.

2.7 Dual Landau-Ginzburg theory of SPT surface

In this Section we briefly describe the Landau-Ginzburg theory of the surface of 3d

SPT states (symmetry U(1) x Zi or U(1) x Z2) in terms of dual vortex fields. Ref. [43]

showed that the difference with a trivial surface is captured very simply in terms of

the difference in the structure of the vortex (this should be understood as the point

of penetration of the 3d vortex line with the surface). Here we elaborate on this dual

theory and present an explicit derivation starting from the surface topological ordered

phase.

Let us consider U(1) x Zj and consider the phase labeled by surface topological

order eCmC (the symmetry U(1) x Z2 analysis is essentially the same). According to

Ref. 1431 the boundary vortex is then a Kramers singlet fermion. The corresponding

surface Landau-Ginzburg Lagrangian may be written schematically

Ld= L[c, a,] + -- AE,,x0,aA (2.24)
2 -K

The first term describes a (spineless) fermionic field c coupled minimally to the dual

internal gauge field a,, and A, is an external probe gauge field. The field c describes

the fermionic vortex. The global U(1) current is as usual

E= egAOaA (2.25)

If instead the field c were a boson the Lagrangian above would be the standard dual

Lagrangian for a system of strictly 2d bosons. Let us first describe the phase structure

of this dual fermionic vortex theory. We will then provide an explicit derivation that

is complementary to the general considerations of Ref. [43].

If the fermionic vortex c is gapped and in a trivial 'band' insulator, then as usual

we get a surface superfluid. Note that as c is a fermion it cannot condense. This

precludes the usual mechanism of vortex condensation to obtaining a trivial boson
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insulator as expected for an SPT surface. The surface superfluid order can be killed

if pairs of c condense, i.e < cc >= 0. This leads to a surface topological order

described by a Z2 gauge theory. There is the unpaired fermion that survives as a

gapped excitation carrying zero global U(1) charge. We identify this with the neutral

e particle. The pair condensation quantizes flux of aA in units of 7r. This carries

global U(1) charge 1/2 and we identify this with the e particle. It follows that this is

the eCmC phase.

As described in Ref. [431 if we break time reversal at the surface we can get a

gapped phase without topological order. This is obtained by simply letting the c-

fermionic vortices completely fill a topological band with Chern number 1, i.e the

Hall conductivity of the c-fermion is o, = 1. To see that this indeed describes the

correct T-broken surface state we use a Chern-Simons description of this state. First

rewrite the fermion current jf in terms of a dual gauge field d:

1
jf = ApAOndX (2.26)

When the fermion has Hall conductivity, say +1, the effective Chern-Simons La-

grangian in terms of (a, d) becomes

1 1 1
L= -d + -add + -Ada (2.27)

47r 27r 27r

(We have used the compact notation da E,,Aaa). This is a 2-component Chern-

Simons theory with a K-matrix

K =)(2.28)

-(1 0

with charge vector r = (0, 1). This state has electrical Hall conductivity a-, =

TTK -r = -1. Further as this K-matrix has one positive and one negative eigenvalue,

it is a non-chiral state with iX, = 0. Finally there is no surface topological order as

|detK| = 1. These are exactly the right properties of the T-broken surface state
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without topological order at this SPT surface.

Thus the fermionic vortex Landau-Ginzburg theory correctly reproduces the sur-

face phase structure of this SPT phase. We note that if the c-fermion had band

structure with an even number of gapless Dirac fermions we get exactly the proposed

Lagrangian for the AVL phase, consistent with the claim in Sec. 2.6 that the AVL

state can only occur at the surface of an SPT state (with T-reversal) and not in strict

2d.

A different SPT state with U(1) x Z2 symmetry has a bosonic Kramers doublet

vortex z, a = 1, 2. The corresponding dual Landau-Ginzburg theory takes the form

1
Ld = L[z a,,] + -Ada (2.29)

27r

Under time reversal za iugzp. Finally by stacking the two SPT phases described

above we obtain a third SPT with a fermionic Kramers doublet vortex field c, with

Lagrangian
1

Ld = L[ca, aj1 + -Ada (2.30)
27r

The surface phase structure of these other SPTs can be readily discussed in terms

of these dual Landau-Ginzburg theories. In all these cases there is a bulk-edge cor-

respondence that relates the structure of the surface vortex to the properties of the

bulk monopole when the global U(1) symmetry is gauged. Including the trivial (i.e

non-SPT) insulator, we have four possible SPT phases with four distinct surface vor-

tices (end points of bulk vortex lines). These correspond precisely to the four possible

bulk monopoles of the gauged SPT as discussed in Sec. 2.8.2.

We now provide an explicit derivation of Eqn. 2.24 for the corresponding SPT

phase. Let us begin with the surface topological order eCmC. Under time reversal

the e, m particles transform as

T-leT = et (2.31)

T-1 mT =m (2.32)
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while the e particle is left invariant. It is convenient for our purposes to focus on the e

(described by a boson field b) and E (described by a fermion f) particles with mutual

semion interactions. We will implement this in a lattice model of the surface through

two Ising gauge fields a, p with a mutual Ising Chern-Simons term[80]. The mutual

Chern-Simons term imposes a constraint relating the integer valued lattice 3-current

jb to the Ising gauge flux of o- that the fermion sees:

(-)b = I 7j (2.33)
P

Here the plaquette product in the RHS is taken over the space-time plaquette pierced

by the link of the dual lattice on which the boson current flows. The lattice space-time

Lagrangian may be taken to be

L = b+Lf (2.34)

L. = j+ .(Aa) (2.35)

Lf = -Oid (tjgftff + h.c + ...) (2.36)

The fermion Lagrangian will in general also include pairing terms fifj + h.c. As

before A is the external probe gauge field. We now implement a standard duality

transformation on the b field by first writing jb = V x a with a an integer. As this

kind of duality has been explained in detail in Refs. [80, 89] we will be very brief.

The mutual semion constraint Eqn. 2.33 can be solved to write

(-1) = - (2.37)

This means that the integer a = 2a' + 2 (1 - a) with a' an integer. Imposing the

integer constraint on a' softly leads to a term

- Acos (27ra') = -Aa-jcos (7raij) (2.38)

We may now define 7ra = a and extract a longitudinal piece aij -+ aij + 4i - 4O to
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obtain a dual vortex Lagrangian in Euclidean space-time:

L = 4 + Lf (2.39)

Lg -Auijcos (V< + a) + (Vx a)2 (2.40)

+i-A.V x a (2.41)
2ir

Finally tracing over the Ising gauge fields - gives a dual vortex theory in terms of

two fermionic fields c defined through

c = fei ++ (2.42)

However generically due to pairing terms in the f Lagrangian c- can mix with ct so

that there is a unique fermion field c = c+ ~ ct . This then gives us the dual fermionic

vortex Landau-Ginzburg theory in Eqn. 2.24. For U(1) x Z' under time reversal we

must have c -+ c. The dual vortex theory for the surface of the U(1) >4 ZT SPT (with

eCmC surface topological order) can be derived identically, and takes the same form

except that under time reversal c -÷ ct.

2.8 Time reversal symmetric U(1) quantum liquids

in 3 + 1 dimensions

We now turn our attention to three dimensional highly entangled states with time

reversal symmetry. In three dimensions, interesting gapless quantum liquids with an

emergent gapless U(1) gauge field are possible[921. Explicit lattice models for such

phases were constructed and their physics studied in Refs. [79, 93, 94, 95, 96, 97, 98].

Interest in such phases has been revived following a recent proposed realization[99]

in quantum spin ice materials on three dimensional pyrochlore lattices. It is thus

timely to understand the possibilities for the realization of symmetry in such phases

with emergent photons. Here we will restrict attention to time reversal symmetry in

keeping with the theme of the rest of the chapter.
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The excitation spectrum of the U(1) quantum liquid consists, in addition to the

gapless photon, point 'electric' charges (the e particle) and point 'magnetic' charges

(the m particle or monopole). We will only consider the situation in which both the

e and m particles are gapped, and will focus on phases that can be realized in strictly

3d systems (as opposed to U(1) phases allowed at the boundary of 4 + 1 dimensional

SPT phases). Following the discussion of previous sections, a simple restriction that

ensures this is to assume that one of the e or m particles has trivial global quantum

numbers and is a boson. Without loss of generality we will assume that it is the m

particle.

The low energy long wavelength physics of the U(1) liquid state is described by

Maxwell's equations. As usual they imply that the emergent electric and magnetic

fields transform oppositely under time reversal. We will distinguish two cases depend-

ing on whether the electric field is even or odd under time reversal.

2.8.1 Even electric field

First we consider the case E -+ E, B -+ -B under time reversal. This is what happens

in the usual slave particle constructions of U(1) spin liquids through Schwinger bosons

or fermions. The electric field on a bond gets related to the bond energy which is

clearly even under time reversal. Consistent with this the magnetic field gets identified

with the scalar spin chirality which is odd under time reversal. Then the electric

charge q, -÷ q, and magnetic charge qm -+ -q,. Let us introduce creation operators

et, mt for the e and m particles. With the assumption that mt has trivial global

quantum numbers and is a boson, it must transform under time reversal as

T-mt7T = eiamn (2.43)

However the phase am has no physical significance. It can be removed by combining

T with a (dual) U(1) gauge transformation that rotates the phase of m (more detail

follows in Sec. 2.8.3). So we may simply set cem = 0. Let us consider now the e
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particle. If there is just a single species of e particle, then we must have

T fet T = eme-et (2.44)

Now the phase ae can be absorbed by redefining the e operator and so we set O, = 0.

The e particle transforms trivially under ZT . There are nevertheless two distinct

phases depending on whether e is a boson or a fermion. More phases are obtained

by considering a 2-component e field: e = (ei, e2). The new non-trivial possibility is

that this 2-component e field transforms as a Kramers doublet under Z':

Tlet T = ioet  (2.45)

Clearly we have T-2etT2 - -et but the action of T 2 on physical (gauge invariant

local) operators gives 1. For instance ele2 is a physical operator and we clearly have

T2eie 2T2 = ele2 . When e is a Kramers doublet it can again be either a boson

or a fermion. The former is obtained in the standard Schwinger boson construction

and the latter in the Schwinger fermion construction. Thus we have a total of four

possible phases corresponding to e being a Kramers singlet/doublet with bose/fermi

statistics and a boson monopole with trivial global quantum numbers.

2.8.2 U(1) quantum liquids as monopole topological insulators

The four U(1) quantum liquids described above were distinguished by the symmetry

and statistics of the e particle. We now develop a very interesting alternate view

point where we understand these four states as different SPT insulators of the bosonic

monopole with trivial global quantum numbers. As the magnetic charge is odd under

time reversal, the monopole transforms under Ug(l) x Z2 where Ug(1) is the gauge

transformation generated by the monopole charge. It is useful (though not necessary)

to perform an electric-magnetic duality transformation: this exchanges the e and m
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labels:

e a Md (2.46)

m + ed (2.47)

We included a subscript d on the right side to indicate that these are the dual labels.

Now ed is a gapped boson that transforms under U(1) x Z2. Thus we may regard the

U(1) quantum liquids as insulating phases of ed obtained by gauging the U(1) part

of a U(1) x Z2 symmetry. Note that ed transforms under a linear (i.e not projective)

representation of U(1) x ZT. As discussed in previous sections such bosons can be in

a number of different SPT phases. We now study their fate when the U(1) symmetry

is gauged.

Gauged bosonic SPT phases in 3d

In 2d Ref. [47J studied the fate of bosonic SPT insulators with discrete global unitary

symmetry when that symmetry is gauged. It was shown that the result was a topo-

logically ordered gapped quantum liquid with long range entanglement. A general

abstract discussion of such gauged SPT phases for unitary symmetry groups (i.e not

involving time reversal) has also appeared[100]. Here we are interested in 3d SPT

phases with U(1) x Z2j symmetry. A gauged 3d SPT phase with U(1) x Z2j was also

studied very recently in a beautiful paper[69]. Using the known 0 = 27r electromag-

netic response[43], it was argued that the monopole of this gauged SPT is a fermion,

and this was used as a conceptual starting point to discuss the surface of this SPT.

Here we will discuss the gauged SPT from a different and more general point of view

that will enable us to also discuss SPT phases where the electromagnetic response

has no 0 term (necessary for the results in this subsection).

Refs. [43, 1011 show that a key distinction between different SPT phases with the

same symmetry is exposed by considering the end points of vortex lines of the boson at

the interface with the vacuum. It will be convenient to label the SPT phases by their

possible surface topological order (whether or not such order is actually present in
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any particular microscopic realization). For one simple example SPT phase (the one

whose surface topological order is eCmC) these papers argued that a surface Landau-

Ginzburg theory is obtained in a dual description in terms of fermionic vortices. In

another SPT phase (labeled by surface topological order eCrnT) the surface vortex

is a boson but is a Kramers doublet. By stacking these two phases together we can

get a third SPT phase where the surface vortex is a fermionic Kramers doublet. In

contrast for topologically trivial insulators the surface vortex is a bosonic Kramers

singlet. In Appendix 2.7 we describe these surface dual Landau-Ginzburg theories

and their implied surface phase structure. We also provide an explicit derivation that

is complementary to the arguments of Ref. [431.

Closely related to this we can also consider external point sources for vortex lines

directly in the bulk. In the Hilbert space of the microscopic boson model the vortex

lines do not have open ends in the bulk. So these external sources for vortex lines must

be thought of as 'probes' that locally modify the Hilbert space. These will behave

similarly to the surface end points of vortices. For example in the SPT labelled

eCmT Ref. [101] shows that the ground state wave function is a loop gas of vortices

where each vortex core is described as a Haldane spin chain. An externally imposed

open end for a vortex string will terminate the core Haldane chain so that there is a

Kramers doublet localized at this end point. In this case the external vortex source is

a bosonic Kramers doublet. In the other example SPT (labelled eCmC) the vortices

are ribbons with a phase factor (-1) associated with each self-linking of the ribbon.

Open end points of such vortex strings are fermionic Kramers singlets. Obviously

stacking these two phases together produces an SPT where bulk vortex sources are

fermionic Kramers doublets. In contrast in trivial boson insulators such bulk external

vortex sources are bosons with trivial quantum numbers under global symmetries.

This understanding of the different SPT phases immediately determines what

happens when the U(1) symmetry is gauged. As these phases are gapped insulators

(at least in the bulk) there will now be a dynamical photon. More interesting for

our purposes is the fate of the magnetic monopole md. The monopole serves as a

source of 27r magnetic flux for the ed particle. Thus it should precisely be identified
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with the source of vortex lines. It follows that Md can therefore either be a Kramers

singlet/doublet and have bose/fermi statistics.

Reversing the duality transformation we see that these are precisely the four

distinct U(1) quantum liquids discussed in the previous subsection. We have thus

established our promised claim that these different U(1) quantum liquids may be

equivalently viewed as different bosonic monopole SPT insulators.

Electric particle Monopole insulator

'P = 1, boson Trivial
P = -1, boson SPT -eCmT

= 1, fermion SPT-eCmC

P = -1, fermion SPT- eCTmC=eCmT ( eCmC

Table 2.5: Phases of U(1) quantum liquids (Z2T symmetry and even emergent electric
field), labeled by symmetry properties of the electric charge, and the corresponding
type of monopole SPT, conveniently labeled by the possible surface topological order.

In Table 2.5 we list all the distinct phases of the U(1) gauge theory with their

monopole quantum numbers, and the corresponding SPT states (labeled by the sur-

face topological states) formed by the bosonic matter field. Notice that SPT states

descended from that of Z symmetry (the eTmT and the all-fermion states) didn't

appear in Table 2.5. One can understand this by thinking of these states as com-

binations of trivial insulators and Z2j SPT states formed by charge-neutral bosons,

hence the U(1) gauge field is decoupled from the SPT states and the vortex source

(i.e monopole md = e) remains trivial.

2.8.3 Odd electric field

We now consider U(1) liquid states where under time reversal the electric field is

odd and the magnetic field is even. In the convention of Ref. [94] this includes

the case of quantum spin ice. Again we restrict attention to U(1) liquids where the

magnetic monopole m is bosonic and transforms trivially under Z2". What then are

the possibilities for the e particle?

Based on the insights of the previous subsection let us first see what we can learn

by considering different monopole SPT phases. Now the magnetic charge qm + q,
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under time reversal so that

T-lrmT - m (2.48)

Thus m (or equivalently ed after the duality transformation) transforms under U,(1) A

For bosons with global symmetry U(1) x Z2 there is one non-trivial SPT phase

which is again conveniently labeled by its surface topological order eCmC. Other SPT

phases are inherited from ZT and hence are not pertinent to our present concerns (see

the end of Sec. 2.8.2). Thus we have two possible phases - the trivial insulator and

the SPT insulator labelled by eCmC. In the former case external probes where bulk

vortex lines end are bosons while in the latter they are fermions. In both cases the

vortex sources are Kramers trivial.

Let us now following the logic of the previous subsection and gauge the U(1)

symmetry. The resulting monopole md will be identified with the vortex source and

will therefore be a Kramers singlet which can be either boson or fermion. Thus this

reasoning suggests that for the odd electric field case there are only two possibilities

for the e particle (= md) - it is a Kramers singlet that is either boson or fermion.

Let's understand the above claim directly from the gauge theory point of view,

udee uif~ theargument ~Ased on 01 T. VV il oUU electic fieu ti lectriC

at any site q, is also odd under time reversal. This implies that the e particles

transform under Ug(1) x ZT where U,(1) is the gauge transformation generated by qe.

Notice that we have UoT = TUo for U(1) x Z symmetry, where U gives the U(1)

rotation.Allowing for the possibility of a multi-component field e1 , time reversal will

be implemented by

T'-e1 T =e-Tje (2.49)

We can always change the common phase a, by defining a new time reversal operator

!- = U(9)T. As U(O) is a gauge transformation t and T will have the same action

on all physical operators. We therefore can set a, = 0 (or any other value for that

matter). In particular under this redefinition T 2 goes to (UOT) 2 = U20T2 so that the

over all phase in the action of T2 on e can be changed at will, and one can always
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choose T2 = 1. The algebraic structure of U,(1) x Z2j still guarantees a degenerate

doublet structure, but the degeneracy here is protected by U9 (1) x Z2j as a whole rather

than by Z2" alone as in Kramer's theorem. In particular, one can lift the degeneracy

by breaking the U9 (1) symmetry but still preserving time-reversal invariance, which

is in sharp contrast with the Kramer's case. It is appropriate to regard the electric

charge q, = +1 as a non-Kramers doublet. Hence with Ugage(1) x Z2 symmetry, any

charged particle should always be viewed as time-reversal trivial. This implies that

the e particle is always time reversal trivial for a U(1) gauge theory where the electric

field is odd, in full agreement with what we obtained from the SPT point of view.

Before concluding this section let us briefly discuss the putative U(1) spin liquid

in quantum spin ice from this point of view. We have just argued that the 'spinons'

(in the notation of Ref. [941) are not Kramers doublets. If the quantum spin ice

Hamiltonian has S, conservation then the spinons will generically carry fractional S_.

However the realistic Hamiltonians currently proposed99 for quantum spin ice do not

have conservation of any component of spin. Thus the "spinons" of the possible U(1)

spin liquid in quantum spin ice do not carry any quantum numbers associated with

internal symmetries. Their non-Kramers doublet structure is independent of whether

or not the microscopic Ising spin is itself Kramers or not. Further microscopically

there are two species of electric charge e1 , e2 (associated with two sub lattices of the

diamond lattice formed by the centers of pyrochlore tetrahedra). Time reversal should

be implemented by letting el -+ et, e2 -+ +e so that the physical spin operator ele2

transforms as appropriate with - sign for a microscopic Kramers doublet spin and

the + sign for a non-Kramers doublet.

Finally we note that current theoretical work treats the spinons in quantum spin

ice as bosons. This is reasonable as the electric strings connecting them are simply

made up of the physical spins and do not have the ribbon structure and associated

phase factors expected if they were fermions.
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2.9 Discussion

In this chapter we studied many aspects of the realization of symmetry in highly

entangled quantum phases of matter. We relied heavily on insights obtained from

recent work on short range entangled symmetry protected topological phases. Despite

their short range entanglement the SPT phases provide a remarkable window into

the properties of the much more non-trivial highly entangled phases. In turn the

connections to the highly entangled phases enhances our understanding of SPT phases

themselves. Below we briefly reiterate some of our results and their implications.

The very existence of SPT phases emphasizes the role of symmetry in maintaining

distinctions between phases of matter even in the absence of any symmetry breaking.

For highly entangled states this leads to the question of whether symmetry is realized

consistently in the low energy theory of such a state. We addressed this for the exam-

ple of 2d gapped topological phases described by a Z2 gauge theory with time reversal

symmetry (and possibly a global U(1) symmetry). By combining the methods of two

different recent approaches[71, 75] to assigning symmetry to the topological quasipar-

ticles we showed that there are consistent symmetry realizations which nevertheless

are not possible in strictly 2d systems. Such states were however shown to occur at

the surface of 3d bosonic SPT phases. Conversely we provided simple arguments that

if a Z2 topological order can occur at the surface of a 3d SPT, then it is not allowed to

occur in strictly 2d systems. Crucial to our discussion was the concept of edgability.

A topologically ordered state with (internal) symmetry is allowed in strictly 2d if and

only if it is edgable, i.e it must admit a physical edge with the vacuum. Topological

ordered states that are only allowed at the surface of a 3d SPT phase are clearly not

edgable.

Thus illustrates how the study of SPT surfaces can provide a very useful "no-go"

constraint on what kinds of phases are acceptable in strictly d-dimensional systems.

If a phase occurs at the surface of a d + 1 dimensional SPT phase (for d > 1) then it

cannot occur with the same realization of symmetry in strictly d dimensions. A nice

application of this kind of no-go constraint is to the possibility of gapless vortex fluid
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phases proposed to exist[85, 86, 871 in two space dimensions in boson/spin systems

with both time reversal and global U(1) symmetries. Such phases were argued to exist

at the surface of 3d SPT phases in Ref. [43] thereby strongly suggesting that they

cannot exist in strictly 2d. We sharpened this conclusion by considering a descendant

Z2 topological ordered phase that is obtained by pairing and condensing vortices of

this putative vortex fluid. We showed that the result was a phase that cannot exist

in strict 2d but can of course exist at the surface of 3d SPT.

The study of SPT surfaces thus gives us valuable guidance in writing down legal

theories of strictly d-dimensional systems. It thus becomes an interesting exercise to

study boundary states of SPT phases in 4+1 dimensions as a quick route to obtaining

some restriction on physically relevant effective field theories of strictly 3 + 1 dimen-

sional systems. Quite generally the issue of consistent symmetry realization is likely

related to the existence of 'quantum anomalies' in the continuum field theory. For

instance the surface field theory of free fermion topological insulator are 'anomalous'

and require the higher dimensional bulk for a consistent symmetry-preserving regu-

larization. For other states such as, for example, topological quantum field theories

it will be interesting if there is a useful direct diagnostic of whether the theory is

anomalous or not.

Finally a very interesting outcome of our results is the explicit construction of

coupled layer models for 3d SPT phases. For all the symmetry classes discussed in

Ref. [43] we provided such a construction. The strategy is to start from a layered 3d

system where each layer is in a Z2 topological ordered state that is allowed in strict

2d. We then coupled the layers together to confine all topological excitations in the

bulk but left behind a deconfined Z2 topological state at the surface. This surface

topological order was shown to match the various possible such order at SPT surfaces.

In particular this scheme provides an explicit construction of a 3d SPT state whose

surface is a time reversal symmetric gapped Z2 topological ordered state with three

fermionic excitations that are all mutual semions. This topological order is expected

to occur at the surface of a bosonic SPT state with time reversal symmetry proposed

in Ref. [431 and is not currently part of the classification of Ref. [16, 17].
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In Chapter 7 we propose a possible experimental realization of the eTmT state

discussed extensively in this chapter, in frustrated spin-1 magnets.
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Chapter 3

Gapped Symmetry Preserving

Surface-State for the Electron

Topological Insulator

3.1 Introduction

In the last decade, dramatic progress has been made in understanding the topolog-

ical properties of non-fractional electronic insulators[18, 19, 201. While the original

theoretical constructions were framed in terms of band structures for non-interacting

electrons, attention has recently turned towards the interplay of strong correlation

and topological insulation. It is now appreciated that the electron topological in-

sulator is part of a larger class of quantum phases of matter known as Symmetry

Protected Topological (SPT) phases[16, 17].

The Fu-Kane-Mele electronic TI (eTI)[25 is the first known 3D example of an

SPT phase. Its non-trivial surface states are protected by bulk time-reversal symme-

try (TRS) and charge conservation (U(1)c) symmetry. If either of these symmetries

is broken in the bulk, the eTI can be smoothly deformed into a trivial insulator. It is,

by now, well known that the surface can either be 1) a gapless, symmetry-preserving

state, or 2) a gapped state that breaks one (or both) of TRS and U(1)c. For some
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time, it was implicitly assumed that these options exhausted the possible surface

phases. Indeed these are the only possibilities accessible in a weakly interacting de-

scription of the surface. However in the presence of strong correlations other options

for the surface may become available. In particular, we will show that it is possible

for the eTI surface to be both fully gapped and preserve all symmetries. The price to

pay for having a gapped and symmetric surface is that the surface develops intrinsic

topological order (even though the bulk does not). We describe this surface topolog-

ically ordered state of the eTI and show that it has non-Abelian quasiparticles. The

physical symmetries are realized in this surface topological ordered state in a manner

forbidden in a strictly two dimensional insulator with the same topological order.

The prime impetus for our study comes from recent progress in describing bosonic

SPT phases in three dimensions, described in detail in Chapter 2. For bosons, in-

teractions are essential to obtain an insulator. Consequently the study of boson

SPTs is necessarily non-perturbative in the interaction strength. For such bosonic

SPT phases, it was shown that the surface can be both gapped and symmetry

preserving[43] if it possesses intrinsic two-dimensional surface topological order (STO).

This STO however realizes symmetry in a manner prohibited in strictly two dimen-

sional systems. The STO provides a particularly simple non-perturbative insight into

the bulk SPT phase. Indeed targeting such an STO is a useful conceptual tool for

constructing SPT phases[1, 44], and can provide very general constraints on lower-

dimensional phases[43, 11. In light of the simplicity and power of the STO as a surface

termination of strongly interacting bosons SPTs it is natural to construct the STO

appropriate for the fermionic topological insulator.

Our strategy is to start from the TR-symmetric non-Abelian surface superconductor[102],

and to restore U(1)c without destroying the superconducting gap by proliferating vor-

tices in the superconducting phase. The minimal h superconducting vortices cannot

be directly condensed due to their non-Abelian statistics arising from unpaired core

Majorana modes. It turns out that, despite being Abelian, the doubled i vortex ise

a semion and can also not be condensed while preserving TRS. Identifying an ap-

propriate vortex field that can be condensed to disorder the superconductor without
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breaking TRS requires some care. We find that there are 4-fold (h) vortex fields that

can be condensed without breaking any symmetries as a minimal route to producing

the STO starting from the surface superconductor.

The resulting phase has identical topological order and charge assignments as the

2D Moore-Read quantum Hall state[103] accompanied by an extra neutral semion.

However, in strictly two-dimensions this topological phase cannot be realized in a TR

symmetric manner. We will show that the fact that the eTI can realize this TO while

preserving TRS provides a complete, non-perturbative definition of the bulk eTI.

3.2 Vortex Condensation in a Conventional Super-

conductor

As a warm-up for the more-complicated non-Abelian case, we begin by reviewing how

insulating states can be produced by quantum disordering a conventional 2D s-wave

superconductor through vortex proliferation.

A superconducting state has a charge 2e order parameter A = IAIe 2i that breaks

U(1) charge conservation symmetry. Starting from a conventional s-wave supercon-

ductor, one can restore U(1)c symmetry by proliferating vortices in the phase of

the order-parameter, #,. Since the pairing amplitude JA| remains finite (except in-

side the vortex cores), the resulting state is clearly gapped. Different gapped phases

can be obtained by proliferating different types of vortices. For example, prolifer-

ating 7r-vortices in 0, (i.e. superconducting L vortices) produces a simple band-

insulator[104], whereas proliferating 27r vortices produces a gapped phase with Z2

topological order[104, 801. These constructions are well known[104, 80], but are use-

ful to review in order to fix notation and to set the stage for the more complicated

non-Abelian superconductors that are the subject of this chapter.

All three phases are conveniently described by a parton construction in which

the electron annihilation operator with spin--, ce, is rewritten as c, = bf, with b

a spinless charge-1 boson (chargon) , and f, is a neutral spinful fermion (spinon).
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This parton description (often referred to as "slave-boson"), has a U(1) redundancy

associated with changing the phase of b and f in opposite ways. Consequently, any

field theory description will contain an emergent, compact U(1) gauge-field, whose

vector potential we will denote by a".

3.2.1 Superconductor

In the parton description, the s-wave superconductor phase is described by condensing

the charged boson, (b) # 0, and introducing an s-wave pairing amplitude for f:

(ftft) # 0. In this phase, the emergent gauge field is gapped by the Higgs mechanism

(or, equivalently confined) due to the charge-1 boson condensate.

The gapped, unpaired f-quasiparticles are neutral fermion excitations. These

are ordinary Bogoliubov quasi-particles of the superconductor, that arise from elec-

tron states whose charge is screened completely (at long lengthscales) by the pair-

condensate.

In addition, there are also 7r vortices of the f-pair condensate phase. Since f
carries internal gauge charge, these vortices carry w "magnetic"-flux of a. The bosons,

having internal gauge charge, are also affected by this r flux of a. Writing b =

/o,%eib. we see that 6h must wind by r in the vicinity of this vortex in order to avoid

an extensive energy penalty. Since b carries the physical electromagnetic charge,

this means that a r-vortex in the f-pair-condensate is necessarily accompanied by a

physical supercurrent flow in the b-condensate; this object is simply the familiar h

superconducting vortex.

3.2.2 Band-Insulator

In an s-wave SC, 2 vortices carry only gapped quasi-particle states in their core.

Moreover, the pairing amplitude, A, is non-vanishing outside of vortex cores. Conse-

quently, a state with an arbitrary density of non-overlapping vortices has no gapless

excitations. Therefore, one can consider starting with a superconductor and creating

a quantum superposition of states with various numbers and placements of (well-
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separated) h vortices. This state will clearly be gapped.
2ee

Moreover, since the spinon excitations of the superconductor see the h- super-

conducting vortices as ir-gauge-magnetic-flux, the spinon and vortex have mutual

semionic statistics. This immediately implies that the spinons will be confined in the

vortex-proliferated state. The bosonic particles, b, also see the vortices as ir-fluxes.

Therefore, the physical electron c = bf has trivial mutual statistics with the vortex,

remains gapped but deconfined. Therefore, there is no spin-charge separation and

the resulting state describes a conventional electron phase.

This phase can be thought of as a Bose-Mott insulator of Cooper pairs. If the

electron density is commensurate such that there are an even number of electrons per

unit cell, then the Cooper pairs have integer filling and can form a Mott insulating

state without further breaking any spatial symmetry. Commensurate Cooper-pair

filling is a necessary requirement for forming a band-insulator, and furthermore, the

-vortex-proliferated state has all the properties of an ordinary electronic band-

insulator.

Therefore, we see that L vortex proliferation in a superconductor produces a con-

ventional band-insulator. This description of a band-insulator is clearly more com-

plicated than the usual non-interacting band-structure description. However, this

construction provides a complementary "dual" perspective capable of capturing cor-

related band-insulators, and can be a useful conceptual starting point for constructing

more complicated strongly interacting phases.

3.2.3 Z2 Topological Order

Instead of proliferating f-vortices in the superconductor, one could alternatively

proliferate doubled (L) vortices. If the electrons are at commensurate filling with the

lattice, this proliferation destroys the boson superfluidity ((b) = 0) without further

breaking any other symmetry. Single b-particle excitations are now gapped and the

resulting phase is a charge insulator. In this phase a is not confined; rather, the

emergent U(1) gauge invariance is broken down to a local Z2 gauge invariance by the

f-pair-condensate. Moreover, since the spinons-f develop a trivial (multiple of 27r)
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Berry phase upon encircling an i defect, they remain deconfined.

The excitations of the theory are then b, f, and objects with ir-flux of a (visons).

The visons are their own antiparticles (since two visons make up the condensed i vor-

tex), having mutual ir-statistics with b and f, and the resulting state is fractionalized

with Z2 topological order.

It is worthwhile to pause to reflect on the strategy underlying the vortex condensa-

tion route to describing insulators proximate to superconducting phases in two space

dimensions. In general a useful effective field theory description of such a system is

formulated in terms of degrees of freedom natural in the superconductor - namely

the h vortices and the neutralized Bogoliubov quasiparticles (the f field). The h2e 2e

vortex field is a mutual semion with the f particle and furthermore is coupled to a

non-compact U(1) gauge field. The vortex field of this dual Landau-Ginzburg the-

ory is, in the examples reviewed above, bosonic. Vortex fields with strength 1h can

therefore be formally condensed to produce various kinds of insulating states.

Having reviewed the simpler s-wave SC case, we now turn to the problem of

producing a topologically ordered phase from the eTI surface-SC.

3.3 Vortices in the eTI Surface Superconductor

Starting from the superconducting surface of the eTI, we know that there should

be some obstruction to proliferating superconducting vortices to form an ordinary

band-insulator, and indeed the h--vortices in the superconducting TI surface-state are

non-Abelian objects that cannot be directly condensed[102]. Since I vortices do not

have an unpaired Majorana core state, they are Abelian, and one is tempted to follow

the above construction to obtain a Z2 topologically ordered state by proliferating L

vortices.

However, this naive approach fails to produce a symmetric STO state. It turns

out that in the eTI surface SC, " vortices have semionic self-statistics', and cannot

'To precisely define vortex statistics, it is necessary to consider a gauged U(1)c symmetry (as
is the case for real electrons coupled to the physical electromagnetic field, which has very weak
fluctuations).
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be condensed without breaking TRS. The 31 vortices again have unpaired Majorana

cores, and are non-Abelian. We show however that there are 2 vortices that are

bosonic. Therefore, the minimal route to restoring U(1)c is to condense such bosonic

2hc vortices.e

We now establish the Abelian statistics of i and l vortices in the surface-e e

superconductor, by arguing based on the e-term electromagnetic response of the

bulk.

3.3.1 Bulk Argument for statistics of Abelian vortices

A useful conceptual device for what follows is to modify the problem by coupling

the electrons to a weakly fluctuating dynamical compact U(1) gauge field. It is well

known that the topological insulating bulk leads to a e-term, with e = ir, in the

effective action (apart from the usual Maxwell term) for this gauge field obtained by

integrating out the electrons. Also well-known is the effect of this e term: a unit

strength magnetic monopole of this U(1) gauge field acquires electric charge . (the

Witten effect[68]). Now imagine tunneling such a monopole from the vacuum into

the bulk of the (gauged) topological insulator. Such a tunneling process will leave

behind at the surface a L vortex. This implies that the L vortex field in the vortexe e

Landau-Ginzburg theory formally also has electric charge 1. As a composite made

of charge-1/2 and 2-x flux it is natural to expect that this vortex will have semionic

statistics.

To demonstrate the semionic statistics of L vortices, consider a slab of bulk eTIe

with a top and bottom interface with a trivially insulating vacuum. Then create a

pair of L vortices on the top surface and a pair of - h' vortices on the bottom surface.e e

Since the gauge field A" is free, except at the superconducting surface, closed magnetic

flux lines carrying L' flux are condensed in the bulk and in the vacuum. Since the

surface is superconducting, a magnetic flux tube can only penetrate the surface at a

vortex. For the vortex configuration of Fig. 3-1, there are only two magnetic flux lines

that leave the TI bulk. Let us consider just one representative flux line configuration,

as shown in Fig. 3-1. Next consider dragging one of the L vortices on the top surfacee
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Figure 3-1: Exchanging two ! vortices at the superconducting surface of a TI slab

(top panel) leads to a linking of their magnetic field lines, which gives a phase of -1,
demonstrating that L vortices are semionic.

e

all the way around the other, as shown in Fig. 3-1 without moving the - ' vortices

on bottom surface. The new magnetic flux configuration differs from the initial one

by a single linking of the magnetic flux lines that thread the vortices.

Due to the bulk topological 8-term for A:

Le = V 6A A, OAAva , (3.1)
87r

this linking produces a phase of -1 relative to unlinked configurations. This phase can

be computed directly from LE by considering any convenient choice of A with a linked

vortex line. Alternatively, one can imagine creating a linked field line configuration

in the bulk by starting with an infinite flux line, creating a monopole anti-monopole

pair and dragging the monopole around the flux line before annihilating it with the

anti-monopole. Since monopoles in the TI bulk have charge (, dragging one around

a 27r-flux line contributes phase e2i = -1.

We have illustrated this -1 phase for a particular magnetic field line configuration.

More generally, the ground-state, ITEM), of the bulk gauge field, Al, is a quantum-

superposition of various configurations, C, of magnetic flux lines:

I'IEM) = E( 1)C'FO(C)IC) (3.2)
C
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weighted by phase (-1)Lc, where Lc is the number of linked loops in the configuration

C, and by amplitude, IO(C), that is determined by the non-topological dynamical

terms for the gauge-field.

This follows directly from computing the wave-function for a given configuration,

A(r), from the (imaginary time) path integral:

I [A] = (Al)

J D [A] IA,.(r,t=O)=.A(r) e -fo d7- f d A

~eA = (- 1 )cAc (3.3)

we see that the resulting wave-function contains a Chern-Simons (CS) term which

just counts the linking number of flux lines of A.

For any configuration of closed bulk field-lines, C, the two-fold exchange of ie

introduces a single extra linking number. Therefore the two-fold exchange of Le

vortices produces phase (-1), indicating that a single exchange produces phase +i;

the L vortices are semionic. Let us denote the quantum field that creates a "hc vortexe e

with electric charge q by 1Dn,q. With this notation ( 1 ,i is a semionic h' vortex with
12 e

charge .. The field f -(D produces a neutral fermion bound to this vortex and hence

creates an antisemionic h vortex with charge .. These two L vortices will play ane 2 e

important role below.

Let us now consider strength-4 (2) vortices. A similar argument as above shows

that 1 vortices are either bosonic or fermionic (fermionic and bosonic 2h, vorticese e

can be interchanged by binding a neutral f quasi-particle). Note that if we combine

two charge-1/2 semionic L' vortices, we end up with a charge-I bosonic 2 vortex. i.ee e

2= 21. An electrically neutral Z vortex may be obtained by considering the
2 e

combination cP 2,1 , i.e by removing an electron from the charge-1 ' vortex. Clearly

this is a fermion.

These strength-4 vortices at the surface correspond in the bulk to strength-2

monopoles. At 0 = 7r, such monopoles always carry integer electric charge. We

will denote bulk dyons with magnetic charge n and electric charge q by (n, q). These
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correspond to surface vortices created by . It is readily seen that the bulk (2,1)

dyon (at E = 7r) is a boson while the electrically neutral strength 2 monopole (the

(2, 0) particle) is clearly a fermion (the polarization charge induced by the 0 term

does not contribute to the statistics, as explained in Ref.1105]). This is in complete

accord with our discussion of surface vortices above. Arguments using bulk monopole

properties to constrain surface physics were also recently used for boson topological

insulators in Ref. [69].

To disorder the surface superconductor we need to identify bosonic vortices which

we can then condense. Though the - vortex with electric charge-1 seems like ae

candidate it is problematic. To preserve time reversal we should clearly also condense

(with equal amplitude) the - h vortex with electric charge 1. But then the resultinge

state also has a condensate of ordinary Cooper pairs so that it is still a superconductor

(albeit an exotic one). The neutral 2 vortex described above is a fermion and hencee

cannot condense. Fortunately we also have a different neutral fermion in our theory

- the spinon (the f particle). By binding f to the fermionic 2 vortex we obtain ane

electrically neutral bosonic 2h vortex. Equivalently this bosonic neutral I vortexe e

may be viewed as being obtained from the charge-1 bosonic 2h vortex by binding toe

b (i.e by removing a chargon). This neutralizes the charge but keeps the statistics

as bosonic. We are then free to condense this vortex to destroy the superconducting

order.

We emphasize that the bosonic neutral 2 vortex is not simply a 47r vortex of thee

chargon b but requires also binding to the spinon f. An 87r (4h-) vortex of b, 4 4,0 ,is

an electrically neutral boson. The corresponding bulk monopole is a (4, 0) particle

which is also a boson. Condensation of the bosonic vortex f12,o automatically implies

condensation of (D4,0 as the spinon f is paired.

3.3.2 Topological spins of non-Abelian vortices

We now consider non-Abelian vortices, and it is sufficient for our purpose to consider

hc/2e vortices, with Majorana core states. Naively, the argument given in Sec.3.3.1

for hc/e vortices implies that the topological spin (see Sec.3.4.2 for its definition) of
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hc/2e vortices would be e"x/8 . This can be seen by writing the bulk E-term as a

boundary Chern-Simons term at level-1/2, which would contribute to the topological

spin of hc/2e vortices by eii/8. However, the Majorana zero-modes trapped in

the vortices contributes another e / 8 to the topological spins[106], hence the total

topological spins are

Ohc/2e - 0-hc/2e = 1. (3.4)

The above argument can be made more precise by viewing the surface supercon-

ductor as a paired single Dirac cone. One can then add two gapped Dirac cones with

opposite masses to the surface without breaking time-reversal symmetry. One can

then group one of the massive Dirac cones with the original surface superconductor

and rewrite the combination as a p - ip superconductor, and the other massive Dirac

cone with the opposite mass gives a half-quantum hall state. The former contributes

e- /8 to the topological spin of +hc/2e vortices, and the latter gives e"/ 8 , hence we

have Oihc/2e = 1.

3.4 Surface Topological Order

We are now in a good position to construct a symmetry preserving STO phase from

the SC phase. In the parton construction c, = bf,, we can describe the SC topological

insulating surface state by condensing b, (b) # 0, and placing f in the eTI band-

structure with a superconducting surface. From the previous section, we saw that

the minimal route to restoring the U(1)c symmetry is to proliferate the electrically

neutral bosonic 2hc vortices.
e

What topologically distinct classes of particles remain after their proliferation?

Since b and f have trivial mutual statistics with the 2 c vortices, they will clearly
e

survive as gapped quasi-particles with unaltered charge and statistics. Quite generally

the condensation of such 2hc vortices will produce an insulator with gapped bosonic
e

excitations with fractional charge 1/2. We will call this particle #. Clearly two #

particles make a chargon: b = '62.

Vortices in the superconductor become dressed by the 2h' condensate. We will see
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later that they survive as topological quasiparticles but with sharp non-zero electric

charge (unlike in the example reviewed above of 2D Z2 topologically ordered states

produced by disordering a proximate superconductor, where the visons are charge

neutral). For now, we put aside the charge assignment for these topological particles

and focus just on identifying the different particle types.

Going from the superconductor to the STO phase, the non-Abelian h vortex, v,

becomes a new object, -r, which is a quantum superposition of odd-strength vortices

in the superconductor whose vorticity differs by a multiple of 2. Similarly, the

-c anti-vortex, V, becomes a different object, Tv, which is made up of a quantum

superposition of (4,-l)hc vortices of the superconductor (with n E Z).2e

In the SC, an h vortex, v, carries a Majorana zero mode in its core[102], and a pair

of v's shares a single complex fermion level that can be either occupied or unoccupied.

Consequently, there are two possible outcomes from fusing two v's, v2, both of which

have net vorticity L and which differ from each other by adding a neutral Bogoliubove

fermion, f. Upon moving into the STO phase by condensing 4-fold vortices, v2 will

turn into distinct objects, Tl, which differ by a fermion: Tr = x f.

Similarly, in the superconductor, a pair of V's can fuse to two different - ' vortexe

objects that differ by a fermion, f. Upon condensing 2h vortices however, the iLe e

vortices become mixed, and fusing two T particles should have the same outcome as

fusing two Tv particles: Tr x Tr = -r, x T, = T2 + T2 .

Lastly, in the superconductor, the vortex and anti-vortex pair also share a non-

local fermion level due to their Majorana cores. Fusing a v and 'i, then produces either

the superconducting ground state, 0, or the ground-state plus an extra Bogoliubov

particle: v x V = 0 + f. Consequently, in the STO phase, we must have two possible

fusion outcomes for r, x Tv, which differ by an f. Naively, one might be tempted to

have r, and TD fuse 1 + f as in the superconductor. However, more generally we may

also have: r, x Tr = X x (1 + f) where X is some to-be determined particle that is

condensed in the SC. This is consistent with the fusion rules of the surface SC if X is

condensed in the SC phase. This requires X to be a boson. Below we will show that

X is just the fractional chargon: 3.
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Finally, we note that T2 x -r 2 = 2, and that r+x2 = 2 x f = c, the physical

electron.

A summary of the particle content and fusion rules produced by this line of rea-

soning is summarized in Tables 3.1 and 3.2 respectively.

3.4.1 Charge Assignments

Having specified the topologically distinct particle classes and fusion rules for the

STO phase, we now turn to their symmetry properties under U(l)c. The resulting

charge assignments explained below are summarized in Table 3.1.

Since b and f are unaffected by the vortex condensation, b still carries charge e and

that f is charge-neutral. What about the excitations that descend from supercon-

ducting vortices? Tr particles descend from D1,1/2 vortex fields of the superconductor,

and hence can be created by dragging a magnetic monopole from the vacuum through

the STO surface into the bulk. Since the monopole carries fractional electric charge:

, its corresponding surface excitations must also have charge -F. Moreover, since

T2 and T2 differ by a neutral fermion, f they must have the same charge. For con-

creteness, and without loss of generality, we choose T to have charge +f and their

anti-particles, T 2 , to have charge -f. It then immediately follows from the fusion

rule: T, x Tv = ,+ rT_ that r, has charge i.

It is instructive to understand how these charge assignments come about directly

from the surface without recourse to bulk monopoles. To obtain the STO from the

SC, we are condensing 47r vortices of the chargon b that are bound to the neutral

fermion f. The neutral fermion acquires a ir phase when it encircles the L vortex

in the superconductor. Consequently, the h vortex is a mutual semion with the2e

condensed bosonic i vortex. As a result, the L vortex can survive in the STOe 2e

phase only by binding with some other particle to produce trivial mutual statistics

with the condensed bosonic 2 vortex. The only possibility is for the h vortex toe 2e

bind a fractional charge, f, which also obtains 7r-phase upon encircling an L vortex.4 e

Thus we conclude that the particles T,, T in the STO phase are the remnants of the

vortices of the SC phase which have been dressed by charge e/4.
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Since T,. and T, descend from t vortices in the superconductor, they are related

by time-reversal and must have the same charge. Above, we saw that the v xv =_ 1+ f

fusion rule for the surface-SC generalized to: T, x Tr = X x (1 + f) in the STO phase,

with X to-be-determined particle. The above arguments show that X must have

charge '. Since X is a }-charge boson that must be condensed in the SC phase, the

only possibility is: X = 3.

3.4.2 Topological Spins

The topological spin, 0
a, of a particle in sector a is defined as the phase factor ac-

cumulated when an a-particle is adiabatically rotated by 27r in the counter-clockwise

(CCW) sense. For Abelian particles, the topological spin coincides with the phase

obtained through CCW exchange of a pair of a-particles.

Clearly 6b = 1 and Of = -1. The argument in Sec.3.3.1 established the semionic/anti-

semionic statistics of hc/e surface vortices (the semion and anti-semion differ by an

f fermion). In the topologically ordered phase the hc/e vortex acquires an additional

charge q = 1/2. The charge-flux relation thus gives an additional eiqo = -1 to its

topological spin. This shifts a semion to an antisemion and vise versa. But since we

have both semionic and anti-semionic vortices already, the shift is just a relabeling of

the two different vortices. Hence we establish that T have topological spin +i.

It was also established in Eq.3.4 that the +hc/2e vortices have trivial topological

spins. In the topologically ordered phase, the +hc/2e vortices acquire additional

charge-1/4 and becomes {r, Tr}. Hence an additional contribution of eiqo/ = e ir/ 4 is

introduced to the topological spin. Hence we have 0, = eir/ 4 and 0TV = e

3.4.3 Exchange Statistics

In a system with non-Abelian particles that have multiple possible fusion outcomes,

the phase obtained by the CCW exchange of two particles, a and b, will depend on

the fusion channel. When a and b fuse to c, the phase factor obtained by adiabatic

CCW exchange of a and b is denoted by R b (for a pedagogical review see Ref. [107]).
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The R matrices are related to the topological spin of the underlying particles[107] by

(Rab) 2 = ,/OaOb. This identity just encodes the fact that dragging b around a is nearly

the same as rotating the entire a-b composite system CCW by 27r, or equivalently to

fusing to c and rotating CCW by 27r giving: 0,. However, rotating the entire system

also rotates a and b individually, which is not part of the exchange process. The

factor of 0 ab in the denominator compensates for this unwanted rotation of a and

b. The proper branch of the square-root can be identified by writing 6 ,b,c = 0.,,,

and choosing an exchange protocol such that the phase is accumulated monotonically

over the course of time T: Re= lim ei(kcr-0-4)t/2T
t-+T-

For Abelian particles a and b, there is a unique fusion channel, and the lower-index

on R is redundant. Therefore, it is common to just specify the mutual statistics of

aand b by: 9 a,b = (Rfb) 2 , which is the phase factor obtained by adiabatically

dragging b CCW around a. Consequently, the braiding statistics for all particles

follows straightforwardly from the previously obtained fusion rules and topological

spins tabulated in Tables. 3.1 and 3.2 respectively.

For example, consider the mutual statistics of r, and T2. The composite T, x r, =

-r, has topological spin: 03 = -eir/ 4 , indicating:

TV =,2 eir/4e ir/ 2 
- (3.5)

3.4.4 Time-Reversal Properties

We have already identified appropriate charge assignments, which encode the trans-

formation properties of various particles under the U(1)c symmetry. In this section,

we address how TR is implemented in the proposed STO phase. The results of this

section are summarized in Table. 3.1.

The first task for implementing TRS is to specify how topological equivalence

classes of particles are exchanged under TR. This is relatively straightforward since

we have constructed the STO state from the well-understood TR-symmetric super-

conductor phase. The T, descends from an h vortex in the superconductor, whiche

becomes a hevortex under TR; in turn the - he- vortex becomes Tpv in the STOe e
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phase. Therefore under TR:

TV T ) To- (3.6)

Similarly, by going to the superconductor it is clear that f, and 02 b are preserved

under TR. It is also clear that the # sector is preserved under TR.

Under TR, counter-clock-wise and clock-wise exchange are interchanged, and

hence topological classes of particles that are related by TR must have conjugate

topological spin. We see that this is true for all of the above TR transformation

rules.

Since Tr descend from both " vortices, we cannot determine their TR prop-e

erties directly from the superconductor. However, since -r and T_ have conjugate

topological spins, they must be exchanged by T:

T T (3.7)

In addition to the action of T on topological superselection sectors, for sectors
bi are "0c+ +I-virnAk~ 'r ~ ,~~~-;

thatC "ar n.t Vnt"rng)d by 1 iis mIingfCb iUL AJ "sk. about their eigenvalues un-

der the unitary operation of double-time-reversal, T 2 . For particles that reside in

TR-invariant superselection sectors, T2 = -1 has definite physical interpretation as

a TRS-protected Kramers degeneracy. Our STO state arises naturally from the su-

perconductor where b has 72 = 1 and f has T2 = -1 respectively; hence /32 and f

also have T2 = 1 and T2= -1 in the STO phase. Similarly, 32 has T = 1 since it is

a fraction of b, and since 3 can be condensed to obtain the SC from the STO phase.

However, for particles, like r4, whose superselection sectors are changed by T,

the T2 eigenvalue does not imply a further degeneracy within that particle sector.

Furthermore, for such particles, it turns out that it is not even possible to assign

a local gauge-invariant representation of V2. In the next two sections we further

describe the issue of symmetry localization on gauge non-invariant particles.
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Gauge (non)-invariance TR Properties for Fractionalized Particles

Fractionalized particles (i.e. particles with non-trivial self- or mutual-statistics) can-

not be individually created from the ground-state. Rather, one can only create groups

of excitations that fuse to 0. For example, to isolate a fractionalized particle X, one

can create a particle anti-particle pair, X and X- 1 , from the ground-state, and pull

them far apart from one another. The operator that implements this sequence con-

sists of a string of electron operators connecting the final locations, R1 and R 2 , of

X and X-1 respectively. This string of operators can be divided into two local op-

erators 'I'(R1 ) and 'Ix(R2 ), that create X and X 1 respectively, and a non-local

gauge-string, W1, 2 = 1r eiqXaij, where i and j label sites on the lattice where Tx

is defined, 1' is directed path of links (ij) connecting sites R1 to R2 , qx is the in-

ternal gauge-charge of the particle X, and aij is a discrete-valued emergent gauge

field. This division into particles and strings is inherently arbitrary, which is reflected

by the local gauge invariance under the transformations FX,i -+ e 2,inAxi, and

aij - ai- - (ni - nj) (with nij E Z).

Due to the non-local gauge structure there is not always a well-defined gauge

invariant way to assign symmetry-transformation properties locally to the particle

creation operators TJJ. Rather, one must generically keep track of the transformation

property of both the particles, and their gauge-strings, W. However, in special cases

it is possible to associate a well-defined action of a symmetry locally on Xh even for

gauge non-invariant objects. For simplicity, in what follows, we will not distinguish

between the label X for a topological class of particles and the corresponding (gauge-

non-invariant) annihilation operator Tx.

Since f x f = 0, the phase of f has a sign ambivalence, indicating that f's have

-gauge charge (i.e. change sign under e2 iqf = 1) and are connected pairwise by

(unobservable) unoriented Z2 gauge strings. Similarly /32 x f is a physical electron

c, and so /32 also has a Z2 gauge charge. It then follows from T2 X >r = /32, that

-i has internal -- gauge charge, and that oriented Z4 gauge strings emanate from -r

particles. We know that -r have opposite internal gauge charge, since T2 X _T = C,
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and c is a physical (gauge-invariant) local electron. Therefore, we can choose the

orientation convention that Z4 lines emanate from r; and terminate on T2 particles.

7T Properties For Sectors that are Exchanged by T

With this gauge-string picture in mind, we now turn to the task of determining to

what extent T2 is defined on particles whose topological classes are interchanged by T.

To see why it is important to consider the effects of T on the gauge string, consider

a Ti-TB pair. Suppose that we represent T locally on the particle operators as:

T- 2,T= eiT2 and T7-1TT = edr where a and 3 are unknown phases. Then one

has: T-2T 2  e i(#-a), and naively it appears that T- 2 T 2T2 
-ei(/3-a) 2 2T 2.

However, this cannot be the whole story, since T2 fuse to the physical electron, c,

which is a Kramers doublet with T2 = -1.

This puzzle is resolved by noting that T2 . T , implies that T reverses the

direction of the gauge string connecting a given T;-T7 pair. Then acting twice with T2

doubly flips the orientation of the connecting gauge-string. A two-fold re-orientation

of the gauge-string can also be accomplished by dragging -r around r. Due to their

semionic mutual statistics, this observation dictates that the gauge string contributes

an additional factor of -1 to the overall T2 . Therefore, the action of T2 cannot

be consistently implemented in a purely local fashion for the gauge-non-invariant

particles -2, which interchange under T.

Note that a nearly identical argument can be applied to monopoles in the bulk

of the electron TI to formally establish the intimate connection between the 0 = 7r

electromagnetic response of the TI and the Kramers degeneracy of the electron[3]

(see also Ref. [531). This is indeed appropriate, since the Tj particles are the surface-

avatars of these bulk dyons.

The issue of non-locality is even more pronounced for the non-Abelian excitations

r, and r, since a collection of these particles share a degenerate Hilbert space of

non-local fermion modes, and the action of T2 depends on the total fermion parity

of this non-local Hilbert space, which is a global property of the system.
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3.5 2D TR Breaking Analog

For bosonic SPT bulk phases, the topological properties of the STO phase can always

be realized by a strictly 2D system that does not preserve the underlying symmetries

of the 3D SPT. In this section, we provide an analogous construction for the electron

TI. Specifically, we show that the STO phase has the same topological order as the

Moore-Read QH phase[1031 supplemented by an extra neutral semion. We begin

by reviewing the Moore-Read and related 2D phases in the language of the parton

construction c, = bf, used above.

3.5.1 p + ip Superconductor and Kitaev Spin-Liquid

We begin with the p + ip superconductor, and its topologically ordered analog, which

are in some sense the simplest "roots" of the non-Abelian Ising topological order for

the STO phase. A TR-breaking superconductor with p+ip pairing symmetry, and the

TR-broken B-phase of Kitaev's Honeycomb Model (henceforth denoted Kitaev Spin-

Liquid, or KSL) are closely related states with non-Abelian Ising anyon excitations.

The latter is obtained from the former by condensing -vortices. In the language of

the parton construction, this is equivalent to placing b in a Mott insulator, and f into

a p + ip superconductor. The resulting phase contains topological particle classes: 0

(vacuum), b, f, and a non-Abelian vison, o- that descends from the t7r-vortices of the

p + ip superconductor.

In the resulting KSL phase, b has charge e, and all other particles are neutral. The

edge of this phase contains a single chiral Majorana fermion that contributes UH = 0
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and /-i = 1. The fusion rules are:

b x f = c (3.8)

b x b= c2 ~ 9

f x f =

a- x f =0o-

- x b o-

Sx a=1+ f

and the topological spins are:

Ob= 1 (3.9)

Of = -1

Oor = e %7/8

3.5.2 Moore-Read Quantum Hall State

The Moore-Read state[103] can be obtained from the KSL phase by placing b in a v =

1/2 bosonic-Laughlin quantum Hall phase rather instead of a Bose-Mott insulator.

This phase is characterized by the idealized wave-function:

flR ~ 1(z, - zj) 2pf ( 1 ) (3.10)
i<j

where z3 = x3 + iyj is the complexified coordinate of the jth electron. The factors

of (z, - zj) 2 stem from the b sector, and the Pf denotes the Pfaffian of the anti-

symmetric matrix with entries , which describes the BCS wave-function with

p + ip-pairing[108.

In this phase, the vison, a of the f-sector is bound to a ir-flux of the Bosonic

QH fluid which we denote v (similarly, denote a -7r flux of the Bosonic QH fluid

by v). A ir-flux in a -H = 1 system has charge i and hence v has topological spin2 4
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e"' 8 . Denoting the non-Abelian vison/charge-' vortex composite as a-, we have:

OV = es/ 4 . Since V is a -ir-vortex bound to charge -f it also contributes an extra

e"/8 to the vison topological spin, indicating that the composite, - x V = or-', has

O6i = -,V = ir/4.

3.5.3 2D TR-Breaking Analog

The MR state looks somewhat similar to the STO phase constructed above: there

Ising non-Abelions attached to charged Abelian vortices. However, unlike in the TI

STO phase, o, x o-1 = 1+ f is charge-neutral. More generally, since o,, and of have

opposite charge, and the same topological spin, it is hard to see how TR-invariance

could be implemented in the MR phase, even at the surface of the STO.

We can cure this problem by introducing an extra counter-propagating anti-semion

particle, s, with topological spin 0, = e-"/2 to the boson sector (in the parton

language this corresponds to further fractionalizing b -+ bib2 , with b, carrying charge

e in a bosonic v = 1/2 QH phase, and b2 a charge-neutral in a v = -1/2 bosonic QH

phase). Making the following identifications:

j-1 X r2 = S

TV = OV

T-= '7 v >< 8

-1 -1
TV =0U,

TV3
1 = * x s (3.11)

we see that this 2D TR-breaking phase has the same topological order and charge

assignments as the STO phase described above. For brevity we denote the 2D TR-

breaking phase: MRxAS.
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3.6 Connection Between STO and Familiar Non-Fractionalized

Surface Phases

In the previous section, we have constructed an STO phase by quantum disordering

the TRS surface superconductor state. The fact that a TI can realize this topological

order with both U(1)c and TR symmetries intact actually serves as a non-perturbative

definition of the U(1)c x Z' fermion topological insulator. To see this, we need to show

that we can obtain all of the usual symmetry broken non-topologically ordered surface

phases of the familiar fermion TI through a sequence of surface-phase transitions that

do not affect the TI bulk.

3.6.1 STO to TR-Symmetric Non-Abelian Surface SC

Since we have constructed the STO phase from the TR-invariant surface SC, it is

straightforward to recover the familiar surface SC. We have already argued that the

superconducting surface can be obtained from the STO phase by condensing #. Here

we provide some further details.

Since #2 = b = /p ei we may write # = (p)1/4eI. Then 2ir vortices of

#, are 47r vortices of #b, which are condensed in the STO phase. In other words,

the STO phase can be viewed as a Mott insulator of 3. Then, to recover the TRS

surface superconductor from the STO phase, one can simply condense /. Since # has

non-trivial mutual statistics with all other particles besides f, the particles %, Tv, 1:

etc... will all be confined in the (#) # 0 phase. However, these confined objects do

not completely dissapear from the theory, rather they are bound to vortices of 0,

(which are now-gapped) to form composites that have trivial mutual statistics with

the /-condensate.

Since, / has the same mutual statistics with r, as with a 7r/2-vortex of # they are

bound-together in the superconductor. Since 3 is charged a +r/2-vortex of 0, has

physical circulating charge current. and the T, object becomes the superconducting

vortex (or, more generally, a (4n+1)h vortex with n E Z). Similarly, rf, becomes a2e moea 2e vre ihr
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(4n-1)hc vortex, and 2 become a nhc vortices (with n odd).

3.6.2 STO to 1/2-integer quantum Hall

Next, we connect the STO to the U(1)c preserving but TR-breaking L-integer surface

quantum Hall insulator (SQHI). In the previous section, we showed that the topo-

logical order and charge assignments of the STO can be realized in strict 2D at the

expense of breaking TRS. The analogous TR breaking phase was equivalent to the

Moore-Read QH phase with an extra neutral semion, denoted MRx AS. Importantly,

the MRxAS has O= KH = . There is a closely related phase, which we denote

MR x AS, obtained from MRxAS by switching all of the particles of MRxAS with

their anti-particles, which has uH = rH -

Starting with the STO phase of the TI, let us "deposit" a layer of MR x AS on the

TI surface (or alternatively, imagine adjusting the interactions and other parameters

of a layer of the bulk near the surface to drive that layer into the MR x S phase).

Then, suppose we allow the f particle of the MR x AS to hybridize with (i.e. tunnel

into) the f particle of the STO phase. This confines each non-Abelian r, of the STO

is bound to a similar non-Abelian -r 1 of the deposited layer, thereby neutralizing

the non-Abelian statistics of the composite object. The resulting composites are all

Abelian and have trivial self-statistics, and hence can be straightforwardly condensed

(since TR symmetry is already broken). In particular, if we condense the particles

containing a -r of the STO layer and a r 1 of the deposited layer, all other particles

are trivially confined, and no excitations with fractional statistics remain.

We have thereby eliminated the surface-topological order, at the expense of break-

ing TR-symmetry on the surface. What is the quantum Hall response of this non-

fractionalized insulating state?

To answer this question we note that we could have equally well followed a time-

reversed version of the above procedure, by depositing a different surface layer related

to MR x AS by TR, which we denote MR* x AS* and has UH = r-H - Consider

a spherical TI, depicted in Fig. 3-2, and imagine depositing a layer of MR x AS

on the bottom hemisphere of the TI surface and a layer of MR* x AS* on the top
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Figure 3-2: The non-fractionalized TR-breaking quantum Hall insulator (QHI) with
coating the TI surface with a 2D TR-breaking topologically ordered state with H

NH = (depicted in orange and purple respectively), as explained in the text. The
half-integer quantum Hall conductance can be seen by considering a domain between
these two coatings as shown in the above figure for a spherical TI,

hemisphere. The edges of the deposited 2D layers meet at the equator, and each

contributes a chiral Majorana fermion, a co-propagating charged boson mode and a

counter-propagating neutral boson mode. The chiral Majorana fermions from the top

and bottom hemisphere propagate in the same direction, and when coupled, combine

into a complex (neutral) chiral fermion. The combined edge has overall chirality with

a single chiral charged mode, and hence has UH = KH = 1. This UH and KH is not

effected by condensing -r composites in order to remove the topological order.

This line of reasoning shows that, even after destroying the surface-topological

order, the interface at the equator possesses a single 1D chiral charge fermion. The

non-fractionalized phases that we have produced on the top and bottom hemisphere

therefore differ by an electron v = 1 quantum Hall layer. Since these two phases

are related by TR-symmetry, we must democratically assign them TH = H

respectively. We have therefore succeeded in recovering the familiar non-fractionalized

surface QH insulating phases from the STO phase.

3.6.3 STO to Gapless Dirac Fermion Surface

In the previous section, we showed how to obtain the surface QH insulator from the

STO phase by breaking TR. The resulting phase can have either cTH = H -
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From here, it is straightforward to produce the symmetry preserving gapless Dirac

cone phase by proliferating domain walls between the -H = ! surface phases. Such

domain walls carry a single chiral (complex) fermion, and it is well known (for example

from network models[43]) that their proliferation results in a single gapless Dirac cone.

3.6.4 Z2 Nature of Surface Order

It is well known that two copies of the ordinary electron topological insulator can be

smoothly deformed into the trivial insulator without a bulk phase transition. There-

fore, as a final consistency check for the proposed STO, we demonstrate that two cou-

pled STO phases can be deformed to a trivial insulator by surface phase-transitions

that leave the bulk gap untouched.

Consider starting with two layers of the STO phase, labeled 1 and 2 respectively,

coupled such that electrons can tunnel between them: (cJc2), (cic1) # 0. It is straight-

forward to check that the following set of composite particles are charge-neutral self-

bosons with trivial mutual-statistics, which can be simultaneously condensed without

breaking either U(1)c or TRS:

{31/2, TvlTv2 /3t, TH1T2# t , and h.c.'s} (3.12)

with h.c.'s indicating that all operators related by Hermitian conjugation to those

listed are also condensed. In order to preserve TRS, we must condense TR conjugate

particles with equal amplitude: (Troir 2 /t) = (TViTf 2 0t) # 0.

It is also straightforward to verify that after condensing these objects, all non-

trivial particles in the theory are either confined or condensed, and there are no

fractionalized excitations. In particular, f and #32 both have mutual (-1) statistics

with the condensed TvT1,2/t particles, and are confined together to form the physical

electron: c = 3#2f. The resulting phase has only gapped, physical electron excitations,

c, and hence is a trivial band-insulator. Therefore, we have verified that the bulk phase

described by our proposed STO indeed has a Z 2 group structure (i.e. that combining

two copies of our phase produces a trivial phase) as required for the electron TI.
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This set of particles in Eq. 3.12 has a natural physical interpretation: starting

with two coupled layers of the TRS surface-SC phase, we know that we can obtain

a trivial bulk insulator by condensing the (now Abelian) vortices, which now

occur in the same location in both layers due to the interlayer tunneling. The set

of particles condensed here to trivialize the double-layer STO phase are simply the

descendants of these vortices.

3.7 Discussion

We have shown that, in addition to the familiar gapless Dirac surface state, and

gapped symmetry-broken states, the electronic topological insulator (TI) can support

a gapped and fully symmetric phase with surface topological order (STO). This STO

phase provides a complete, non-perturbative definition of the electron TI. Like STO

phases of analogous bosonic TIs, the electron TI STO phase has the same topological-

order as a 2D phase, but with symmetry implemented in a way that is not allowed in

strict 2D.

For boson TIs, the lens of STO provides a useful perspective into 3+1D strongly

correlated boson TIs as well as 2+1D gauge theories[1]. The hope is then that under-

standing of the electron TI STO will enable similar progress for strongly-correlated

electronic phases. An essential component for boson TIs was a systematic under-

standing of symmetry implementation for strictly-2D Abelian bosonic systems[48, 75].

One potentially complicating factor in adapting this approach to fermions is that the

electron TI STO is inherently non-Abelian. Consequently an important outstanding

task for making progress along these lines is to develop a systematic understanding

of symmetry implementation in 2D non-Abelian theories. These theories are not

amenable to the simple K-matrix methods that have so successfully utilized for boson

systems[48, 75]. However, methods of similar spirit based on using the bulk-boundary

correspondence to reduce the problem to symmetry implementation in 1+1D confor-

mal field theories of the edge may still prove fruitful. Such a pursuit would go far

beyond the scope of the present chapter and is left as a challenge for future work.
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Using a different method, based on Walker-Wang type models, X. Chen, L. Fid-

kowski, and A. Vishwanath have also constructed a candidate STO phase for a E = 7r

electron TI[54]. The relationship between this STO and the one described above is

not completely clear, however, in light of the general arguments of Ref. [3] this phase

can at most differ from the conventional eTI by an SPT phase of neutral bosons.

This chapter focused on the Fu-Kane-Mele topological insulator, which is the only

nontrivial topological insulator in 3D free fermion systems. In the next chapter we

discuss the possibility of other (bulk) electronic topological insulators in correlated

systems.
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Table 3.1: Summary of the
and the implementation of

topological content of the surface-topological order phase
charge-conservation and TR symmetries. Topological su-

perselection sectors are topological equivalence classes of particle types. The anti-
particle of a particle in sector a resides a's conjugate sector. A particle has the same
quantum-dimension and 72 value as its anti-particle, but opposite electrical charge
and conjugate topological spin. Other distinct topological particles such as 32, 0T,
etc... can be obtained by combining the above listed objects. The properties of these
composites and anti-particles follows straightforwardly from the information listed
above. Superselection sectors have the same quantum dimension, opposite charge,
and same topological spin compared to their conjugate sectors (anti-particles). Empty
entries in the 7T2 row indicate that there is no gauge invariant meaning to the value
of T2 for that type of particle. In addition, there is the physical electron, c, which
has d = 1, 0C = -1, 'T2 = -1. This could be regarded as part of the vacuum sector G
since it has trivial mutual statistics with all other particles. However, since fusing c to
another particle changes that particle's topological spin factor of -1 it is convenient
to distinguish c from 0.
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Topological
Superselec-
tion Sector 0 / f T" T 2 2

("Particle
Type"):

Conjugate
Sector (anti- 0 33 --- f T-i -1  -2 T - 2 

13-
2
T -2

particle):

Quantum
Dimension 1 1 1 \ F2 1 1 v

(d):

Topological 1 1 -1 eix/ 4  e-i-/ 4  eix/ 2  e-ix/2  _eix/ 4  _e-ixr/ 4

Spin (0):

2ne
Charge (qe): (n E 2 4 2

Z)

Time-Reverse 2 2 3 3
Partner: 0 0 f T T T T+

T' value (if
meaningful):



Table 3.2: Fusion rules for the surface-topological order phase.
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3 x 3 = #2

82 x 33 = -

#" x a = 8n"a

(for any sector a $ 3 and n = 1, 2, 3)

f x f = 1

f X T, =r,

f x Tr = r

,2= 2+ 2
Tv X T+ + T

Tv- X TD = r2 + T2

Tr T, = / + # f

rJ x f = r

T X T = /2

T4 x T2 = /32 x f = C

r = T" X T

TI = r X T2
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Chapter 4

Classification of interacting electronic

topological insulators in three

dimensions

The last few years have seen tremendous progress[18, 19, 20, 21, 221 in our understand-

ing of electronic topological insulators modeled by band theory. Despite this there

is currently very little understanding of the interplay between strong electron inter-

actions and the phenomenon of topological insulation. Can interaction dominated

phases be in a topological insulating state? Are there new kinds of topological insu-

lators that might exist in interacting electron systems that have no non-interacting

counterpart? These questions acquire particular importance in light of the ongoing

experimental search for topological phenomena in strongly correlated materials with

strong spin-orbit coupling.

We focus here on the all-important example of time reversal symmetric insulat-

ing phases of electrons with a conserved global charge (corresponding to a global

U(1) symmetry). Non-interacting insulators with this symmetry in 3D have a well

known distinction25, 18, 19, 201 between the topological and trivial band insulators

(corresponding to a Z2 classification).

We show that with interactions there are 6 other non-trivial topological insulating

states corresponding to a classification by the group Z. This group structure means
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.T-invariant
Topological Representative -ran g gapless
Insulator surface state traprt supercon-

signature dco
ductor

Free fermion . -,=i Single Dirac cone None
TI 1/2 _______

. Z2 spin liquid with N 8
Kramers doublet

paramagnet sinoneXY = 0 Majorana

I (eTmT) vison(m)cones

Topological Z2 spin liquid with _- - 0- N = 8
paramagnet Fermionic spinon(e) " o Majorana

II (efmf) and vison(m) cones

Table 4.1: Brief descriptions of the three fundamental non-trivial topological in-
sulators, with their representative symmetry-preserving surface states, and surface
signatures when either time-reversal or charge conservation is broken on the surface
(with topological orders confined). a2 is the surface electrical Hall conductivity in

units of '. 'x is the surface thermal Hall conductivity and ro = !- T (T is the
temperature). N is the number of gapless Majorana cones protected by time-reversal
symmetry when the surface becomes a superconductor. A combination of these mea-
surements could uniquely determine the TI.

that all these interacting topological insulators can be obtained from 3 'root' states

and taking combinations. One of the 3 root states is the standard topological band

insulator. The other two require interactions. They can be understood as Mott

insulating states of the electrons where the resulting quantum spins have themselves

formed an SPT phase. Such SPT phases of quantum spins were dubbed 'topological

paramagnets' in Ref. [43] and their properties in 3D elucidated. The three root states

and their properties are briefly described in Table. 4.1.

Previous progress in understanding interacting electronic SPT phases is restricted

to one[40, 41, 42, 109] and two(48, 58, 59, 60, 61] space dimensions. A formal abstract

classification for some symmetries (which includes neither charge conservation, nor

spin-1/2 electrons) in 3d has been attempted[56] but leaves many physical questions

unanswered. Our strategy - which sidesteps the difficulties of this prior approach

- is to first constrain the symmetries and statistics of monopole sources of external
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electromagnetic fields. We then incorporate these constraints into a theory of the

surface, and determine the resulting allowed distinct states.

In general it is natural to attempt to construct possible SPT phases of fermion

system by first forming bosons as composites out of the fermions and putting the

bosons in a bosonic SPT state. However not all these boson SPTs remain distinct

states in an electronic system. We determine that the distinct such states (see Sec.

4.5.1) can all be viewed as topological paramagnets as described above.

While such spin-SPT phases can clearly exist, we give very general arguments that

the only other electronic root state is the original topological band insulator.

We also clarify a number of other questions about interacting topological insulators

(see end of the chapter and Sec. 4.6.1, 4.6.2). For instance we explain the fundamental

connection between topological insulation and Kramers structure of the electron.

Our results set the stage for a number of future studies including identification of

the new topological insulators in microscopic models and in real materials. Strongly

correlated materials with strong spin orbit interactions are natural platforms for the

various topological insulator phases we described. We expect that our results, es-

pecially the knowledge of what exotic phases are possible and what experimental

signatures to look for, will inform the many ongoing searches (e.g., in rare earth

insulators, or in iridium oxides) for topological phenomena in such materials.

4.1 Generalities

For any fully gapped insulator in 3D, the effective Lagrangian for an external elec-

tromagnetic field obtained by integrating out all the matter fields will take the form

Leff = CMax + 4 (4.1)

The first term is the usual Maxwell term and the second is the 'theta' term:

9
Co = E -B (4.2)

47r2
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where E and B are the external electric and magnetic fields respectively.

Under time reversal, 0 -+ -0 and in a fermionic system the physics is periodic

under 0 -+ 0 + 2w. Time reversal symmetric insulators thus have 0 = n7r with n

an integer. Trivial time-reversal symmetric insulators have 0 = 0 while free fermion

topological insulators have 0 = 7r[64]. Any new interacting TI that also has 0 = 7r

can be combined with the usual one to produce a TI with 0 = 0. Thus it suffices to

restrict attention to the possibility of new TIs which have 0 = 0.

Consider the symmetry properties of monopole sources of the external magnetic

field. At a non-zero 0, this elementary monopole carries electric charge - so that it is

neutral when 0 = 0. Under time reversal the monopole becomes an anti-monopole as

the magnetic field is odd. Formally if we gauge the global U(1) symmetry to introduce

a dynamical monopole field m it must transform under time reversal as

T-mT = eQmt (4.3)

T-m t  = e-iam (4.4)

However[1] by combining with a gauge transformation we can set the phase a = 0.

Physically this is because the time reversed partner of a monopole lives in a different

topological sector with opposite magnetic charge and hence is not simply a Kramers

partner. To see this explicitly we observe that the T operator can be combined with

a (magnetic) gauge transformation to define a new time reversal operator:

T = U(a)T (4.5)

where U(a) = e-iaq where q., is the total magnetic charge. Since qm is odd under

time-reversal, we have U(a)T = TU(a), hence the order of product in Eq. (4.5) does

not matter. When acting on physical gauge invariant states 'f has the same effect as

T but the monopole fields m, mt transform with a = 0.

This fixes the symmetry properties of the bulk monopole. There are still in prin-

ciple two distinct choices corresponding to the statistics of the monopole: it may be
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either bosonic or fermionic. We will consider them in turn below. Bosonic monopoles

will be shown to allow for the topological paramagnets mentioned above and nothing

else. Fermionic monopoles will be shown to not occur in electronic SPT phases.

4.2 Topological insulators at 0 = 0 - bosonic monopoles

Consider the surface of any insulator with 0 = 0 and a bosonic monopole. This is con-

veniently incorporated into an effective theory of the surface formulated in terms of

degrees of freedom natural when the surface is superconducting, i.e, it spontaneously

breaks the global U(1) but not time reversal symmetry. The suitable degrees of free-

dom then are ' vortices and (neutralized) Bogoliubov quasiparticles[80 (spinons)2e

which have mutual semion interactions. In general we can also allow for co-existing

topological order, i.e. other fractionalized quasi-particles, in the surface supercon-

ductor.' This gives a dual description of 2D electronic systems that is particularly

convenient to studying not just the superconducting phase but also some topologically

ordered insulating phases.

Imagine tunneling a monopole from the vacuum to the system bulk. Since the

monopole is trivial in both regions, the tunneling event - which leaves a " vortexe

on the surface - also carries no non-trivial quantum number. Hence the surface dual

effective field theory has a bosonic -- vortex that carries no non-trivial quantume

number. We can therefore proliferate (condense) the v-vortex on the surface which

disorders the superconductor and yields an insulator with the full symmetry U(1) x T

unbroken. However as is well known from dual vortex descriptions[104, 80] of spin-

charge separation in 2D, the resulting state has intrinsic topological order.

In this surface topologically-ordered symmetry-preserving insulator, a quasi-particle

of charge-q sees the h-vortex as a 27rq/e flux. Hence, the L-vortex condensate con-

fines all particles with fractional charge and quantizes the charge to q = ne for all

the remaining particles in the theory (for a more detailed discussion see Sec. 4.3).

'Such a phase with coexistence of topological order and superconductivity was denoted SC* in
Ref. [801.
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However, we can always remove integer charge from a particle without changing its

topological sector by binding physical electrons. Hence the particle content of the

surface topological order is {1, e, ... } x {1, c}, where only the physical electron c in

the theory is charged, and all the non-trivial fractional quasi-particles in {1, C, ... } are

neutral. Since time-reversal operation preserves the U(1) charge, its action has to be

closed within the neutral sector {1, F, ... }. We can therefore describe the surface topo-

logical order as a purely charge-neutral quantum spin liquid with topological order

{1, E, ... }, supplemented by the presence of a trivial electron band insulator, {1, c}.

In particular, any gauge-invariant local operator made out of the topological theory

must be neutral (up to binding electrons), but in an electron system a local neutral

object has to be bosonic. Hence the theory should be viewed as emerging purely

from a neutral boson system. This implies that the bulk SPT order should also be

attributed to the neutral boson (spin) sector, i.e it should be a SPT of spins in a

Mott insulating phase of the electrons (a topological paramagnet).

The SPT states of neutral bosons with time-reversal symmetry are classified[43,

1, 441 by Z', with two fundamental root non-trivial phases. These can both be

understood as Mott insulators in topological paramagnet phases. Adding to this the

usual 0 = 7r TI captured by band theory we have 3 root states corresponding to a Z2

classification. To establish that there are no other states we need to still consider the

other possibility left open for the bulk response: a fermionic monopole.

4.3 Vortex condensate and charge quantization

Here we provide more details of the argument establishing that electronic topological

insulators with 0 = 0 and a bosonic monopole can be reduced to bosonic topological

paramagnets. It is convenient to start with a symmetry preserving surface termination

that has intrinsic topological order. Such a surface state is characterized by a set of

anyons {1, c, X, X, Y1 } where I is a discrete label, and their corresponding braiding

and fusion rules. Each anyon will be characterized by a sharply quantized charge

q under the global U(1) symmetry. Let us denote this topological information and
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symmetry assignments as the initial surface anyon theory: Tiitial.

A useful theoretical device[69] is to consider creating a monopole source of an ex-

ternal (non-dynamical) magnetic field, and dragging that monopole through the topo-

logically ordered surface at position R. Such a monopole insertion event changes the

external magnetic flux, <DB, piercing the surface by ' (in units where h = c = e = 1).

When the monopole sits close to the under-side of the surface, this extra flux, 6ODB,

is concentrated in the vicinity of R. Suppose we take a surface excitation, Y, with

fractional charge qy, and drag it around a sufficiently large loop that encloses (nearly

all) the additional magnetic-flux from the monopole insertion. This process accumu-

lates Berry phase e2"iqy # 1 because of Y's fractional charge. However, the total

monopole insertion event is a local physical process, and since there are no gapless

excitations in the system it cannot have non-trivial action on distant events (clearly if

Y is arbitrarily far from the R, it should not be able to discern whether the monopole

is infinitesimally above or infinitesimally below the surface). Therefore, if Tiitial con-

tains quasi-particles Y with fractional charge, qg, the monopole insertion event must

also create a quasi-particle of type X in the surface theory which has mutual statis-

tics 9 xy, = e-2.iqj. This mutual statistics then exactly compensates the non-trivial

Berry phase from encircling the additional flux from the monopole insertion, and en-

sures that the overall monopole insertion event does not have unphysical non-local

consequences. Furthermore, since the bulk monopole is chargeless and bosonic, X, is

a neutral boson.

We can similarly consider the time-reversed version of this process by inserting

an anti-monopole from the vacuum into the bulk. Let us denote by X the particle

nucleated at the surface. Clearly X and X are exchanged by T, indicating that, like

X, X is a charge-neutral boson. The mutual statistics of an anyon Y with X is then

e2 i'. Further as the monopole and antimonopole can annihilate each other to give

back the ground state X must be the antiparticle of X.

These mutual statistics indicate that driving a phase transition in which X, X

condense will confine all fractionally charged particles. However, in general it is not

guaranteed that the condensation of X, X preserves T. To avoid this issue, we take a
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detour through an intermediate superconducting phase in which descendants of X, X

can be safely condensed while preserving T. This results in a topologically ordered

state, Tfinal, which has the desired structure of a neutral boson theory.

Our strategy is to first enter a superconducting phase obtained by condensing the

physical Cooper pair, b = ctc4 , from Tinitiai and then to exit it through a different phase

transition to reach the final topological order Tfinal. In the theory, Tiitial, the Cooper

pair is local with respect to all nontrivial anyons. Thus its condensation preserves

the topological order Tinitiai. The resulting topologically ordered superconductor is

conventionally denoted SC* (see Ref. [80]) to distinguish it from the ordinary non-

fractionalized BCS superconductor, SC.

Let us denote the Cooper pair field by b = Vi3-es'. A long-wavelength effective

Lagrangian density for the theory can be written:

,C[b, XX,.]= (Pb 1#)2+ i[X,,Y ,...

+ Lmixed b, YI,.. . (4.6)

where Cnitia1 [X, X, Y,...] is the Lagrangian density encoding the topological content

of the topologically ordered phase, and EmIxe = ({ H (NiqI/2)NI encodes all

charge-conserving interaction terms between b and gauge-invariant combinations of

operators in the topologically ordered theory. When b condenses to obtain a super-

conducting phase, apart from the original topological quasiparticles, there will also be

quantized vortex excitations where the phase q of b winds by 2nrr with n an integer.

Following the terminology of Ref. 180] we will call these vortons (to distinguish from

the vortices of conventional superconductors without topological order).

We wish to disorder the superconducting order by condensing a suitable vortex to

obtain the desired insulating surface theory Tfinal. This may be done in a dual effective

field theory in terms of the vorton degrees of freedom. To formulate such a dual field-

theory, it is very convenient to introduce "neutralized" fields: Y = qi4'/ 2 eYI, obtained
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by binding a fraction of the Cooper pair to Y. In terms of these neutralized variables:

= (0,4)2 + [X, X, Y] (4.7)

The advantage of this choice of variables is now manifest, as the Cooper-pair phase

# is no longer directly coupled to the neutralized fields Y 1 . The fY however now

acquire a phase erqj on encircling an elementary vorton. Following the standard

duality transformation, we can re-write the boson current j' = pb&oo as the flux of a

gauge-field a : j' = Oa,. In the dual theory, the vorton field, denoted by v, is a

bosonic field that couples minimally to this gauge field, and in addition has statistical

interactions with the Y particles:

LCdua1 8 (E Pb\~~~a) 2  +~ (1, - a - ia,) V 12

+ V(v1 2) + .C[X, X, 1] + a K1j&,a
47r

+j 'a~j, (4.8)

where the gauge fields, a1 , integer vectors ( and multi-component Chern-Simons

term with K-matrix Kuj capture the mutual statistics between the vortons and the

fields Y. Here, j' is the current of the Y particles, and V(Iv 2)) is a potential for

the vorton field.

Now consider the particles v2 X, (Vt)2 X. These carry vorticity 2 and are inter-

changed under time reversal. These are the relics of a monopole tunneling event in

this superconducting state discussed in the main text. Due to the coupling of v to

the dual gauge field, ar, we may always choose a gauge such that time reversal is

implemented as:

T-lv 2XT = (vt) 2 X (4.9)

T-1(vt) 2 XT = v2X (4.10)

We may now condense v2X, (Vt) 2 X and preserve time reversal symmetry. The con-
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densation also destroys the superconducting order and produces the desired new topo-

logical order Tfinal. Note that the neutralized particles Y1 have no non-trivial mutual

statistics with v 2X as the phase around the v2 exactly cancels the phase around X.

Hence they survive in Tfinal as quasiparticles. The vortex condensate however quan-

tizes electric charge to be an integer. In particular the charge q bosons obtained by

fractionalizing the Cooper pair bq = e 2 are confined unless q is an integer. In effect

the original electrically charged Y particles are confined to the fractional bosons to

produce the neutral k, particles. The vortons v also survive as particles in final but

they are electrically neutral.

The detour through the superconductor essentially implements a 'charge-anyon'

separation of the original topological theory Tinitial. This is completely analogous to

the conceptual utility of superconducting degrees of freedom in implementing 'spin-

charge' separation in 2d insulators[801. Though we will not elaborate this here an

alternately route from Tiitial to Tfinal is through a parton construction where we

fractionalize the charged anyons into a charged boson and a neutral anyon.

This proves that Tfinal only has integer charged quasi-particles. Without loss of

generality, we may relabel the quasi-particle content of Tfinal by binding an appro-

priate number of electrons to each quasi-particle to remove the remaining integer

charge. The resulting theory has quasi-particle content 1, v, Y1 } x {1, c}, that can

be decomposed into the direct product of a neutral boson sector {1, v, k,} trivially

accompanied by a gapped electron. This completes the desired proof that the 0 = 0

classification reduces to the classification of neutral bosonic phases.

4.4 Topological insulators at 0 = 0 - fermionic monopoles?

The possibility that the monopole may be fermionic in a system which also has

fermionic charges is naively consistent with time-reversal symmetry. However we can

show that such a state cannot occur in any electronic 3D SPT phase. Crucial to

our argument is the requirement of 'edgability' defined in Ref. [1]. Any theory that

can occur in strictly d-dimensions (as opposed to the surface of an SPT in (d + 1)
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dimensions) must admit a physical edge to the vacuum. We show that electronic

systems with a fermionic monopole are not edgable.

To illustrate the difficulty consider a Bose-Fermi mixture, with both the boson

b and the electron c carrying charge-1. Now put the electron into a trivial band

insulator, and the boson into a bosonic SPT state. Then the charge-neutral external

monopole source becomes a fermion[l, 691. We may attempt to get rid of the bosons

in the bulk by taking their charge gap to infinity (i.e projecting them out of the

Hilbert space). However they will make their presence felt at the boundary and the

theory is not edgable as a purely electronic system. Indeed we show in Sec. 4.4.1 by

a direct and general argument that fermionic statistics of the monopole in an SPT

phase implies the existence of physical charge-1 bosons at the boundary. This is not

possible in a purely electronic system.

4.4.1 Impossibility of a Fermionic Monopole

In this section we provide a general argument against the possibility of fermionic

monopoles in a purely electronic SPT insulator. We will show that fermionic monopoles

in the bulk necessarily leads to inconsistencies in the boundary theory, as long as the

charge U(1) symmetry is preserved. When the charge U(1) is gauged, apart from

monopoles we may also consider in the bulk dyons parametrized by (qm, %e) where q,

is the electric charge and qm the magnetic charge. If the neutral monopole (1, 0) is

fermionic in a purely electronic system (where the (0, 1) particle is identified with the

electron) all dyons with qm = 1 are also fermions. If time reversal is broken in the

bulk the 0 value may change from 0 leading to these dyons acquiring non-zero charge.

However their statistics stays fermionic. It follows that if any putative time rever-

sal symmetric electronic topological insulator phase with a fermionic monopole exists

then it will stay a non-trivial topological insulator even in the absence of time reversal

symmetry. Thus it suffices to show that fermionic monopoles are forbidden in the

absence of time reversal symmetry to rule out such putative topological insulators.

We will show that SPT states of electrons with a global U(1) symmetry admit

unphysical boundary excitations if the monopole is fermionic. Suppose we could
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construct a state with fermionic monopoles. By the arguments of the previous section,

we may describe this phase in terms of the surface topological order with particle

content:

{1, c, f,, Y, Y2 ,---} (4.11)

Here, f is the surface excitation corresponding to the bulk monopole, and hence

is a neutral fermion having mutual statistics e- 2
-riqj/e, with particles Y of charge q.

(Even if time reversal is not present we imagine tuning to a point where the monopole

is neutral).

Following an analogous line of reasoning in Sec. 4.3, we can now pair condense

the remnant of the fermionic monopole (ff) $ 0, which immediately confines all the

fractionally charged particles Y unless qi = ne/2 for some integer n, due to their

mutual statistics with f. By attaching enough physical electrons (c), we can always

take the charge of the particles Y to be either 0 or e/2. The resulting theory can

thus be written as:

{1, c, f, C, N} (4.12)

where C, have charge e/2, and N, are neutral quasi-particles. Note that f is local

with respect to N, and is a mutual semion with CI.

The neutral sector of the theory {1, f, N1 } is closed under fusion and braiding

due to charge conservation. Moreover they form a consistent topological field theory.

To see this, let us momentarily dispense also with charge-conservation symmetry

(for example by explicitly breaking it), and then condense (cf) = 0, which confines

all 1/2-charged particles C, while keeping all the neutral particles N unaffected.

Furthermore, as f is local with respect to all the N1 's, the theory {1, f, N} can be

viewed as a topological field theory of a system with physical fermion f in the absence

of any symmetry. Such a theory can then be confined to {1, f} without obstruction.

Returning to the original theory in Eqn 4.12 this implies that we may get rid of
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the neutral particles N, and be left with

{l, C, f,7 Ci}, (4.13)

where {Ci} is a subset of the original charge-e/2 particles {Cr}.

Without loss of generality, we can restrict our attention to a single species of

fractional charge particle C1, and its anti-particle. The only possible fusion outcomes

consistent with charge conservation are: C1 x C E {c, cf}. If two copies of C1 fuse

to c then cOC1 is the anti-particle of C1. However, this is not possible, since the

topological spin (self-statistics) of cXC1 and C1 differs by -1, whereas anti-particles

must have the same topological spin. A similar argument rules out the possibility

that two copies of C1 fuses to cf.

This line of reasoning shows that the topological order of Eq. 4.13 is internally

inconsistent, unless there are no Ci particles, i.e. unless the topological order contains

only the following particles:

{1, c, f}. (4.14)

Since f has trivial mutual statistics with c, it must be a physical object that is

microscopically present in the system (i.e. is not an emergent particle). However,

there is no such neutral fermion degree of freedom in an electronic system. It follows

that in a purely electronic system the monopole cannot be fermionic in an SPT phase

with global U(1) symmetry.

We note that the Bose-Fermi example constructed at the beginning of Sec. 4.4 has

a neutral fermion excitation ( a bound state of the boson and fermion) and hence is

allowed to have a fermionic monopole. Let us examine this more closely. We put the

electron into a trivial band insulator, and the boson into a boson topological insulator.

Then the charge-neutral external monopole source becomes a fermion[l, 69J. We

initially consider such a system in a geometry with no boundaries. We then tune the

boson charge gap to infinity, so that the charged bosons disappear from the spectrum,

and we are left with a purely electronic theory. But since the fermionic monopole
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does not carry any boson charge, it survives as the only charge-neutral monopole.

Now the bulk theory is exactly what we were looking for, but we need to examine its

boundary and see if it is consistent with a time-reversal invariant electronic system.

As the electrons are in a trivial insulator they do not contribute anything special on

the boundary, so we only have to worry about surface states of the eCmC boson SPT.

We first consider a symmetric surface state with topological order. It is known[43]

that one of the possible surface states of the bosonic TI is described by a Z2 gauge

theory with both e and m carrying charge-1/2 and the E fermion being charge-neutral

(the state denoted eCmC in Ref. [11). By setting the boson charge-gap to infinity, the

e and m particles disappear from the spectrum, but the neutral f fermion survives as a

gauge-invariant local object, which is not allowed in a system purely made of charged

fermions. Another way to see the inconsistency of the surface is to look at the surface

state without topological order in which time-reversal symmetry is broken. The boson

topological insulator leads to a surface electrical quantum hall conductance o-., = 1

and thermal hall conductance r, = 0.[431 The difference of o-,y, ii between the two

time-reversal broken states should correspond to an electronic state in two dimensions

without topological order. Here we have Ao-, = 2 and AKy = 0, which cannot be

realized from a purely electronic system without topological order. Indeed adding

integer quantum Hall states of electrons increases o-Y, X, by the same amount. It is

possible to add a neutral boson integer quantum Hall state without topological order

but that requires uxy=O, KXY = 0(mod8). Hence the boundary as a purely electronic

theory is not consistent with time-reversal symmetry, and the bulk theory cannot be

realized in strict three dimensions, although it may be realizable at the surface of a

four dimensional system. We also note that if we allow topological (or other exotic

long range entanglement) in the bulk then the monopole may be fermionic.
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4.5 Physical characterization of interacting topolog-

ical insulators

We now describe phenomena which in principle can be used to completely experi-

mentally identify the various TIs. We consider breaking symmetry at the surface

to obtain states with no intrinsic topological order. The results are summarized in

Table.4.1. A different, less practical, but conceptually powerful characterization is in

terms of a gapped topologically ordered surface state which we describe in Sec. 4.5.1.

First consider surface states breaking time-reversal symmetry (and no intrinsic

topological order). Of the 8 insulating phases we obtained, four have electromagnetic

response 0 = 7r (of which one is the topological band insulator) and four have 6 = 0

(of which one is the trivial insulator). The 0 term in the response means that such

a surface state will have quantized electrical Hall conductivity v' with v = 0 + n,

where n can be any integer signifying conventional integer quantum hall effect on

the surface. A further distinction is obtained by considering the thermal Hall effect

rV in this surface state. In general in a quantum Hall state Kz, = vQ M T where

kB, T are Boltzmann's constant and the temperature respectively. The number vq is

a universal property of the quantum Hall state.

Two of the 6 = 7r insulators have vQ = v = 1/2 + n (including the topological

band insulator) while the other two have vQ = 4. Similarly two of the 9 = 0

insulators (including the trivial one) have vQ = v = n while the other two have

vQ = v 4. Thus a combined measurement of electrical and thermal Hall transport

when T is broken at the surface can provide a very useful practical (albeit partial)

characterization of these distinct topological insulators.

Next we consider surface superconducting states (again without topological order)

obtained by depositing an s-wave superconductor on top. It was noticed in Ref. [110]

that the surface of the topological paramagnets I and II become identical to that of a

topological superconductor (see also Sec. 4.5.2 for a simpler derivation). The corre-

2A note for experts: vQ - v is determined only up to 8, so we have vQ - v = 0(mod8) for half of
the insulators and vQ - v = 4(mod8) for the other half.
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sponding free fermion superconductor has N = 8(mod16) gapless Majorana cones at

the surface protected by time-reversal symmetry. Thus inducing superconductivity

on the surface of either Topological Paramagnet I or II leads to 8 gapless Majorana

cones which should be observable through photoemission measurements. Taken to-

gether with the T-breaking surface transport we have a unique fingerprint for each of

the 8 TIs.

4.5.1 Topologically ordered surface states

A powerful and complete characterization of the different three dimensional inter-

acting topological insulators is in terms of a gapped symmetry preserving surface

with intrinsic topological order. The physical symmetries are realized in this sur-

face topological order in a manner which cannot be realized in strict two dimensions.

The surface topological order of the topological paramagnets was studied in Refs.

[43, 1, 44]. The simplest such surface states have Z 2 topological order, with two par-

ticles e and m having a mutual 7r-statistics. The Topological Paramagnet I supports

a surface theory in which both e and m particles are Kramers bosons (denoted as

eTmT), while Topological Paramagnet II has a surface in which both e and m are

non-Kramers fermions (efmf). The third state, being a composite of the previous

two, has e and m both being Kramers fermions (efTmfT).

The topological band insulator can also be characterized in terms of its surface

topological order. In contrast to the topological paramagnets the surface topologi-

cal order in this case is non-abelian and such states have recently been studied in

Ref. [2, 53, 54, 55]. The resulting state are variants of the familiar Moore-Read state

describing the v = 5/2 quantum hall system, modified to accommodate time-reversal

symmetry. In Table 4.2 we list the representative surface topological orders of the

three root states described in the main text.

In hindsight, in interacting electron systems the descendants of neutral boson SPT

states are naturally expected to arise. However, one could also have naively included

the descendants of boson SPT states made out of Cooper pairs (charge-2 objects).

The non-trivial boson SPT made out of physical bosons with charge q = 2 supports
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.i Representative

Insulator surface topological
order

Free fermion TI Variants of Moore-Read
state

Topological Z2 gauge theory with
paramagnet I Kramers doublet e and

(eTmT) m, E = em is singlet

Topological Z2 gauge theory with
paramagnet II Fermionic e and m,

(efmf) E = em is also Fermionic

Table 4.2: Brief descriptions of the three fundamental non-trivial topological insula-
tors, with their representative surface topological orders.

a surface theory[43, 1, 69] in which both e and m are non-Kramers bosons carrying

charge q/2 = 1 (denoted as eCmC). However, since we have physical Kramers

fermions with charge-1 in the system (the electrons), we can bind them with the e

and m particles. This converts them to neutral Kramers fermions, which becomes

exactly one of the SPT surface states (efTmfT) of neutral bosons. Hence the SPT

state made out of charge-2 bosons does not add any non-trivial fermion topological

insulator.

Apart from its conceptual value the study of the surface topological order also pro-

vides a very useful theoretical tool to access the topological paramagnets. It allowed

Ref. [11 to construct the root states of the two time reversal symmetric topologi-

cal paramagnets (as well as other bosonic SPT phases) in a system of coupled layers

where each layer forms a state that is allowed in strictly 2d systems. Ref. [44 used the

surface topological order efmf (Topological Paramagnet II) to construct an exactly

solvable model. While the constructions of Refs. [43, 1, 44] establish the existence of

Topological Paramagnet II it is absent in the cohomology classification of Ref. [16, 17].

Understanding how to generalize the cohomology classification to include this state

is a challenge for the future.
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4.5.2 Equivalence between N = 8 Majorana cones and the

eTmT topological order

In this section, we provide a physical construction of the eTmT topological order

from the N = 8 Majorana-cone surface state of a time-reversal invariant topological

superconductor phase. We start from the free theory

8

Lfree S Xla(PxUx + pyczT)a,bXi,b (4.15)
i=1

where i C {1, .. ., 4} and a E {t, 4}, and with time reversal acting on the real (Majo-

rana) fermions as

TX1T - 1 = ZU b (4.16)

We can group the theory into four complex (Dirac) fermions by writing

7pia = X2i,a + iX2i-1,a, (4.17)

the Lagrangian then simply describes four gapless Dirac cones

4

L fLee =1D34 ' +.pyT')qh,(.

in which time-reversal acts as

Tbi- = iovo. (4.19)

It is easy to see that the theory is protected from gap-opening at the free (quadratic)

level. We can then ask, could a non-perturbative gap be opened when interaction is

introduced? The way to tackle this problem is to first introduce a symmetry-breaking

mass term into the fermion theory, viewing the mass term as an fluctuating order pa-

rameter, and ask if one can recover the symmetry by disordering the phase of the

mass field.

For this purpose it is convenient to first introduce an auxiliary global U(1) sym-
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metry

Ue@U;" = eioo (4.20)

as a microscopic symmetry in the model (rather than a subgroup of the emergent

SO(8) flavor symmetry). This auxiliary symmetry will be removed at the end of the

argument, so the final result does not depend on the existence of this U(1) symmetry.

The total symmetry is now enlarged to U(1) x T, with UOT = TUO (i.e. the

conserved quantity associated with the auxiliary U(1) symmetry changes sign under

T like a component of spin rather than an electrical charge). One can now write

down a pairing-gap term into the theory

4

lgap = iA >j 'iob2 + h.c. (4.21)
i'=1

which breaks both U(1) and T (A -+ -A* under time-reversal because T2 = -1 on

physical fermions). The task for us now is then to disorder the field A and restore

time-reversal symmetry. The virtue of the auxiliary U(1) symmetry shows up here:

the field A is XY-like, so to disorder it we can follow the familiar and well-understood

route of proliferating vortices of the order parameter

It is important here to notice that although the gap in Eq. (6.9) breaks both U(1)

and T, it does preserve a time-reversal-like subgroup generated by f-= TU,/ 2 . Since

we want to restore T by disordering A (which surely will restore U(1)), we must do it

while preserving t. This "modified time-reversal" looks almost like the original one,

but there is a crucial difference: 'f = 1 when acting on the fermion field zp.

Now we are ready to disorder the field A. At first glance it seems sufficient

just to proliferate the fundamental vortex (hc/2e-vortex) and obtain a trivial gapped

insulator. However, as we will see below, 'P = -1 on these fundamental vortices,

hence proliferating them could not restore time-reversal symmetry.

The vortex here is subtle because of the fermion zero-modes associated with it.

It is well-known that a superconducting Dirac cone gives a Majorana zero-mode in

the vortex core[102]. So the four Dirac cones in total gives two complex fermion
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zero-modes ftl2. We then define different vortex operators as

Unut|GS) = (f') f ) IFN), (4.22)

where IFN) denotes the state with all the negative-energy levels filled in a vortex

background. The U(1) being spin-like under T (hence 'f also) means that a vortex

configuration is time-reversal invariant. The only non-trivial action of t is thus on

the zero-modes:

ifi,21 = f, 2, (4.23)

and by choosing a proper phase definition:

IFN) = ff FN). (4.24)

It then follows straightforwardly that {voo, Vil} and {v01 , vio} form two "Kramers"

pairs under T. Moreover, since the two pairs carry opposite fermion parity, they

actually see each other as mutual semions.

We thus conclude that to preserve the symmetry, the "minimal" construction

is to proliferate double vortices. The resulting insulating state has Z2 topological

order {1, e, M, } with the e being the remnant of {voo, vl}, m being the remnant of

{ vol, v}io, and c is the neutralized fermion 4I.

Now the full U(1) x T is restored, we can ask how are they implemented on

{1, e, m, E}. Obviously these particles are charge-neutral, so the question is then

about the implementation of T alone. However, since the particles are neutral the

extra auxiliary U(1) rotation in ! is irrelevant and they transform identically under

If and T. Hence we have T27 = -- 1 on e and m, and T2 = 2 = 1 on c, which is

exactly the topological order eTmT. The charged physical fermion V) is now trivially

gapped and plays no role in the topological theory, one can thus introduce explicit

pairing to break the auxiliary U(1) symmetry. Since topological order stems from

the charge-neutral sector, pair-condensation of 4 does not alter the topological order,

and the resulting state is just the eTmT state with only T symmetry.
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4.6 Other symmetries, Kramers fermions, and 0 = r

topological insulators

As a by-product of our considerations we are able to address a number of other

fundamental questions about interacting topological insulators. For the free fermion

systems the Kramers structure is what allows a topological insulator with 9 = 7r.

What precise role, beyond free fermion band theory, does the Kramers structure of

the electron play in enabling = r ? We show non-perturbatively that any gapped

insulator with a 9 = 7r response and no intrinsic topological order necessarily has

charge carriers that are Kramers doublet fermions. We also use a similar insight

to show the necessity of magnetic ordering when the exotic bulk excitations of the

topological Mott insulator phase of Ref. [651 are confined. Finally we show that

time reversal breaking electronic systems with global charge U(1) symmetry have

no interacting topological insulator phase in three dimensions. These results are

described in Sec. 4.6.1 and Sec. 4.6.2.

4.6.1 Spinless fermions and other symmetries

We first provide the proof that a 9 = 7r electromagnetic response in a time reversal

invariant insulator implies that the charge carriers are Kramers fermions.

When the global U(1) symmetry is gauged, = r implies that the monopoles of

the resulting U(1) gauge field are 'dyons' (in the Witten sense) with electric charge

shifted from integer by 1. Label particles by (q., %e), where qm is the magnetic

charge (monopole strength) and q, is the electric charge. A strength-1 monopole

(dyon) carries charge-1/2, labeled as (1, 1/2), which under time-reversal transforms

to the (- 1, 1/2) dyon, since electric charge is even while magnetic charge is odd under

time-reversal.

Introduce fields dqm ,rl, for dyons with magnetic charge qm and electric charge q,.
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Under time reversal these transform as

T-ld(1,i/ 2)T = ead(- 1,1/ 2) (4.25)

-T-d(-1,1/2)'T = e'id(1,1/2)

where d(qm,qc) denotes the corresponding dyon operator. We then have for T2

T-2d(1,1/ 2)T2 eg-3)d(j,1/2) (4.26)

-r-2 d(-1,1/2)T2 e'( -)d(-1,1/2)

The exact value of the phase factor e'( -6) is not meaningful since it is not gauge-

invariant.

Now let's consider the bound state of d(1,1/ 2 ) and d(- 1 ,1/ 2 ), it has qm = 0 and

q, = 1, which is nothing but the fundamental charge of the system. These two dyons

see each other as an effective monopole. To see this view the (-1, 1/2) dyon as the

bound state of the electric charge (0, 1) and (-1, -1/2) which is the anti-particle of

(1, 1/2). The Berry phase seen by the (-1, 1/2) dyon is the same as that seen by

a charge from a monopole. Hence their bound state will carry half-integer orbital

angular momentum and fermionic statistics The angular momentum of the gauge

field[68] in this bound state is given by

L - q,'q'm,2 - =e,2qm,1 - 1/2. (4.27)
2

The half integer angular momentum goes hand in hand with fermi statistics of the

bound state. To determine whether or not the fermion is a Kramers doublet, we need

to consider contributions from the internal and orbital degrees of freedom separately.

The internal contribution follows readily from Eq. (4.26), which contributes to T 2 by

ei-~alei(a-) - 1. The orbital part contributes to '2 by -1 due to the half-integer

angular momentum. More precisely, since time-reversal exchanges the two dyons, it is

generated by a wr-rotation along a great circle, hence T2 is generated by a 27r-rotation

along a great circle, which picks up a Berry phase of 7r due to the mutual-monopole
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structure of the two dyons. Therefore we conclude that the fundamental charge must

be a Kramers fermion, and there's no fermion SPT with 6 = 7r made out of non-

Kramers fermions. We emphasize that this argument is non-perturbative, and does

not rely on results from free fermion theories. 3

In the absence of the 6 = 7r TI for non-Kramers fermions (T2 = 1) what are the

possible TIs? The arguments advanced earlier go through as before and we again

inherit the boson SPTs with symmetry Z'. However, there is a subtle phenomenon

that is unique to the non-Kramers fermions: the eTmT topological paramagnet actu-

ally becomes trivial when non-Kramers fermions (even though charged) are present in

the system. The argument is simple: one can combine the non-Kramers fermion with

the e and e particle in the eTmT topological order. This is essentially a relabeling of

the same phase. The resulting topological order is eCmT, which means the e particle

has charge-1 but is non-Kramers, while the m particle is Kramers but charge-neutral.

But as discussed in Chapter 2, this topological order is realizable even in strictly two

dimensional systems. Hence it is anomaly-free. One way to realize this state is to

start from the eCTeCT state, which is anomaly-free since the m particle is trivial,

and then put the E particle into a 2D topological insulating band. The resulting state

is nothing but the eCmT.

Therefore for non-Kramers fermion, the classification should be Z2 , where the only

nontrivial state is the efmf topological paramagnet.

Finally we note that the methods of this chapter imply the absence of any topo-

logical insulator states of electrons when time reversal is absent (i.e when only charge

U(1) is present). Progress toward the classification of interacting time reversal sym-

metric electronic topological superconductors (the charge U(1) is absent) is made in

Ref. [110] which proposes a Z16 classification.

3After this work was completed we learnt of Ref. [531 which also pointed out the relation between
Kramers fermion and 0 = 7r TI.
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T T

Figure 4-1: For 0 = ir, a monopole and anti-monopole become charge-! dyons. Acting

twice with 7F is equivalent to rotating the pair by 27r, which gives Berry-phase -1

due to the half-angular momentum of the EM field of the dyon-pair.

4.6.2 Implications for topological Mott insulators

Let us now briefly consider the question of confined phases obtained by condens-

ing the dyons of the topological Mott insulator phase[65] whose low energy theory

is precisely the gauged TI. Since the (1, 1/2) and (-1, 1/2) dyons see each other as

effective monopoles, they cannot condense simultaneously. Condensing one of them

should confine the other, just as condensing monopoles will confine electric charges.

Since time-reversal relates these two dyons, this implies that the dyons cannot con-

dense (hence confine the gauge theory) without breaking time-reversal symmetry.

That the condensation of either of the (1, 1/2) dyons breaks T-reversal was previ-

ously pointed[111}. Here we see that it is not possible to simultaneously condense

both dyons. Thus the confined phase obtained from the topological Mott insulator

necessarily breaks T-reversal and hence is an antiferromagnet.
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Chapter 5

Interacting fermionic topological

insulators/superconductors in three

dimensions

5.1 Introduction

In contrast to bosonic systems, our understanding of fermionic SPT phases beyond

band theory is rather limited, particularly in the physically important case of three

space dimensions. In dimension d = 2 however a simpler Chern-Simons approach

provides many definitive results for fermionic SPT states[48]. The effect of strong

interaction was also examined for certain kinds of 2D fermionic SPT states described

by band theory[58, 59, 60, 61], where it was found that some of the topological bands

became trivial in the presence of strong interactions. These approaches, however, are

difficult to generalize to higher dimensions.

In Chapter 4 (Ref. [3]) we classified and described the physical properties of such

interacting three dimensional electronic topological insulators in the physically im-

portant situation where both charge conservation and time reversal symmetries are

present. The Z2 classification of such insulators within band theory was shown to

be modified to a Z' classification in interacting systems, resulting in a total of 8
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distinct phases. These are generated by 3 'root' states of which one is the topo-

logical band insulator and the other two are Mott insulators where the spins form

a spin-SPT phase (various models of such "topological paramagnets" were discussed

in Ref. 16, 17, 1, 44]). The physics-based methods used in Ref. [3] enabled us to

obtain a very clear picture of the physical properties of the various states and deter-

mine their experimental fingerprints. It was also shown there that insulators without

time-reversal symmetry (U(1) only) have no non-trivial SPT phase.

In this chapter we generalize the ideas of Ref. [31 to discuss 3d electronic topological

insulators/superconductors with many other symmetries. Free fermion topological

phases with various symmetries fall into one of 10 distinct classes. This is known as

the 10-fold way[21, 22]. With interactions there is no guarantee that systems with

two different symmetries that fall in the same class in the 10-fold way still have the

same possible SPT phases. Therefore it is important to specify the symmetry group

directly. For symmetry groups represented in each of the famous 10-fold way we are

able to ascertain the stability of the free fermion classification to interactions. If the

symmetry group has a normal U(1) subgroup we obtain a complete classification of

the interacting electronic SPT states. The results are summarized in Table. 5.1.

For time reversal invariant superconductors in three dimensions (class DIII) a

recent paper[1101 showed that the Z classification of band theory reduces to aZ1

classification with interactions. For this symmetry we provide a simpler derivation of

the same result. For other symmetry classes our results have not been described in

the literature as far as we know.

5.2 Generalities

It is useful to first describe a few general ideas that will form the basis of the physical

arguments used to establish our results.
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Reduction of Distinct Complete
Symmetry class free fermion boson SPT classifica-

states tion

U(1) only (A) 0 0 0

U(1) , ZT with 2 7
T 2 = -1 (All) Z2 - Z2 2 2

U(1) x ZT with 7Z
T2 = 1 (AI) 0_Z2 Z2

U(1) x ZT (AIII) Z-+ Z8 Z2 Z8 X Z2

U( 2 x( X ZC) Z2 --+ Z2 Z4 z 5
(CII) 2 2

(U(1) X ZT) x SU(2) 0 Z4 V_

Z with 2 =-1
(D III) Z _ _Z 16 0 Z 16(?)

SU(2) x ZT (CI) Z -+Z4  Z2  7 4 x7Z2 (?)

Table 5.1: Summary of results on classifications of electronic SPT states in three
dimensions. The second column gives free fermion states that remain nontrivial af-

ter introducing interactions. The third column gives SPT states that are absent in

the free fermion picture, but are equivalent to those emerged from bosonic objects
such as electron spins and cooper pairs. For symmetries containing a normal U(1)
subgroup, we can find the complete classification. In all such examples the complete

classifications are simple products of those descending from free fermions and those
obtained from bosons. For symmetry class CI, we give suggestive arguments but not
a proof that the classification in the last column is complete.

5.2.1 Surface terminations

A crucial property of an SPT phase is the presence of non-trivial surface states pro-

tected by the global symmetry. It is thus no surprise that powerful constraints are

obtained by thinking about the possible surface terminations of the bulk SPT phase,

i.e different possible surface phases that correspond to the same bulk phase. The

surface either spontaneously breaks the symmetry, or if gapped, has intrinsic topo-

logical order. A gapless symmetry preserving surface is also in principle possible.

More fundamentally any effective theory for the surface implements symmetry in a

manner not possible in a strictly two dimensional theory.
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Symmetry broken surface

A particularly useful surface termination is one where the defining global symmetry is

either partially or completely broken. In the latter case the surface can be fully gapped

without introducing intrinsic topological order. This follows from the assumption

that the phase is symmetry protected. The non-triviality of the symmetry broken

surface manifests itself in the topological defects of the symmetry breaking order

parameter. This ensures that we cannot produce a trivial symmetry preserving surface

by proliferating topological defects.

We mention two particularly interesting examples of broken symmetries here. The

first one is the breaking of time-reversal symmetry, which can be realized explicitly

by depositing a ferromagnet on the surface. Very often (but not always) the domain

walls between opposite T-breaking regions hosts chiral modes, which prohibits the

domain walls to proliferate and restore T. The chiral modes in the domain wall are

related to quantized Hall conductance (say, of charge, spin or heat) in each of the

domains. We will discuss Hall transport in more detail in Sec.5.2.2.

The second example is a surface that breaks U(1) symmetry. If the U(1) symmetry

corresponds to charge-conservation, this can be realized by depositing a superconduc-

tor on the surface. Below we will use the terminology of superconductivity to describe

the U(1) symmetry breaking more generally (even if the U(1) symmetry does not ac-

tually correspond to charge conservation). It is well known that the U(1) symmetry

can be restored by proliferating (condensing) vortices. Therefore if the "supercon-

ductor" is gapped (and has no intrinsic topological order), the fundamental (hc/2e)

vortex must be non-trivial. Otherwise it can be proliferated to restore a trivial insula-

tor on the surface. However, there always exist some higher vortices that are trivial in

terms of statistics and symmetry representation, and thus can be condensed. In this

case a topologically ordered surface arises, which will be discussed further in Sec.5.2.1

and throughout the chapter.

130



Symmetry preserving surface topological order

Powerful insights into the SPT phase are provided by a surface termination which is

fully gapped and preserves the symmetry at the price of having intrinsic topological

order just at the surface. This was first demonstrated in the context of bosonic

SPT phases[43]. Conceptually such a topologically ordered surface state provides

a nice and non-perturbative characterization of the bulk SPT order[43, 1, 69, 44,

110, 2, 53, 54, 551. We point out here that it is not always guaranteed that such

a symmetry preserving surface topological ordered phase will exist. Indeed later

in the chapter we will discuss an example where a symmetry preserving surface is

necessarily gapless. When a symmetric surface topologically ordered state exists, it

too must realize symmetry in a manner forbidden in strictly two dimensional systems.

5.2.2 Gauging the symmetry: 0 terms

Another useful theoretical device is to formally gauge all or part of the defining

global symmetry to produce a new physical system. This can be done for all unitary

symmetries or for unitary subgroups of the full symmetry group. Two cases will be

of particular interest to us. In the first case the full symmetry group G has a normal

U(1) subgroup which we can then consistently gauge while retaining the quotient

group G/U(1) as an unbroken global symmetry. In the second case the continuous

part of the full global symmetry is SU(2). In this case there is no normal U(1)

subgroup and instead we gauge the full continuous SU(2) symmetry.

Let us first discuss the case where there is a normal U(1) subgroup to which

we couple a gauge field. As the bulk is gapped we may formally integrate out the

electrons and obtain an effective long wavelength Lagrangian for the gauge field.

Leff = LMax +4O (5.1)

The first term is the usual Maxwell term and the second is the 'theta' term:

LO = E-B (5.2)
47r2
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where E and B are the electric and magnetic fields respectively of the U(1) gauge field.

The allowed value of 0 will be constrained by the unbroken global symmetry G/U(1).

In the familiar example of the topological band insulator (with G = U(1) x ZT, where

ZT is time reversal), it is well known that 0 = 0 or 7r by time reversal symmetry. This

is true as well for other symmetry groups in Table. 5.1 that include time reversal. The

E and B fields transform oppositely under ZT so that 0 -+ -0. Further on a closed

manifold there is periodicity under 0 -- 0 + 27r so that the only distinct possibilities

are 0 = 0, 7r.

The 0 term provides very useful constraints on the surface physics. It can be

written as the derivative of a Chern-Simons term. Hence at a surface where the Z'

symmetry is broken, it leads to a Hall conductivity (associated with transport of the

U(1) charge) of
0

axy = V = - (5.3)

(We use units in which the U(1) charge of the fermions is 1 and h = 1). Furthermore in

all the examples studied in this chapter, such a Z2j broken surface termination exists

with a gap and without any surface topological order. In that case we can safely say

that when v is fractional , the surface state cannot exist in strictly two dimensional

systems, and requires the 3d bulk. Thus fractional v = y for the response to a U(1)

gauge field implies non-trivial bulk SPT order even in the presence of interactions.

Returning to the Z2j broken gapped surface without any topological order, we can

further argue that the difference in the Hall conductivity of the surface and its time

reverse must be a state allowed in 2d systems of electrons without topological order.

This forces -= n with n an integer.

Another important characterization of such a Zj broken surface state is the ther-

mal Hall conductivity rY. Formally this is related to gravitational responses in the

bulk and the notion of gravitational anomaly[1121 though we will not need to use such

a description. For any gapped two dimensional state vQ = g is a universal number
2 0

2

with KO = T (T is the temperature). For a strictly two dimensional system if

further there is no topological order then vQ - v = 0 (mod 8) (see Sec. 5.2.2). Thus
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a gapped Z' broken surface that either has fractional v or has vQ - v = 0 (mod 8)

implies non-trivial bulk SPT order even with interactions.

In the case where the continuous symmetry is SU(2) (e.g., associated with spin

conservation) we can again gauge this SU(2) symmetry and study the effective La-

grangian of the corresponding matrix-valued SU(2) gauge fields A, which again takes

the form

Leff = +42 + 4 (5.4)

The first Maxwell term is the usual Lagrangian for the SU(2) gauge field (g is a

non-universal coupling constant).

1
Lfax = Tr (FWFW) (5.5)

2g

The field strength F,,, = aAv - avA + [Al, A.]. The second 'theta' term takes the

form
64C = 2 Tr (,a1 FvFap) (5.6)

32-7r

On a closed manifold there is periodicity under 0 -* 0 + 27r. Time reversal if present

takes 6 -+ -9, and thus the potentially time reversal invariant possibilities are 9 = n7r.

This 0 term can once again be written as the derivative of a Chern-Simons term for

the SU(2) gauge field:

'Co = 80r 0pKq (5.7)

where

K1=e AvTr AvaAa+ 2 AvAaAfl (5.8)

Similarly to the discussion of the U(1) case above this implies that a Zj broken

gapped surface without topological order will have a spin quantum Hall effect [113].

This is characterized by the spin current induced in the transverse direction in re-

sponse to a spatially varying Zeeman field. (The spin quantum Hall effect should not

be confused with the quantum spin Hall effect - the latter describes the transverse

spin current induced by an electrical voltage). The corresponding spin Hall conduc-
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tivity a' = . Note the factor of 2 difference between the corresponding formula

for the U(1) case. In a strictly 2d system we must have a' - 2n with n an integer.

Therefore an odd 1 implies bulk SPT order even with interactions.

In both U(1) and SU(2) cases, if the 0 term is such that the Z' broken surface

state has Hall transport that is allowed in 2d we cannot directly conclude anything

about whether an SPT state exists or not. In the following subsection we obtain

some additional constraints in the U(1) case by thinking about monopole defects of

the gauge field.

Electric and thermal hall conductance mismatch

Here we discuss the constraints on quantum hall and thermal hall effect in a two-

dimensional charged fermion system in the absence of intrinsic topological order and

fractionalization. It is well known that in such cases the electric hall conductance

UoY is quantized in unit of uO = e2 /h, and the thermal hall conductance t;, is also

quantized in units of ro = ! T. For free fermions, the two should agree axy/uo =

VXY,/0 = n since the fermions transport both electricity and heat.

With interactions, however, the two integers could differ. A simple example[5]

is the following: imagine and odd number (say 2n + 1) of fermions form a bound

state F f 2 n+, which is also a fermion but with charge e* = 2n + 1. Now put the

bound state fermion F into a Chern band with Chern number v. The quantum hall

conductance is then v(e*) 2 = (2n + 1) 2 v, but the thermal hall conductance is simply

v since it does not distinguish the charge carried by the fermion. The two quantized

quantities thus have a mismatch

U Y - 1 2 _ ((2n + 1)2 1)v (5.9)

= 8 ( 2 v) =O (mod8).

In general, it can be shown that the identity Eq. (5.9) is true as long as the system

does not develop intrinsic topological order (see Chapter 6 or Ref. [51). We outline

part of the proof here: for a system with any oxy and rx; we can stack it with certain
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integer quantum hall system made of free fermions so that the net o-,, becomes zero.

If the remaining thermal hall conductance r'/sO = KXy/so - Uxy/oO is non-zero, there

must be a chiral edge mode that carries no charge (with chiral central charge K',/Ko).

But since the fermions are charged, the neutral charge mode must be bosonic. Hence

it can be viewed as a boson state with a chiral edge. It is known that for a boson

system with no topological order, ri'i/IKO = O(mod8) (for a proof, see for example

Ref. [48]).

5.2.3 Gauging the symmetry: bulk monopoles and surface

states

An important lesson from the work in Ref. [471 is that when the global symmetry in

an SPT phase is gauged the defects of the gauge field could become nontrivial. Let us

now consider the situation discussed above where the global symmetry has a normal

U(1) subgroup which we then gauge. Then the gauge defect is simply the magnetic

monopole: a 27r-source of the gauge flux. In three dimensions the monopole statistics

can only be bosonic or fermionic. It was shown in Ref. [31 that in any (short-range

entangled) system where all the charge-1 particles are fermions, the monopole must

be a boson. The monopole may then carry non-trivial quantum numbers under the

symmetry group.

The 'electric' charge of the monopole under the U(1) symmetry is determined

directly by the 0 term in the effective gauge action through the well-known Witten

effect: there is a a U(1) charge of 1 on the monopole. For 9 = 7r this is fractional.

The remaining question is about the symmetry transformation of the monopole under

the quotient' group G/U(1). In particular it will be important to ask of the monopole

transforms under a projective representation of this quotient group. In the familiar

case of electrons with U(1) x Z2T, the symmetry properties of the monopole under ZT

are severely constrained[3]. The monopole goes to an antimonopole under Zj and

this makes it meaningless to ask about whether time reversal acts projectively on it

or not. In the U(1) x ZT case studied in detail below, the gauge magnetic flux is
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even under time-reversal. Hence it is also possible to have monopoles forming non-

trivial (projective) representations under time-reversal, i.e it could become a Kramers

doublet, with T = -1. It is possible to enumerate all possible nontrivial quantum

numbers that can be carried by the monopole. For example, with U(1) x ZT, the

monopole can either carry half-integer U(1) charge (corresponding to 0 = 7r), or be

charge-neutral while having T 2 = -1, or both.

Understanding the allowed structure of the bulk monopole leads to important

constraints on the possible surface terminations of the SPT. Such a point of view

was nicely elaborated in Ref. [69] to discuss the physics of the bosonic topological

insulator. We emphasize that this procedure of gauging the symmetry and studying

the monopole is a purely theoretical device. It is however very powerful.

It is convenient for our purposes in this chapter to consider a surface termination

which breaks the U(1) symmetry. Imagine tunneling a monopole from the vacuum

into the system bulk, which leaves behind a two-fold (hc/e using the 'superconducting'

terminology) vortex on the surface. As the monopole is trivial in the vacuum, if it

carries nontrivial quantum numbers in the bulk, the corresponding hc/e vortex on

the surface must also carry the same nontrivial quantum numbers, and vice versa.

Therefore we could either use the known monopole property to infer the properties

of the surface 'superconductor' (as was done in Ref. [21), or use the knowledge of the

surface vortex to infer the quantum numbers carried by the bulk monopole (as was

done in Ref. [1], and will be done in Sec.5.3 and 5.6 below).

It is important to emphasize that not all the seemingly consistent projective

symmetry representations of monopoles can actually be realized. For example, in

a spinless fermion system where T' = 1 on the fermions, a theory with half-charged

monopole (0 = 7r) is naively consistent, even though there is no free fermion band

structure that realizes such a theory. One may wonder if there is an intrinsically

interacting SPT state with no free fermion realization that gives 0 = 7r. However, it

was noticed recently[3, 531 that it is internally inconsistent in a subtle way, and hence

cannot be realized even with an interacting SPT. Therefore if a symmetry assignment

of the monopole is not realized in any free fermion system, one needs to examine its
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consistency more carefully.

The next question is then, if a symmetry assignment to the monopole is realized

by a representative state (for example, a free fermion model), how many other states

exist with the same monopole properties? For such a state with certain monopole

quantum numbers, there is always a representative state with monopoles carrying

the "opposite" quantum numbers, so that stacking the two states together produces

another state with monopoles carrying trivial quantum numbers. Therefore the ques-

tion can be posed equivalently as: how many nontrivial states exist with monopoles

being completely trivial? This was analysed in detail in Chapter 4 (Ref. [3]). The

conclusion is that if an SPT state has trivial monopole, it must be equivalent to a

SPT state constructed from bosonic particles carrying no U(1) charge (e.g. spins in

an electron system). For example, if a fermionic SPT state with U(1) x Z' symmetry

has a trivial monopole, it is equivalent to a bosonic SPT with Z' symmetry only.

The above conclusion can be summarized compactly as follows:

If the group G contains a normal U(1) subgroup, then any 3D SPT state with

the symmetry group G must either have a nontrivial U(1) monopole (one that

transforms projectively under G), or be equivalent to a bosonic SPT with the

symmetry G/U(1).

In the rest of the chapter we utilize these different ways of diagnosing and differ-

entiating SPT phases to classify and understand electronic SPT phases with many

different symmetries.

5.3 U(1) x Z : AIII class

In this section we study fermions with the symmetry group U(1) x Z' (the AIII class),

which can be interpreted physically as superconductors with S2-spin conservation

and time-reversal symmetry. The U(1) rotation U(O) and time-reversal T commutes:

U(0)T = TU(6), or equivalently, the U(1) charge is odd under time-reversal action,
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unlike the electric charge. Physically, the action of time-reversal on the fermions has

two distinct possibilities: T 2 cT 2 = +c, where c is the physical fermion annihilation

operator. However, the two symmetries lead to very similar physics, including the

classification of SPT states. This is because one can always define a new time-reversal-

like operation f = TU(7r/2), and it is easy to see that -f
2 = -T2 on the fermion.

Hence the problem with U(1) x ZT with T' = -1 on the fermion can be mapped

to that with the same symmetry group U(1) x Z' but with T 2  1. We will take

V2 = -1 below in order to be able to connect to other interesting symmetry groups,

but the modified time-reversal T will still be useful as a tool in our argument.

The free fermion band theory gives a Z classification for this symmetry group.

Each state is labeled by an integer n signifying the number of protected gapless Dirac

cones on the surface:

H = Z'P(PXu7X + pVci)Vi, (5.10)
i=1

with the symmetries acting as U(O) : ' - e4'O and T : 0 -+ io-t.

We will show in the following that the Z classification from band theory reduces

to Z8 in the presence of interaction: the n = 1 state has a bulk 6 = 7r term, the

n = 2 state, which has 0 = 27r, has a neutral Kramers monopole (T2  -1), the

It= -4 stt isi OqUivalent o) ani PT state formL eCbdt yI i11UarryingU noI1) U k) Chiarige,

hence the n = 8 state, formed by taking two copies of the n = 4 state, is trivial.

Following the arguments in Sec.5.2, we can also show that taking another bosonic SPT

(which cannot be realized using free fermions) into account, we obtain the complete

classification given by Z x Z2.

5.3.1 8 Dirac cones: triviality

We first look at the n = 8 state, which has eight protected surface Dirac cones in the

free fermion theory. We will show explicitly that, with interaction, such surface state

can open up a gap and become a trivial state. We use an argument very similar to

that in Ref. [3].

138



We first introduce a singlet pairing term into the theory

n
HA = iAVi-,/ + h.c., (5.11)

i=1

which breaks both the U(1) and T symmetries (under time-reversal we have A -+

-A*). The surface theory is now gapped, with the physical symmetries broken. With

interactions, the gap A becomes a fluctuating field, hence it is possible to disorder

it (have (A) = 0) and restore the symmetries. To disorder the XY-like field A, we

can follow the familiar and well-understood route of proliferating vortices of the order

parameter.

It is important here to notice that although the gap in Eq. (5.11) breaks both U(1)

and T, it does preserve a time-reversal-like subgroup generated by ! = TU(7r/2).

Since we want to restore T by disordering A (which surely will restore U(1)), we

must do it while preserving t.

The vortex needs to be examined carefully because of the fermion zero-modes as-

sociated with it. It is well-known that a superconducting Dirac cone gives a Majorana

zero-mode in the vortex core[102]. Under t, the vortex background is invariant (un-

like the case of U(1) x Z', where a vortex goes to an anti-vortex), and the Majorana

zero-modes transform trivially -t -+ -y. At free fermion level the degeneracy from the

zero-modes are robust, since any quadratic term iAi3 'yry' would break 'f. However,

it is known[40] that with n = 8 Majorana zero-modes, the degeneracy can be lifted

by a quartic term. The remaining vortex is then completely trivial and can thus be

condensed without breaking !, producing a trivial insulator on the surface.

We can also examine the time-reversal properties of the vortices more directly,

which will be useful in the following sections. We first pair up the 8 Majorana zero-

modes to 4 complex fermion zero-modes fi = 7y2-1 + i72j. We then define different

vortex operators as

VnmklIGS) = (fI (f) (fFt ( F N), (5.12)
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where IFN) denotes the state with all the negative-energy levels filled in a vortex

background. The U(1) being spin-like under T (hence t also) means that a vortex

configuration is time-reversal invariant. The only non-trivial action of t is thus on

the zero-modes:

tfjit =f, (5.13)

and by choosing a proper phase definition:

TIFN) = ftf t tf tIFN). (5.14)

It is then straightforward to check the modified time-reversal T only relates vortex

operators with the same fermion parity (-1)n+m+k+l, and T2 = 1 on all the Vnmkl

operators. Moreover, vortices with the same fermion parity are mutually local with

each other, and thus can be condensed simultaneously while keeping the f symmetry.

The remaining surface is then a trivial gapped symmetric state.

5.3.2 4 Dirac cones: boson SPT

We now look at the state with n = 4 Dirac cones on the surface and try to do the same

exercise as in Sec.5.3.1. Again we start from a paired gapped state and try to disorder

the pairing gap by proliferating vortices. We have now n = 4 Majorana zero-modes

in the vortex core, and even with interaction the degeneracy cannot be lifted. The

two-fold vortex (hc/e), on the other hand, hosts 8 Majorana zero-modes and hence is

trivial. Condensing the two-fold vortex will then give a symmetric gapped state, with

an intrinsic Z2 topological order[80], i.e described by a deconfined Z2 gauge theory.

To study this Z2 topologically ordered state, we need to examine the fundamental

vortex in the superconducting state with more care.

Again we group the 4 Majorana zero-modes into two complex fermion zero-modes

fl,2, and define vortices through

VnmIGS) )(f ( fl) IFN), (5.15)
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where JFN) denotes the state with all the negative-energy levels filled in a vortex

background. The modified time-reversal again acts as

2 = ,2(5.16)

and by choosing a proper phase definition:

TIFN) = flft jFN). (5.17)

It then follows straightforwardly that {voo, v 1 } and {voi, vio} form two "Kramers"

pairs under f (namely 2 = -1). Moreover, since the two pairs carry opposite

fermion parity, they actually see each other as mutual semions.

We thus conclude that to preserve the symmetry, the "minimal" construction

is to proliferate double vortices. The resulting insulating state has Z2 topological

order {1, e, m, E with the e being the remnant of {voo, v1 1 }, m being the remnant of

{vo1 , vio}, and e is the neutralized fermion 4.

Now the full U(1) x T is restored, and we can ask how they are implemented

on {1, e, m, E}. Obviously these particles are charge-neutral, so the question is then

about the implementation of T alone. However, since the particles are neutral the

extra U(1) rotation in F is irrelevant and they transform identically under ! and T.

Hence we have T2 = = -1 on e and m, and T2 = = 1 on e. This state is

denoted as eTmT in Ref. [1], and is a characteristic surface state of a bosonic SPT.

We thus conclude that the n = 4 free fermion state is equivalent to the eTmT bosonic

SPT in the presence of interaction.

5.3.3 2 Dirac cones: Kramers monopole

The n = 2 state, being a "square root" of the n = 4 state which is equivalent to a

bosonic SPT, must involve the U(1) symmetry in a non-trivial manner as argued in

Sec.5.2. It must thus have monopoles that are non-trivial under the symmetries. It

turns out that the charge-neutral monopole behaves as a Kramers pair under time-
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reversal (T2 = -1). Such monopole behavior was also realized in a boson SPT state[1]

with U(1) x Z' symmetry, where charge-1 carriers are bosons instead of fermions. So

in contrast with charge-1/2 monopoles (0 = ir), the Kramers monopole can be realized

in two different systems, one with fermionic charge carriers and one with bosonic one.

We show this by studying the monopole tunneling event on the surface: if the

monopole has T 2 = -1 inside the insulator bulk and T2 = 1 in the vacuum outside,

the tunneling event on the surface must leave behind another excitation with T 2 
=

-1. We can work this out directly from the free fermion surface state, by showing

that a monopole insertion operator in a (2 + 1) - d theory with two Dirac cones has

T2 = -1 due to the fermion zero-modes from the Dirac cones. An alternative route,

which we will follow, is to study the paired state described in Sec.5.3.1 and 5.3.2, in

which a monopole tunneling event leaves behind a two-fold (hc/e) vortex that now

traps four Majorana zero-modes. The argument in Sec.5.3.2 immediately shows that

this two-fold vortex has ' 2  -1, which means the monopole inside the bulk also

has 'f = -1. But since the monopole is charge-neutral, it has T2 -1.

Surface topological order

The n = 2 state can also be analyzed in a similar fashion as for n = 8 and n = 4

states. As we have noticed, the two-fold vortex in the paired state has 'P = -1 and

hence cannot be condensed to restore time-reversal symmetry. Hence the minimal

construction is to condense the four-fold vortex, which traps eight Majorana zero-

modes and can be trivially condensed. A charge-1/2 boson (denoted as #) emerges

from this non-trivial vortex condensate, which under time-reversal goes to 3 -+ 0-1 ~

03 (the last identification comes from the topological triviality of '34). The particle

content of the remaining theory can be represented as {1, 2, 2, /3, V V,2 , v 3 , nVm} x

{1, c}, where v is the remnant of the fundamental vortex with the complex fermion

zero-mode un-occupied, and c is the physical fermion, while the remnant of the 4
fermion is denoted as E = ct 3 2 .

The resulting gapped surface state has Z 4 topological order, with the symmetries

implemented in a peculiar way. The remnant of the fundamental vortex with the
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complex fermion zero-mode un-occupied is v, and that with the zero-mode occupied

is ev. The two go to each other under time-reversal, and their squares (either v2 or

ev 2 ) have 'T2 = = -1, with E having T2 = 1. The topological sector of 032 does not

change under time-reversal, but since it carries charge-1, we have T2 =_f2 = -1

for it, which is consistent with T 2 = 1 on E, since 62 C ~ c. The charge-vortex relation

gives the obvious mutual statistics 0& = e

5.3.4 1 Dirac cone: 0 = 7r

The n = 1 state is the U(1) x Z' counterpart of the familiar electronic topological band

insulator[25]. The surface single Dirac cone implies a 9-term in the gauge response[641

at 0 = 7r. The monopole then carries charge-1/2.

Non-Abelian Surface topological order

Following the reasoning from previous sections, we know that in the paired surface

state, the four-fold (2hc/e) vortex is Kramers under t and we need to condense eight-

fold vortex to recover the full symmetry. A charge-1/4 boson a emerges out of this

condensate, and as in the n = 2 case, the charge-1 boson a4 has T2 = = -1.

The story about lower vortices, however, is made more complicated due to the

structure of the zero-modes. In particular, the fundamental vortex carries only one

Majorana zero-mode and is thus non-abelian. The detailed analysis of the fusion

and statistics of the vortices was carried out in Ref. [2, 531, which showed that the

fundamental vortex has topological spin 1 while the two-fold vortices have topological

spin i, depending on whether the complex fermion zero-mode is filled or not. Fusing

the vortex with an E fermion gives back the vortex: v x c ~ v, while fusing two vortices

gives either the semionic or anti-semionic two-fold vortex: v x v ~ v2+EV2. The mutual

statistics between the fundamental and two-fold vortices are i, hence the three-fold

vortex has topological spin -1. It also follows that the fundamental vortex and the

four-fold vortex (which is Kramers) are mutual semions (mutual statistics -1).

Again the particle content can be written as {1, a, ... a7, V, ... v 7 , anV"} x {1, C}.
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Vortex
zrmes Properties

zero-modes

8 Majorana Trivial

4 Majorana T2 _1

2 Majorana, 2-fold semion/anti-
(hc/e) vortex semion

2 Majorana,
fundamental bo ,

(hc/2e) vortex v

1 Majorana Non-abelian

Table 5.2: Summary of vortex properties, according to the number of Majorana zero-
modes trapped. Most of the properties do not depend on the vortex strength (as
long as the vortex exists), except when there are two Majorana zero-modes. In n = 1
phase such a vortex has strength-2 while in n = 2 phase it has strength-1, and the
vortex statistics turns out to be different in the two cases.

We summarize the properties of different vortices in different states in Table.5.2.

5.3.5 Z8 X Z2 classification

We have shown that the Z classification from free fermion band theory reduced to

Zs under interaction. The argument outlined in Sec.5.2 makes it possible to further

classify all the SPT states, including those not realizable using free fermions.

For any putative new SPT phase that cannot be realized using free fermions,

there is always a free fermion state such that the combination of the two has a trivial

monopole. This is because every possible nontrivial symmetry implementation of the

monopole is realized by a free fermion model. Following the reasonings in Sec.5.2,

a phase with trivial monopole can at most be a SPT made of charge-neutral bosons

(with Z' symmetry only). Bosonic SPT states with ZT symmetry in three dimensions

are classified by Z2, with two root states[43]. One of the two root states becomes

identical to the n = 4 free fermion state. Hence it does not give rise to any new

state. But the other root state is independent of all the free fermion states. Hence

it provides a new state in the full classification. The final result is thus a Z8 x Z2
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classification of three dimensional fermions with U(1) x Z' symmetry.

5.4 ZT with T2  -1: DIII Class

In this section we apply the results obtained in Sec.5.3 to superconductors with only

time-reversal symmetry (the DIII class). This was recently discussed in Ref. 11101

using powerful Walker-Wang methods. We reproduce part of the results there in

a physically simpler and constructive approach following the ideas of Ref. [31 and

the previous section. A similar argument has also been independently developed in

Ref. [1141.

At free fermion level, the DIII class superconductors in 3D are classified by Z, with

an integer index v signifying the number of gapless Majorana cones on the surface

protected by time-reversal symmetry:

V

H = X (Pr U + Pyez )Xi. (5.18)

If v is even (v = 2n), one can group the Majorana cones into n Dirac cones j=

X2i-1 +iX2i, and the theory looks exactly the same as Eq. (5.10). The U(1) symmetry

/ -+ eiOO is now an emergent symmetry at low energy. We can instead consider the

U(1) as a microscopic symmetry, apply the results in Sec.5.3 to obtain interacting

gapped surface states, and then break the U(1) symmetry explicitly by adding fermion

pairing term. A similar strategy was useful in the Walker-Wang approach[110. For

the n = 8 (v = 16) state, the resulting surface is trivially gapped, and further breaking

the U(1) symmetry does not introduce anything nontrivial. Hence the Z classification

from band theory reduces to Z16 with interaction. For the n = 4 (v = 8) state, the

resulting surface is topologically ordered, but all the quasi-particles are charge-neutral

under the U(1), hence breaking U(1) symmetry does not affect anything either. These

establish the v = 16 state as a trivial one, and the v = 8 state as equivalent to a

boson SPT, which are consistent with the results in Ref. [110]. The n = 2 (v = 4)

and n = 1 (v = 2) states, however, have surface topological orders involving the U(1)
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symmetry non-trivially, hence need more careful examination.

5.4.1 4 Majorana cones: doubled semion-fermion surface state

We now take the surface topological order in Sec.5.3.3, break the U(1) symmetry

but keep time-reversal. Notice that T 2 = -1 on both 02 and v2 , hence the simplest

particle to condense is the charge-1 object v2/ 2 . It can be checked straightforwardly

that the remaining theory contains the following deconfined particles (and their com-

binations):

{1, s1 = v3} X {1, S2 = cV/#} x {1, c}, (5.19)

where c is now the charge-neutral physical fermion. The mutual statistics between

3 and v in the original theory 00,, = i makes the composite s, = v/3 a semion with

self-statistics i, likewise the particle s2 = cv/O is also a semion. Under time reversal,

S1 = vf -+ (vE)#-1 = sIE32 = s1c which is an anti-semion, likewise s2 -+ s2 c which is

again an anti-semion. The two semions si, S2 are local with respect to each other, and

their bound state S1s2 = c0 2 = E is a fermion with 2 = 1. These are in agreement

with the result in Ref. [110].

5.4.2 2 Majorana cones: semion-fermion surface state

The fate of the surface topological order in Sec.5.3.4 is more complicated. Again

T2 = -1 on both a4 and v 4 , and the simplest particle to condense is the charge-i

object v 4 a4 . It can be checked that the only effect of this condensate is to confine

odd powers of a: a2 n+l. The remaining theory can then be written in the following

way:

{1,v , ... v 7} x {1, s = Ea2v2 } x {1,c}, (5.20)

where E = ca4 = cv4 . It can be checked that particles in the two sectors {1, v, ... V7}

and {1, s} are mutually local with respect to each other. The sector {1, v...v 7 } x {1, c},
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with its time-reversal implementation, is exactly what was named T-Pfaffian state in

Ref. [541 and was proposed to be a possible surface state of the electronic band

topological insulator[54, 551. The only difference here is that there is no charge

assignment. The T-Pfaffian state being a surface state of the band TI implies that

without charge assignment (i.e. when charge U(1) is broken), it should be possible

to completely confine it down to {1, c}. This is a highly non-trivial statement, since

there is no trivial boson in the theory for one to condense, and one need a series

of unknown phase transitions to confine it. Now taking the statement as true, we

can eliminate the {1, v...v 7 } sector from Eq. (5.20) and get {1, s} x {1, c}. Recall

that v 2 is a semion, it also has -1 mutual statistics with a2 from the charge-vortex

relation. Hence the composite s = ea2 v2 is a semion, and under time-reversal it goes

to s = ca 2V2  fa-2 ev2 = a- 2v 2 = (a 4 E)s = cs which is an anti-semion. These are

in agreement with Ref. [1101.

5.5 SU(2) x ZT: CI Class

The results in Sec.5.3 can also be applied to systems with SU(2) x ZT symmetry, i.e.

superconductors with full spin rotation and time-reversal symmetry: the CI class.

Again the free fermion bands are classified by Z. For a state indexed by k, there are

2k Dirac cones on the surface, giving k flavors of SU(2)-fundamental fermions:

k

H = Z N(P OJx + PyOz) 0 T0oi, (5.21)
i=1

where -r, is the SU(2) spin, so that the SU(2) rotation U acts as

U : o -+ 0-o @ui, (5.22)

and time-reversal acts as

T : , - io-, O -roo. (5.23)
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At k = 1 when the surface is gapped by breaking time reversal, there is a spin

quantum Hall effect of og = 1. This is half of what is allowed in d = 2. Correspond-

ingly if we gauge the global SU(2) symmetry the bulk response has a 6 term[115] for

the corresponding SU(2) gauge field at 0 = 7r. As we argued earlier the k = 1 state

is therefore stable to interactions.

As in previous sections there is an emergent U(1) symmetry in the surface Dirac

theory:

U(6) : 4 -+ e*@i, (5.24)

which we can promote to a physical symmetry, apply the arguments in Sec.5.3 and

get a gapped state, then break the U(1) by an explicit pairing. One should, however,

be careful in the procedure not to break the SU(2) symmetry. It turns out for even

k, it is possible to have an intermediate U(1)-breaking phase preserving the SU(2)

symmetry, while for odd k this is impossible. Hence the results from Sec.5.3 can be

applied to k = 4 (8 Dirac cones) to show that it is trivial, and to k = 2 (4 Dirac

cones) to show that it is equivalent to the eTmT boson SPT. We show the latter in

Sec.5.5.1 since it directly implies the former due to the Z2 nature of the corresponding

boson SPT states. For the k = 1 (2 Dirac cones) state, we argue in Sec.5.5.2 that it

is imposs-.4b1,, 4-e w -th -nerci-s 4t- gap 4.ut -4h4. sufcesae hlekein_

full SU(2) x ZT symmetry. Interestingly, it is so far the only known example in 3D

with a symmetry protected gapless surface robust even under strong interaction.

The above results lead to a partial classification given by Z4 X Z2, where the Z4

subgroup was deduced from the Z classification in free fermions, and the Z2 subgroup

comes from boson SPT states with 7[2 symmetry, as discussed in Sec.5.3.5. Unlike

the symmetries with a normal U(1) subgroup, it is not clear in this case if other SPT

phases exist with no analog in either free fermion or boson systems. The analysis

below in Sec. 5.5.2 suggests (but does not prove) that non-trivial surface states beyond

boson SPT can be described by a Hopf term in the non-linear-sigma model, which

prevents the surface from opening up a trivial gap. Since the Hopf term is realized

in a free-fermion model, this suggests that states beyond boson SPT are either free
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fermion phases, or the combination of boson SPT and free fermion phases, hence

the above Z4 x Z2 classification may be complete. Likewise, superconductors with

only SU(2) symmetry may not support any nontrivial SPT state, since the surface

Hopf-angle can always be tuned to zero in the absence of time-reversal symmetry. It

is desirable to make the above arguments precise.

5.5.1 4 Dirac cones: boson SPT

We first re-write the k = 2 surface Dirac state as

H = Ot(pxox + pyuz) 0 T0 0 poV4, (5.25)

where p denotes the flavor index. We now write down the pairing gap term:

HA = iA4'y 0 ry 0 py + h.c., (5.26)

which obviously opens up a gap and preserves SU(2) invariance. As in Sec.5.3,

time-reversal and the U(1) symmetries are broken, but the modified time-reversal

T= TU(7r/2) is kept invariant.

The vortex of A field carries four Majorana zero-modes, or two complex fermion

zero-modes fl,2. Since SU(2) symmetry is kept and the 0 fermion is an SU(2)-

fundamental, the two complex fermion zero-modes must also form an SU(2) doublet

(fi, f 2 )T. Again we define vortices through Eq. (5.15), and time reversal acts as in

Eq. (5.16) and (5.17). It is then clear that {voo, vii} are SU(2) singlets and {voi, vio}

form an SU(2) doublet. Both pairs are Kramers under f ('P = -1). Moreover, since

the two pairs carry opposite fermion parity, they actually see each other as mutual

semions. Condensing two-fold vortices then gives the Z2 topological order {1, e, m, E},

where e - {voo, vj}, m ~{v0 , v1 } and E ~ 4. All the particles are neutral under

the U(1), hence further breaking the U(1) symmetry does not change anything in the

topological order. Now both the e and E particles are SU(2) doublets, so we can bind

them with a physical fermion c to produce SU(2) singlets. The topological order can
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thus be re-written as {1, , m, 4}, where = cc and m have 2 = -1, and F = ce

has 2 = 1, and all the particles are SU(2) trivial. This is indeed the eTmT state

promised.

5.5.2 2 Dirac cones: symmetry-enforced gaplessness

With two Dirac cones one cannot write down a gap term that breaks U(1) but not

SU(2), hence the previous trick does not apply. In fact, as we will now argue on very

general grounds, it is impossible to have a gapped (topologically-ordered) symmetric

surface state for the k = 1 topological superconductor. Hence the two Dirac cones on

the surface are robust even with strong interaction, as long as the full SU(2) x Z4

symmetry is preserved.

If the surface can be symmetrically gapped by introducing a topological order,

then the SU(2) group has to be represented non-projectively for all the particles in

the theory, since there is no projective representation for SU(2). One can then always

bind a non-trivial quasi-particle with certain number of physical fermions to form an

SU(2) singlet. Therefore the theory can always be re-written as {1, ,.} x {1, c}

where all the particles are SU(2) singlets except c. The first sector is also closed

under time-reversal, since time-reversal action cannot mix an SU(2) doublet with a

singlet. Any local object in the topological order {1, c, ...} must then be bosonic since

it is SU(2) trivial. Hence the topological order can be viewed as one emergent from

bosonic objects in the theory, and the bulk state can at most be a bosonic SPT state

with Z' symmetry only.

For the k = 2 state the above analysis is consistent with what we obtained in

Sec.5.5.1. The k = 1 state, on the other hand, cannot fit into the above framework:

putting two copies of the k = 1 state together forms a k = 2 state, which is a

bosonic SPT. The bosonic SPT's in this case are classified by Z', so none of them

admits a "square root". So the k = 1 state cannot be a bosonic SPT, and according

to the above analysis we are forced to conclude that a symmetric gapped surface

topological order does not exist for the this state. This provide the first known

example of "strictly" symmetry-protected gapless surface, since all the other 3D SPT
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states studied so far admit a gapped symmetric surface with topological order. This

also implies that the k = 1 (and the combination of the state with other boson SPTs)

cannot be constructed using the Walker-Wang approach[44, 110, 54], which relies on

the existence of a gapped surface.

0(3) non-linear sigma model: Hopf term

The surface Dirac theory in Eq. (5.21) can also be gapped by introducing a Neel-like

order. For k = 1 we write down the Dirac fermion coupled to the Neel unit vector n:

H = 01(pco-. + pycz) 0 rob + mo-ay 0 n - Tr'. (5.27)

Since the fermion is gapped now, one can integrate it out and obtain an effective the-

ory of the Neel vector. The result[116] is a non-linear sigma model with a topological

term known as the Hopf term, at 0 = 7r:

S = I d2xdt(a,,n)2 + iwrH2 [n], (5.28)
9

where H2 is the integer characterizing 7r3 (S 2 ) = Z.

The Hopf term changes the statistics of the skyrmions of the 0(3) model[117].

Continuum field theory arguments suggest that time reversal (and parity) are pre-

served so long as the coefficient of the Hopf term is 0 or 7r. If it is 0 the skyrmions

are bosons while if it is 7r they are fermions. This field theory was once proposed[118]

to describe the parent antiferromagnets of the cuprate materials. In the specific

context of the square lattice Heisenberg antiferromagnet this proposal was killed by

microscopic derivations of the sigma model[119, 120, 121, 122] which revealed a Hopf

coefficient of zero. With our modern understanding we can see that a Hopf coeffi-

cient of 7r is not allowed in the presence of time reversal symmetry in any strictly

2d quantum magnet. Indeed this theory arises at the surface of the 3D topological

superconductor.

Our analysis of the k = 1 topological superconductor implies that the non-linear
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sigma model with Hopf term at 0 = r does not have a gapped phase that preserves

the full SO(3) x ZT symmetry, even with topological order. This is an interesting

conclusion that is not entirely obvious from other approaches.

As was seen in Sec.5.5.1, the k = 2 topological superconductor is also nontrivial

under interaction. In particular, a gapped symmetric surface must necessarily develop

topological order. Since the k = 2 state can also be described using 4 Dirac cones

on the surface, the effective theory of the Neel order parameter n can be described

using a non-linear sigma model with a Hopf term at 9 = 27r. We therefore reach the

surprising conclusion that, even a Hopf term at 9 = 27r cannot arise in a purely 2D

system if time-reversal acts as n -+ -n. Moreover, since the k = 4 superconductor

is trivial under interaction, a Hopf term with 9 = 41r is allowed in strict 2D with

time-reversal.

5.6 U(1) X (Zi x ZC): CII Class

Now we turn to fermions with charge U(1), time-reversal and charge-conjugation

symmetries that both square to T2 = C 2 = -1 on physical fermions (the CII class).

At free fermion level, the insulators are classified by Z2 in three dimensions. The

non-trivial surface state has two Dirac cones:

H = Ot (pxa- + py-z) 0 rTO, (5.29)

where the U(1) symmetry acts in the obvious way, time reversal acts as

T : ia, 0 TOO, (5.30)

and charge conjugation acts as

C : -0  0 (- To rbt. (5.31)

The natural question to ask is how stable this phase is when interaction is included.
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Again we answer this question by looking at the U(1) monopole. Notice that the

composite operation S = TC is an anti-unitary operator that commutes with U(1)

rotation. Hence it plays the role of time-reversal in Sec.5.3, where it was shown that

the surface state with two Dirac cones gives a "Kramers" monopole. Therefore the

monopole in the present case transforms as a Kramers pair under S, which establishes

the state as a nontrivial interacting SPT.

One may also ask that whether a (presumably strongly interacting) SPT exist for

this symmetry group that gives a 0 = ir term in the U(1) gauge response, since it

looks consistent with symmetries but yet cannot be realized using free fermions. An

analysis parallel to that in Ref. [31 and [531 shows that, however, such a state cannot

exist. The basic idea is the following: if such a state exist, then combining the (1, 1/2)

dyon (monopole carrying charge-1/2) with the (-1, 1/2) dyon gives the fundamental

charge-1 fermion. A careful analysis then shows that C 2 = 1 on such a composite,

hence requiring the fundamental fermion to have C 2 = 1 as well, which is inconsistent

with the microscopic symmetry structure. Indeed, for microscopic symmetry such

that C 2 = 1, the state does exist, which is just the descendent of the electronic band

TI with the additional symmetry C: 4 -+ o4.

Therefore the only non-trivial monopole structure is realized by the free fermion

state Eq. (5.29), which contributes a Z2 subgroup in the classification. The other SPT

states, according to Sec.5.2, are those from bosons with symmetry Z2 x ZT, which

are classified[16, 17, 43] by Z4. The complete classification is thus given by Z5.

5.7 (U(1) x ZT) x SU(2): Z4 classification from boson

SPT

Let us now turn to another physically relevant symmetry: charge conservation (U(1)),

spin rotation (SU(2)) and time-reversal (T). Free fermion band theory gives no non-

trivial state, and we would like to examine it more carefully when interaction is in-

cluded. Obviously one can always have SPTs coming from the charge-neutral bosonic
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sector, which have SO(3) x Z' symmetry, and are classified[16, 17, 43] by Z4. The

real question is whether there is a strongly interacting SPT state not descending from

bosonic sectors. According to Sec.5.2, such states would necessarily have monopoles

carrying nontrivial quantum numbers.

It is easy to first rule out a 0 = 7r state[3, 53], where monopoles become charge-1/2

dyons: the bound state of the (1, 1/2) dyon and the (-1,1/2) dyon, which are time-

reversal partners, is the charge-1 physical fermion, which is an SU(2)-fundamental.

It is then impossible to assign SU(2) quantum numbers to either of the two dyons

that is consistent with time-reversal symmetry.

Now we consider monopoles that are charge-neutral. The only nontrivial quantum

number a monopole can carry is then an SU(2)-fundamental, since the SU(2) group

does not admit a projective representation. It turns out such a state does not exist as

well, and the full classification is given simply by Z' from bosonic SPT. We outline

the argument briefly as follows:

We know that the monopole is bosonic and does not carry electric charge, so

let's take advantage of that: instead of asking "could fermions give rise to spin-

1/2 monopoles", let's ask the dual question instead: could spin-1/2 bosons give rise

to fermionic monopoles? Now this becomes a question about boson SPT which is

tractable, albeit with a less familiar symmetry. Specifically the appropriate symmetry

for these bosons is U(1) x SU(2) x Z1. Note that the contrast with the electrons

(which are dual monopoles as seen by these bosons).

The question can be further reduced to the following: does a boson SPT that gives

a fermionic monopole survive if we further impose SU(2) symmetry on the bosons,

and require the charge-1 bosons transform as SU(2) fundamental?

We then argue that for bosons with U(1) x Z', the SPT does not survive upon

adding SU(2) symmetry: for this symmetry group, b, -+ b under time-reversal,

so the spin-up and down bosons do not get mixed under time-reversal. Therefore

each spin-sector gives a time-reversal invariant boson insulator. More precisely, we

can integrate out up-spin boson field since they are gapped anyway, the theory left

behind contains only down-spin bosons, but it is still time-reversal invariant. Hence
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the two sectors should contribute equally to the 0-angle in the U(1) gauge response,

which must be either 0 or 27r due to time-reversal invariance in each sector. So the

total 0 must be 0 or 47r. It was shown in Ref. [43, 1, 69] that for boson systems

9 = 0 and 4-x correspond to a trivial insulator, while 9 = 27r gives an SPT state

with fermionic monopoles (this is named as "statistical Witten effect" in Ref. [69]).

Therefore it is impossible for the U(1) x SU(2) x Z' bosons to induce a fermionic

monopole.

The above argument does not work for bosons with U(1) X Z', since a theory with

only one species cannot be time-reversal invariant (b, -+ io'eb,6 under T), so each

sector does not have to contribute to the 9-angle in a time-reversal invariant way. For

example, each sector can contribute a 7r to 9, so the total 0 could be 2fr.

In the original (un-dual) problem, the above argument shows that it is impossible

for fermions with (U(1) X Z) x SU(2) symmetry to induce a monopole that transforms

as SU(2)-fundamental. For fermions with U(1) x SU(2) x Z symmetry, on the other

hand, it is possible for the monopole to carry spin-1/2 under SU(2). In fact, it can be

shown that the k = 1 state discussed in Sec. 5.5.2 survives upon imposing an extra

U(1) symmetry that commutes with T, and the monopole of this U(1) symmetry

carries precisely spin-1/2 under SU(2).

5.8 Summary and discussion

In this chapter we studied the classification and physical properties of three dimen-

sional interacting electronic topological insulators and superconductors. Free fermion

systems in 3d fall into different symmetry classes described by the "10-fold way". For

all these symmetry classes we were able to determine the stability to interactions, and

further to determine if there are any new interacting phases that have no free fermion

counterpart. If the symmetry group has a normal U(1) subgroup we obtained the

full classification in the presence of interactions. Our methods are physics-based and

enable us to describe the physical properties of these various electronic SPT phases

in three dimensions.
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We now discuss some open questions and some applications of our results. In

the cases without a normal U(1) subgroup it will be interesting to establish the

completeness or lack thereof of our classification. For the symmetry groups SU(2) x

Z2j or just SU(2) in Section. 5.5 we gave arguments why our classification may be

complete. It is desirable to have a sharper version of these arguments.

Perhaps the biggest open question about SPT phases is their possible occurrence

in specific materials. For the 3d SPT phases with no free fermion counterpart for the

most part we do not currently have simple theoretical models which may be useful

guides on the kinds of physical systems that are likely platforms for these phases.

We hope that the enhanced understanding of these phases that our work provides

will help answer such questions. For example, the understanding of the connection

between certain free fermion topological phases and some bosonic SPT states enables

us to construct slave particle mean field theories for the boson SPT states, which

might be a useful guide in searching for material realizations of the SPT phases. We

elaborate on this point in Chapter 7.

An interesting application of our work, which we will elaborate in a future work[70,

is to the classification of three dimensional time reversal symmetric quantum spin liq-

uids with an emergent photon (known as U(1) spin liquids). These phases may be

relevant to quantum spin ice materials. Though such quantum spin liquids are "long

range entangled" they may nevertheless be fruitfully understood as gauged versions of

SPT phases. The understanding of SPT phases provides a very insightful perspective

on these time reversal symmetric quantum spin liquids.

A different application of the results of this chapter is widen the range of two

dimensional quantum field theories which have anomalous implementation of symme-

try. We showed that strictly two dimensions the non-linear sigma model description of

collinear quantum antiferromagnets cannot have a Hopf term with a coefficient 0 = 7r

or 27. The former was proposed[118] as a possibility and discarded[119, 120, 121, 122]

on microscopic grounds. Our results show that Hopf terms with 0 = 7r, 27r are consis-

tent with time reversal only if the two dimensional magnet is the boundary of a three

dimensional SPT phase.
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Chapter 6

Bound states of three fermions

forming symmetry-protected

topological phases

Topological insulators (TIs) are gapped phases of matter hosting non-trivial boundary

states protected by symmetries. Most of our current knowledge of topological insula-

tors come from free fermion models[18, 19, 20], which have been fully classified[21, 22]

in all dimensions and with different global symmetries. Recently an interesting gen-

eralization of the free fermion topological insulators to interacting systems - known as

Symmetry-protected topological (SPT) phases - has been pursued theoretically (see

Ref. [123, 1241 for simple review articles).

It was realized[16, 17] that SPT states can also exist in systems of interacting

bosons. The boson SPT states can also be realized in interacting fermion systems,

since one can always bind two fermions to form a boson, such as the electron spin

clac or the Cooper pair ctc - a process which clearly requires fermionic interactions.

One can then imagine putting the bound bosons into a boson SPT state.

It should be noted that this approach does not always give new states. Some of

the boson SPT states become equivalent to certain free fermion states once physical

fermions are introduced into the system1 . The corresponding free fermion states

'By "free fermion state", what we really mean is an interacting fermion state that is adiabatically
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could be trivial[125, 110, 3] or topological[48, 110]. A simple example is that with

only time-reversal symmetry, the Haldane chain becomes equivalent to four copies of

the Kitaev chain[40, 41, 42, 1091 with spinless fermions.

There are, however, many other boson SPT states that are distinct from free

fermion models. Abundant examples have been found in both 2D[48] and 3D[3, 4].

So far, these states have been exclusively understood within the bosonic approach: in

all the models the non-triviality comes entirely from the boson sector (spins, Cooper

pairs, etc.), and the existence of fermions does not seem to contribute anything.

In this chapter, we show that some of these non-trivial boson SPT states can also

be understood in an intrinsically fermionic approach, even though they are distinct

from any free fermion state. Specifically, these states can be viewed as topological

insulators of certain fermions - not the free ones, but the bound states of three fermions

(or some other odd number) which we refer to as clustons. This observation not only

provides new insights into the interacting SPT states, but also suggests realizations

in cold atom systems: three-body bound state can be achieved in cold atom systems

through Efimov effect[126], thus if one can control these Effimov states efficiently

and put them in a topological band (which is certainly quite challenging), it will be

possible to realize the novel states we propose.

We study specifically two examples in this chapter. The first one is the boson

integer quantum hall state (BIQHE) in 2D[50], the second one is the boson topological

insulator (BTI) in 3D[43, 1, 691. In both examples the charged bosons are viewed as

Cooper pairs of electrons. One can also view the fermions as slave-particles (partons),

and our result gives another way to write down wavefunctions of these states in purely

bosonic systems.

6.1 2D: clustons in Chern band

We consider a fermion system with charge U(1) symmetry. Now imagine a situation

in which fermions prefer to form three-body bound states (clustons), which clearly

connected to a state realized by a free fermion model.
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Figure 6-1: Construction of the cluston Chern insulator: putting the three-fermion

clustons into a Chern band.

requires strong interaction. We then put the clustered fermions into a Chern band

with Chern number C = 1. This state is not fractionalized, so one could naturally

ask if it is equivalent to a free fermion state. We answer this question by looking at

its transport properties.

The quantum hall conductance is given by c., = 2C = 9 in units of e 2 /h, where

3 is the charge carried by the clustered fermion. However, the thermal hall

conductance K'i in units of MT, also known as the chiral central charge, is given

by K., = C = 1, since the thermal transport is independent with the amount of

charge carried by the fermions. Therefore this state is distinct from all the integer

quantum hall states made of free fermions, which always have.o-., = K,, since heat

carriers are also charge carriers in a free fermion systems. For interacting systems

made of electrons (fermions with charge e), it is known[48] that as long as the bulk

excitation spectrum does not contain fractionalized anyons (i.e. the excitations only

include fermions with odd-integer charge and bosons with even-integer charge), the

difference between the hall conductance and the thermal hall conductance is always

an integer multiple of eight in proper units:

3 h h
2  kXT - h 

-. T X = 8 n . (6 .1 )

For completeness we reproduce the derivation of this result in Sec. 6.1.1. Our clus-

ton Chern insulator is thus a minimal state with unequal charge and thermal hall

conductance.
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To make the structure clearer, we combine the above state with a free fermion

IQHE with Chern number C = -1. The total system now has o_, = 8 but Ky = 0.

We now consider another state with the same transport properties: imagine the

fermions form Cooper pairs (charge e* = 2 bosons), and the Cooper pairs form a

boson IQHE state. It was shown in Ref. [48, 50, 49, 51] that such a state would

be non-chiral (2,y = 0), but with quantum hall conductance o'y = 2(e*) 2 = 8. The

transport properties of the Cooper pair BIQHE state therefore matches perfectly with

the state we constructed above. In Sec. 6.1.2 we use the edge theory to show explicitly

that the two states are indeed equivalent, even though they appear to be very different

in the way they are constructed. More explicitly, the Cooper pair BIQHE state can

be described by the simple fermionic Hamiltonian:

H[f, F] = Hc=1[ F] + Hc=-1 [f] + Z AFf fjfkfl + h.c., (6.2)
ijkl

where f denotes the charge-1 fermion, F denotes the charge-3 clustered fermion,

i, j, k, 1 represent indices such as spins and sub-lattices, Hc is a quadratic Hamiltonian

that puts the fermions into a band with Chern number C, and the last term reveals

F as the bound state of three fundamental fermions.

ONieV cau aAiLs dIIuur a Uifere~nt state, wherie F1 isn a ahu wihl U = 1, Wilie J

is in a band with C = -9. The total Hall conductance is then uY = C(e*) 2 + Ce2 =

32 - 9 = 0, but the thermal hall conductance is K., = C + 0 = -8. The transport

signature is identical to that of the E8 state[481, which is the minimal chiral state

of charge-neutral bosons. In systems of charge-neutral fermions, the E8 state can be

understood as 16 copies of p + ip superconductors[1061. Our work provides another

way to understand the state in terms of charged fermions.

6.1.1 Hall conductance of fermion SPT states

Consider a 2D system of charged fermions, and assume that there is no fractionalized

anyon excitations in the bulk. It is then well known that such a state must have

integer hall conductance in unit of e2 /h: this can be shown easily by examining the
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statistics of a 27r magnetic flux. We can then combine the system with some integer

quantum hall state to produce a new state with zero hall conductance. Since integer

quantum hall states of fermions have equal charge and thermal hall conductance, the

combined state will have a new thermal hall conductance

RXY = x 3e 2 ) v, (6.3)

where r., and o-, are the thermal and charge hall conductance of the original state

before combining with any integer quantum hall state. Therefore in order to prove

Eq. (6.1), it is sufficient to prove that the thermal hall conductance must be an

integer multiple of eight if the system is non-fractionalized and has zero charge hall

conductance.

We now consider the edge state of this system, which in general is a multi-

component Luttinger liquid

1 1
L = - )K ....... + - EytT 1a, 1 51Av (6.4)

47r 27

described by a symmetric integer K-matrix with an integer charge vector T. A local

object will carry odd charge if it is a fermion, therefore the parity of the nth diagonal

element of K must agree with the parity of the nth entry of r. For non-fractionalized

bulk, we have |det(K)| = 1.

To make our discussion self-contained, we summarize some key facts known about

the edge theory: the operator e 1"OI defined by the integer vector 1 carries spin S =

IlTK-l, and charge Q = TTK -i. It could condense on the edge only if S = 0. When

it condenses, another mode (defined by another integer vector 1') can stay gapless on

the edge only if the operator e'OI commutes with e"zlr, which means lTK-l'= 0.

The fact that the state has zero charge hall conductance means that

07X = rTK = 0. (6.5)

Therefore the operator erIOI carries zero spin and charge. We can then introduce a
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charge-conserving term

AL = Ucos(TIOI), (6.6)

which at sufficiently large U will gap out all the modes that do not commute with

it. The remaining gapless modes, denoted as ,= 01, must satisfy TTK-i = 0

in order to commute with the condensed operator. But this precisely means that the

remaining modes are charge-neutral, since TT K 1 1 gives the charge carried by the

operator eiluir.

Therefore the remaining edge state can be described using another k-matrix after

proper field redefinition, with zero charge-vector r = 0 since all modes are charge-

neutral. Since a local object can be charge-neutral only if it is bosonic, the A-

matrix must describe a bosonic topological state. In particular, the diagonal elements

of k must be even integers. It is known[48] that for bosonic states, the minimal

non-fractional chiral phase (with a non-zero chiral central charge or thermal hall

conductance) is the so-called E8 state, which has r, = 8. The corresponding A-

matrix of such a state is the Cartan matrix for the exceptional Lie group E8 . This

proves our assertion under Eq. (6.3), hence also proves Eq. (6.1).

As a side note, the above derivation is valid for general abelian topological orders

described by a K-matrix with Idetl :; 1, with the only modification that the charge

gap in Eq. (6.6) should be replaced by AL = U cos(NTIOI), where N is some integer

that makes the operator local. The conclusion is unchanged: if oY = 0 and there

is no other symmetry than the charge U(1), then the charge modes on the edge can

be gapped, and the remaining modes can be described by a charge-neutral bosonic

topological order.

6.1.2 The 2D equivalence from edge theories

We show here the equivalence between the fermion model in Eq. (6.2) and the BIQHE

state. It is sufficient to show that the boundary between the two states can be fully
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gapped while preserving charge conservation. The boundary Luttinger liquid

1 1
-=4 ( Kjj8 8t#j + ....... ) + E1 WVTe&p#1 Av (6.7)

is described by the K-matrix with the charge vector r:

1 0 00 ) 1

K, 0 0 -1 0 0 3
K = =(6.8)

0 K2 0 0 0 1 2

0 0 1 0 2

Now consider two possible mass terms:

AL = U1 cos<D1 + U2 cos 4 2

= U1 cos (01 - 2 + 03)

+U 2 cos ( 1 + 02 - 2# 4 ), (6.9)

which obviously preserve the U(1) charge conservation. The null vector criteria[127}

<bjK-1<Dj = 0 is easily satisfied. Therefore Eq. (6.9) fully gaps out the edge theory

while preserving the U(1) symmetry when the couplings U1 ,2 are large.

6.2 3D: clustons in topological band

We now consider a three dimensional fermion system with U(1) charge conservation

and time-reversal symmetry T with T2 = -1 on the physical fermions. Again imagine

a situation in which fermions prefer to form three-body bound states (clustons). We

then put the charge-3 clustons into a Fu-Kane-Mele topological band[25. The state

is obviously interacting and not fractionalized, so one can again ask what phase the

state belongs to. It is easy to see that the state should be nontrivial, for example,
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Figure 6-2: (a) Construction of the cluston TI: putting the three-fermion clustons into
a topological band. (b) Transport signature on a T-breaking surface. oxy - =
4(mod8) signifies a nontrivial SPT.

through the magneto-electric response[64] described by a 9-term with

0 = 7r(e* ) 2 = 97r = ir (mod27r). (6.10)

A naive answer could then be that the state is equivalent (connected) to the free

fermion topological insulator. However, we will show that this is not true.

We answer the question by looking at the surface. The simplest symmetric surface

state is a single Dirac cone of fermions carrying charge e* = 3. However, for our pur-

pose it is easier to reveal the nontriviality (and fully determine the topological state)

from symmetry-breaking surface states. If we break the U(1) charge conservation

on the surface (e.g. by depositing a superconductor on top), the Dirac cone can be

gapped out. If we keep the U(1) symmetry but break time-reversal T instead, we can

also gap out the Dirac cone, but the surface will have nontrivial transport signatures.

It is well known that the Dirac mass gap leads to "half" quantum hall and thermal

hall conductance. In our case we have a., = 1(e*) 2 = i, and ii, = . since the

carrier charge does not affect thermal transport. We therefore have o0y - X = 4,

which is half of what is allowed in strictly two dimensions without fractionalization

(for example, the state considered in Eq. (6.2) has axy - XY= +8).

The axv - rx, mismatch is zero on the surface of the free fermion topological

insulator, since heat carriers are also charge carriers in free fermion systems. When

interactions are introduced, the mismatch can shift by integer multiples of eight, by
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depositing either the BIQHE state of Cooper pairs, or the E8 state of spins, i.e.

UXY - Xy = 8n if the state is equivalent to the free fermion TI. Therefore the state

we described above cannot be equivalent to the free fermion TI.

Non-fractional insulators (SPT states) with U(1) and T symmetries in three di-

mensions are classified[3 by Z'. There are six nontrivial SPT states distinct from

the free fermion TI. Three out the six states have ux, = (mod1) when T is bro-

ken on the surface. Among the three states, only one of them can be completely

gapped out by breaking U(1) charge-conservation (while keeping T). This state also

has ox, - XY = 4(mod8) when T is broken on the surface. Thus the clustered TI

state described above is precisely this state. Ref. [3] provided two equivalent ways

to understand the state: one can think of it either as the combination of the free

fermion TI and a spin SPT (dubbed topological paramagnet efTmfT in Ref. [1, 3]),

or as the combination of the free fermion TI and the bosonic topological insulator

(BTI)[43, 1, 69] of Cooper pairs. Our clustered TI provides another way to view the

state, and it differs from the free fermion TI by a bosonic SPT state of either the spin

or the Cooper pair.

Our result also provide a simple way to (at least theoretically) construct the BTI

state with fermions, in the same spirit as Eq. (6.2):

H[f, F] = HFKM[F] + HFKM[f] + XFfffjf + h.c., (6.11)
ijkl

where f denotes the charge-1 fermion, F denotes the charge-3 clustered fermion,

i, j, k, 1 represent indices such as spins and sub-lattices, HFKM is a quadratic Hamil-

tonian that puts the fermion into the Fu-Kane-Mele band, and the last term reveals

F as the bound state of three fundamental fermions.

Previously, the simplest symmetry-preserving surface state of the topological para-

magnet ef Tmf T was given by a gapped topologically ordered Z2 gauge theory {1, e, mr, E,

with both the electric-like particle e and magnetic-like particle m being fermions and

Kramers' (T2 = -1). Likewise, the simplest symmetry-preserving surface state of the

boson TI (BTI) was given by another gapped topologically ordered Z2 gauge theory
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{ 1, e, m, c}, with both the e and m particles carrying half-charge (in our case the

Cooper pair boson carries charge-2, so e and m carry charge-1). The two states are

distinct as purely bosonic states, but in the presence of electrons (charge-1 fermions),

the two states become equivalent since the two surface gauge theories can be trans-

formed to each other by attaching an electron to the e and m particles. Eq. (6.11)

leads to another simple symmetric surface state without topological order (but is gap-

less instead), namely two Dirac cones carrying charge e = 1 and e* = 3 respectively:

L = ?o-(-ia,, + A,,)4' + +o-(-i, 3A,+ ), (6.12)

where AP is the external probe gauge field. This also implies that the Dirac theory

in Eq. (6.12), even though is free from the famous parity anomaly[28, 291, suffers

from another anomaly first proposed by Vishwanath and Senthil[43] in the context of

topological quantum field theories. The Vishwanath-Senthil anomaly can be viewed

as a gravitational analogue of the parity anomaly: if the theory in Eq. (6.12) is

coupled to gravity, then a gravitational Chern-Simons term at level c = 4(mod8)

must be introduced to regularize the theory 2 , thus time-reversal symmetry must be

broken. In terms of the bulk theory, this corresponds to a gravitational 9-term[1121

at 6 = 87r.

One can also show the equivalence between the fermionic state in Eq. (6.11) and

the Cooper pair BTI directly from the symmetric surface states. The idea is to

show that the surface Dirac theory in Eq. (6.12) can be gapped by introducing the

corresponding Z2 topological order. However, the argument, which we briefly outline

in Sec. 6.2.1, is considerably more technical. The fact that the equivalence was easily

established using the result in Ref. [3] is another illustration of the usefulness of the

Zi classification.

One can also imagine similar states with five-fermion clustons, or any other odd

number for e*. By repeating the previous argument, it is easy to show that the cluston

TI differs from the free fermion TI by the Cooper pair BTI if e* = t3(mod8), and

2More precisely, we have c - k = 4(mod8) where k is the level of the Chern-Simons term of the
U(1) gauge field.
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equivalent to the free fermion TI if e* = 1(mod 8).

6.2.1 The 3D equivalence from symmetric surface states

We show here the equivalence between the fermion model in Eq. (6.11) and the Cooper

pair boson TI (BTI) state. One of the defining features[43, 1, 691 of the BTI state

is that when the surface breaks U(1) but not T, it is gapped without topological

order, but the vortex of the surface superconductor has fermion statistics. To access

a fully symmetric surface state, one can imagine driving a surface phase transition

and condensed double-vortex (which is a boson). It is well known that double-vortex

condensates produce Z2 topological orders[80, 1041, and in our cSCtoBandInsulatorase

we get precisely the surface topological orders studied in[43, 1, 691.

It is easy to see that when U(1) symmetry is broken on the surface, the surface

Dirac theory Eq. (6.12) (for general odd e*/e = n) can be fully gapped by introducing

the pairing term:

AL = iAouoy + i A"To-jT + h.c., (6.13)

where we wrote the second pairing amplitude as proportional to A" to keep the pairing

field A formally charge-2, and is a non-universal coupling constant. We then have

to show that the vortex in A field has fermion statistics for n = +3(mod 8) and boson

statistics for n = 1 (mod 8).

Since there are even numbers of Dirac cones in total, the vortex[102] does not

trap any Majorana zero-mode and is thus abelian. The abelian part of the statistics

is then given by the topological spin eio, which receives nontrivial contribution from

both Dirac cones. It is important to notice here that while the charge-1 fermion 7P

sees the fundamental vortex as a ir-flux, the charge-n fermion T sees it as a nr-flux.

Therefore the topological spin of the fundamental vortex is given by eio = eel eidn,

where e 0n is the topological spin of a n7r-flux seen by a paired single Dirac cone.

Fortunately this topological spin e'on has been computed already in Ref. [2, 53], and
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is given by

e " = 1 if n = I (mod 8), (6.14)

e" = -1 if n = 3(mod8).

Therefore, when n = t1 (mod 8)the total topological spin is e'0 = 1 and the fun-

damental vortex is a boson, and when n = 3 (mod 8) the total topological spin is

eio = -1 and the fundamental vortex is a fermion. When the vortex is boson, it can

be condensed and produce a trivial insulator on the surface, and the corresponding

bulk state is also trivial. But if the vortex is a fermion, one can no longer condense

it to produce a trivial surface insulator. One can instead condense double-vortex

to produce an insulator which has intrinsic Z2 topological order. Such a topologi-

cal order contains the remnant of the uncondensed vortex E which is a non-Kramers

fermion, and the remnant of the Bogoliubov quasi-particle ef which is a Kramers

fermion. The two particles see each other as ir-flux, and the bound state of the two

(denoted as mf) is another fermion which is also Kramers. Therefore the Z2 gauge

theory contains three distinct fermions, two of which are Kramers. This is exactly the

surface topological order of the topological paramagnet efTmfT. Binding a physical

ferminn (chargt-1, Krrnrq) tfn P , and' *y rnsrnr tm tci , 4harge-1 r% ibQrn. Thusr.

the topological order can also be viewed as one with two bosons and one fermions,

with both bosons carrying charge-1. This is exactly the surface topological order of

the Cooper pair BTI.

6.3 Bosonic states: parton constructions

So far we have discussed various states in fermionic systems (i.e. systems with

fermions in the microscopic Hilbert spaces). In this somewhat more technical sec-

tion we consider purely bosonic systems (without fermions in the microscopic Hilbert

space) by gauging the fermions. This leads us to some new parton constructions of

various bosonic states.
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2D: For the E8 state, we start from nine copies of free fermion Chern insulator

and one copy of charge-3 cluston Chern insulator with the opposite chirality. We

then gauge the U(1) symmetry. Since the state has no net hall conductance, the

dynamics of the compact U(1) gauge theory does not contain Chern-Simons term.

It is well known that in 2 + 1 dimensions a compact U(1) gauge theory without

Chern-Simons term is always confined. Therefore we automatically obtain a confined

(unfractionalized) bosonic state with .,Y = 8, which has a chiral edge state with

chiral central charge c - c_ = 8.

For the BIQHE state, we start from Eq. (6.2) and then gauge the fermion parity

(f -+ (-1)f) which is a Z2 symmetry (constructions using higher gauge symmetries

were proposed earlier in Ref. [128, 129, 130, 131]). A simple way to realize this in a

parton construction is to start with two flavors of charge-2 bosons B 1 ,2 and decompose

them as

B1 = fif2,

B2 = fjtF, (6.15)

where f1,2,3 are charge-1 fermions and F is a charge-3 fermion. It is possible to

arrange a mean field ansatz for the fermions such that the gauge symmetry reduces

to a simple Z2 which is the fermion parity, and F form a band with Chern number

C = 1 while fl,2,3 together form a band with Chern number C* = -1. Since the state

is non-chiral, the Z2 gauge flux (also dubbed as "vison") carries bosonic statistics. The

total quantum hall conductance is oy = 8, so the vison carries integer charge and can

always be neutralized by binding certain number of f fermions (which does not change

the vison statistics due to the mutual statistics). The system can thus go through

a confinement transition by condensing the gauge flux, and the resulting state is a

confined bosonic state (with bosons carrying charge e* = 2), with o-., = 8 = 2(e*)2

and ,,y = 0.

3D: We start from Eq. (6.11). If we gauge the U(1) symmetry, the U(1) gauge

theory does not contain nontrivial 6-angle (0 = 97r - 7r = 0(mod 27r)), therefore the
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gauge theory can be confined while preserving T. The resulting system has only

charge-neutral bosons (spins), and we obtain the topological paramagnet dubbed

efTmfT in Ref. [1, 3].

Instead of gauging the U(1) symmetry, we can also choose to gauge the fermion

parity (f -+ (-1)f) which is a Z2 symmetry (for example using the parton decomposi-

tion in Eq. (6.15)). The Z2 gauge theory can again be confined, and we get a system

of charge-2 bosons. The resulting state is then the BTI of these charge-2 bosons.

Constructions with higher gauge symmetries were proposed earlier in Ref. (132, 133].

There are, however, two subtle issues on this construction. The first issue is that

whether the Z2 flux loops coupled to the fermions in Eq. (6.11) can indeed proliferate

and produce a confined gapped bulk. This is nontrivial because naively the loop hosts

gapless fermion modes[134. We show in Appendix 6.3.1 that the flux core can indeed

be gapped, hence the flux loops can proliferate and confine the fermions. Since the

gapless mode in a Z2 flux core in a 3D TI is identical to the edge mode of the 2D

TI[135], our result also shows that putting charge-3 clustons into a 2D TI (quantum

spin hall state) does not produce any new state, instead it gives the conventional 2D

TI. Interestingly, this is related to the absence of Cooper-pair boson SPT state in 2D

fermion systems.

The second issue is the nature of the confined (bosonic) state. The boson system

after confinement has U(1) x T symmetry. In such systems the efTmfT topological

paramagnet and the bosonic topological insulator (BTI) are two distinct states, unlike

in fermion systems where the two become equivalent. We therefore have to determine

which boson SPT state one get by confining the fermion state. The construction of

symmetric gapped surface state (with topological order) outlined in Sec. 6.2.1 shows

that the Kramers' fermions in the efTmfT topological order couples to the Z 2 gauge

field, hence they must be confined with the parton fermion and form charge-1 non-

Kramers bosons. The deconfined surface state is thus the eCmC topological order,

with both e and m being charge-1 non-Kramers bosons, which is exactly the surface

state of the boson TI.

However, the above result leaves one question unsolved: since the two states
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efTmffT (topological paramagnet) and eCmC (BTI) are equivalent in fermion sys-

tems, why would confinement prefer one state over the other? To answer this question,

we need to examine the dynamics of the Z2 gauge field coupled to the fermions more

carefully. We show in Sec. 6.3.2 that there are two distinct confinement transitions

one can drive the system through: a conventional one resulting from a trivial dy-

namics of the gauge field (which was implicitly assumed above), and a "twisted" one

which requires nontrivial dynamics on the gauge field. In our case, the conventional

confinement results in the BTI state, while the twisted confinement results in the

efTmfT topological paramagnet. Therefore the BTI state seems to be the more

natural confined phase, since it only requires a trivial dynamics on the Z2 gauge field.

6.3.1 Gapping out cluston helical modes

Here we show that two copies of helical modes in 1D, one carrying charge-1 and

the other one carrying charge-3, can be fully gapped without breaking the U(1) N T

symmetry. Such helical theory arises both in the Z2 flux core of the fermion system

described by Eq. (6.11), and on the edge of a 2D state, which is a combination of the

free fermion and the cluston 2D TI.

The Luttinger liquid

1 1
1 = 1 (KjOz$iOt j + ....... ) + 1EciTI&jrOjAv, (6.16)

is described by the 8 x 8 K-matrix:

K 1  0 0 0 o- 0 0 0

0 K2  0 0 0 0'z 0 0
K =(6.17)

0 0 K3  0 0 0 o- 0

0 0 0 K4  0 0 0 o,
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charge vector T:

T =

and time-reversal implementation:

0 0 0

U -0-X

0 0

0 0

-o-x

0 0 0

The helical modes K1 = o- comes from the charge-3 cluston TI, while K2,3 ,4 = a,

come from the charge-1 TI. We choose to work with three charge-1 helical modes

instead of only one to avoid subtleties from one-band picture.
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Now consider the following term:

AL = Ucos 1 + Ucos 2 + U'cos 3 + U"cos 4

= Ucos(-01 +#0 3 +5 6+q8) (6.20)

+U cos (-02 +#4 +05 +#0 7)

+U'cos (#1 - 02 + 03 - 04) (6.21)

+U" cos (1 - 2 + 05 - 06 ).

It is straightforward to check that Eq. (6.20) preserves both U(1) and T symmetry.

The null vector criteria[127] DiK- Py = 0 is easily satisfied, so Eq. (6.20) fully gaps

out the flux core. To ensure that the theory does not break T spontaneously, we

should also check the primitivity condition proposed in Ref. [75], by checking the

mutual primitivity of all the 4 x 4 minors of {I}. This can be done straightforwardly,

and indeed the primitivity condition is satisfied.

6.3.2 Conventional and "twisted" confinement

The question can be simplified by considering the combined state of the efTmfT

(topological paramagnet) and eCmC (BTI), which has a surface Z2 topological order

with both e and m being electron-like (Kramers fermion carrying charge-1) and is

therefore dubbed efCTmf CT. The equivalence of the two states in fermion systems

implies that their combined state is equivalent to a trivial fermion insulator, as can

be seen directly from the surface topological order: one can condense the composite

of the e particle and the microscopic fermion (or parton in gauged systems), which

confines the surface completely without breaking any symmetry.

Our question now becomes: can one get the efCTmf CT state in a boson system,

by confining fermions in a trivial insulator coupling to a Z2 gauge field? Naively the

confinement should simply lead to a trivial boson state since the underlying fermion

state is trivial. However, we will show below that the nontrivial state can indeed be

obtained if the dynamics of the gauge field is sufficiently nontrivial (which, crucially,
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does not require non-triviality of the underlying fermions state). We will focus our dis-

cussion on the specific example, though generalizations to other symmetries/systems

are straightforward.

In the presence of time-reversal symmetry T, the Z2 gauge flux loops can prolif-

erate in different ways, hence giving rise to distinct confined phases. There is always

a trivial confinement, namely the flux loops proliferate with a positive-definite am-

plitude for all configurations, written schematically as

(WC) ~ 1, (6.22)

where Wc is the loop creation operator for configuration C. There is however another

way of loop proliferation, namely the amplitude acquires a minus sign whenever the

loops self-link (one needs to frame the loops into ribbons to make the self-linking

well-defined):

(Wc) ~ (-)LC, (6.23)

where Lc is the self-linking number of configuration C. It was shown in Ref. [1011 that

the end point of such loops on the surface become fermions. If the surface was trivial

before confinement, after the "twisted" confinement there will be a Z2 gauge theory

emerging on the surface. The excitations of the surface Z 2 gauge theory include the

un-condensed flux which is now a fermion, and the deconfined Z2 gauge charge which

only lives on the surface. In our example, the gauge charge is electron-like (fermion

carrying U(1) charge and Kramers' degeneracy), and the gauge flux is a non-Kramers

fermion carrying no charge (call it E). The surface Z 2 gauge theory therefore has

both e and m particles being electron-like. The confined state is thus nothing but the

efCTmf CT boson SPT state.

174



Chapter 7

Topological Paramagnetism in

Frustrated Spin-One Mott Insulators

Frustrated quantum magnets display a rich variety of many-body phenomena. Some

such magnets show long-range magnetic order at low temperature, often selected

out of a manifold of degenerate classical ground states by quantum fluctuations. A

very interesting alternative possibility - known as quantum paramagnetism - is

the avoidance of such ordering even at zero temperature. Quantum paramagnets

may be of various types. A fascinating and intensely-studied class is the quantum

spin liquids: these display many novel phenomena, for instance fractionalization of

quantum numbers and topological order, or gapless excitations that are robust despite

the absence of broken symmetries [10, 11, 12].

Recently there has been much progress in understanding a different type of re-

markable quantum paramagnet. These are phases which have a bulk gap and no

fractional quantum numbers or topological order. Despite this, they have nontrivial

surface states that are protected by global symmetries. These properties are reminis-

cent of the celebrated electronic topological band insulators. Hence they have been

called topological paramagnets [431. Topological paramagnets and topological band

insulators are both examples of what are known as Symmetry Protected Topological

(SPT) phases [37, 38, 39, 40, 41, 42, 16, 17]. In the last few years tremendous progress

has been made in understanding such SPT phases and their physical properties in
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diverse dimensions (for reviews, see Refs. [123, 124]).

The main focus of the present chapter is on three-dimensional topological param-

agnets that are protected by time reversal (we also briefly discuss topological para-

magnets protected by other symmetries, notably conservation of at least one spin

component). These are interesting for a number of reasons. First, time reversal

is a robust symmetry of typical physical spin Hamiltonians. In 1D the familiar

Haldane/AKLT(Affleck-Kennedy-Lieb-Tasaki) chain is the only time reversal pro-

tected topological paramagnet[35, 36, 139, 140] while in 2D there are no time re-

versal protected topological paramagnets. In 3D however there are three distinct

non-trivial phases [43, 1, 44] (corresponding to a classification by the group Z2). Sec-

ond, regarded as an electronic insulator, unlike the ID Haldane chain [125], these 3D

topological paramagnets survive as distinct interacting SPT insulators [3]. The prop-

erties and experimental fingerprints of such topological paramagnets were described

in Refs. [43, 1, 44, 3]. However there is currently very little understanding of where

such phases might actually be found. In this chapter we propose that frustrated

spin-1 Mott insulators may be good places to look for an example of such phases.

Already in the familiar 1D example it is the spin-1 antiferromagnetic chain, rather

than the spin-1/2 chain, that naturally becomes a topological paramagnet. In 3D

for one of the topological paramagnets we provide a physical picture and a parton

construction which are both very natural for the spin-1 case. We hope that our

observations inspire experimental and numerical studies of frustrated spin-1 quantum

magnetism in the future. Towards the end of the chapter we remark on materials

that may form such interesting frustrated magnets.

The three 3D topological paramagnets that are protected by time reversal sym-

metry alone [43, 1, 441 all allow for a gapped surface with Z2 topological order (i.e.

a gapped surface Z2 quantum spin liquid) even though the bulk itself is not topolog-

ically ordered. The properties of this surface theory give a useful way to label the

bulk phases. The surface has gapped quasiparticle excitations - labelled 'e' and 'M'

- which are mutual semions. These may be thought of as the electric charge and

magnetic flux of a deconfined Z2 gauge theory (like the vertex and plaquette defects
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of Kitaev's toric code 1136]). At the SPT surfaces these particles have properties -

self-statistics or time reversal transformation properties - that are impossible in a

strictly 2D system, and which encode the topology of the bulk wavefunction. The

three nontrivial bulk states are denoted:

eTmT, efTmfT, efmf.

In the first and second, the surface e and m excitations are each Kramers doublets

under time reversal, denoted by T. In the second and third they are fermions (f),

while in the first they are bosons. This chapter focuses primarily on the 'eTmT'

state.

We begin by explaining a physical picture of a suitable ground state wave function

for the eTmT topological paramagnet. This is most easily visualized on a diamond

lattice. We first close-pack each interpenetrating fec sublattice of the diamond lattice

with closed loops. On each loop we place all the spin-1 moments (located at the

diamond sites) in the ground state of the 1D AKLT chain. We then superpose all

such loop configurations with a crucial (-1) sign factor whenever loops from the two

different fec sublattices link. We argue that this construction yields the topological

paramagnet.

To understand the topological properties of such a wave function we describe a

simple exactly solvable loop gas Hamiltonian - equivalent to two coupled Ising gauge

theories - that clarifies the role of the '(- 1 )lir"cin' sign structure. The same model

has also been independently studied in Ref. [1371. In this solvable model the loops do

not have AKLT cores but there are two species of loops on different sublattices with

the mutual (-1) linking sign. It demonstrates very simply how this sign leads to a

state without intrinsic topological order. (This loop gas is not in the eTmT state,

because of the absence of AKLT cores, but we show it to be nontrivial in a different

sense.)

Next we use the two-orbital fermionic parton representation developed for spin-1

magnets [138] to construct possible ground states. When the fermionic partons have
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the mean-field dispersion of a certain topological superconductor, we show that the

gauge fluctuations associated with the parton description convert the system into a

topological paramagnet. In this construction the mean field state is unstable toward

confinement by gauge fluctuations, as a result of a continuous nonabelian gauge sym-

metry. Despite this the bulk gap survives, leaving behind a non-trivial surface that

we are able to identify as that of the eTmT topological paramagnet. As a warm

up exercise to illustrate some of the ideas of this 3D construction, we also describe

how to access the 1D Haldane phase by confining a topological superconductor of

parton fermions. The 3D construction naturally suggests alternative bulk wave func-

tions for topological paramagnets, in the form of Gutzwiller-projected topological

superconductors. This may be fruitful for future numerical work on the energetics of

microscopic models.

This parton construction also gives access to other SPT states for quantum mag-

nets in 3D. For instance we show how to naturally obtain an SPT paramagnet (dubbed

eCmT in Ref. [1]) protected by U(1) x ZT, where the U(1) describes rotation about

one spin axis, say Sz, and ZT is time reversal.

Finally we show how to access a bulk U(1) quantum spin liquid with non-trivial

implementation of time reversal symmetry. Interestingly simply condensing the mag-

netic monopole of this U(1) spin liquid leads to an SPT state dubbed eCTmT in the

presence of both spin rotation and time reversal symmetries. If only time reversal is

present this becomes the eTmT state.

7.1 Loop gas states

In this section we describe a loop gas wavefunction that is naturally adapted to spin

one magnets and gives an intuitive picture for the eTmT state. The wavefunction

is a superposition of loop configurations, with each loop representing an AKLT state

[139, 1401 for the spins lying on it. A given configuration enters the superposition with

a sign factor determined by its topology: specifically, the loops come in two species, A

and B (one associated with each sublattice of the bipartite diamond lattice) and the
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sign depends on the linking number of A loops with B loops. This geometrical picture

makes the relationship between the bulk wavefunction and the surface excitations

particularly simple. The surface e and m excitations are endpoints of the two species

of AKLT chains, and are Kramers doublets since an AKLT chain has dangling spin-

1/2s at its ends.

In Sec. 7.2 we describe a similar wavefunction for 'pure loops', i.e. loops that do

not carry an internal AKLT structure. This may be regarded as a state of two coupled

Ising gauge theories. It is not in the eTmT phase, but it illustrates the basic features

of the loop gases in a simple model with an exactly solvable Hamiltonian. This 'pure

loop' model is also interesting in its own right: when open strands (as opposed to

closed loops) are banished from the Hilbert space, i.e. when charge is absent, it is in a

nontrivial phase despite the absence of topological order. Therefore it may be viewed

as a 'constraint-protected' state. It would be interesting to relate this to the recent

ideas of Ref. [1411. We note that the constrained models discussed in Ref. [1421 are

also believed to be separated from the trivial phase by a phase transition, despite the

absence of topological order.

The wavefunctions discussed here are in a similar spirit to the Walker Wang mod-

els, which are formulated in terms of string nets with a nontrivial sign structure, and

show bulk confinement and surface topological order [143, 144, 44]. Constructions

of SPTs using Walker Wang models were given in Refs. [44, 1451. 2D 'symmetry-

enriched' topological states [146, 147, 1481 and SPT states [149] have also been con-

structed by attaching AKLT chains to loop-like degrees of freedom (see also [150]).

7.1.1 Fluctuating AKLT chains

The diamond lattice is made up of two fec sublattices, A and B. If CA is a configu-

ration of fully packed loops on A (with every A site visited by exactly one loop), we

define ICA) to be a product of AKLT states IL) for each of the loops L in CA,

ICA) = J IL). (7.1)
LECA
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Figure 7-1: Two species of AKLT loops, one on each sublattice of the diamond lattice

(blue and red). Note that loops live on the links of the fec sublattices, i.e. on next-

nearest-neighbour bonds of diamond.

Similarly ICB) is the state corresponding to a loop configuration CB on B. To define

the AKLT states 1,) fully we must choose an orientation for the fcc links, as discussed

below (Sec. 7.1.2).

Let X(CA, CB) be the mutual linking number of the two species of loops. Since

the loops are unoriented, this is defined modulo two: X(CA, CB) = 0,1. A schematic

wavefunction for the eTmT phase may be written in terms of X(CA, CB):

14D) = S (-1)(CACB) ICA) ICB) (7.2)
CA,CA

For concreteness, we take periodic boundary conditions. The sums over CA and CB are

then each restricted to loop configurations with an even number of strands winding

around the 3D torus in each direction, for reasons discussed below. This global

constraint, together with the geometrical fact that the links of A never intersect

those of B, ensures that X(CA, CB) is well defined.

The entanglement between the two sublattices in Eq. 7.2 is entirely due to the

sign factor. First consider what happens in the absence of this sign factor. Each

sublattice then hosts a superposition of loop configurations with positive amplitude,

e.g. ECA ICA). By analogy with the usual picture of deconfined Z 2 gauge theory as a

superposition of electric flux loop configurations [1511, we would expect such a state to
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show Z2 topological order. (It is a 3D version of the 'resonating AKLT' states studied

in 2D [146, 147, 148].) The endpoint of an open AKLT chain is the deconfined Z2

charge in this state. Associated with the topological order is ground state degeneracy

- different ground states are distinguished by the parity of the winding number in

each spatial direction.

In contrast, 14b) is not expected to show topological order, despite the prolifera-

tion of long loops in Eq. 7.2. Instead it describes a phase in which the endpoints of

open chains are confined in the bulk. Furthermore there is no ground state degen-

eracy: states with odd winding numbers are not ground states (i.e. are not locally

indistinguishable from 14<)).

More detailed discussion of this is deferred for the solvable model of Sec. 7.2, but

the basic idea is the following. While the amplitude (-1)(CACB) depends on the

global topology of the loop configurations, it amounts to the simple local rule that

the amplitude changes sign if an A strand is passed through a B strand. It is useful

to imagine a hypothetical parent Hamiltonian that imposes this sign rule. But the

sign rule cannot be consistently imposed if the wavefunction includes open strands or

configurations with odd winding numbers (see below). Similar phenomena occur in

the confined Walker-Wang models [143, 144, 441.

However, open endpoints are deconfined at the boundary, for appropriate bound-

ary conditions. The minus sign associated with passing an A strand through a B

strand in the bulk means that the endpoints are mutual semions [101] - see Fig. 7-2.

They are also Kramers doublets. These surface properties are the defining features

of the eTmT state. The wavefunction 14D) has more symmetry than simply time re-

versal (e.g. separate spin rotation symmetries for each sublattice) but if it is indeed

in the eTmT phase then these symmetries could be weakly broken without leaving

the phase.

7.1.2 Further details on fluctuating AKLT state

To write the AKLT-based state explicitly it is convenient to represent the spin-one at

each site i in terms of auxiliary spin-1/2 bosons [139, 140, 150]. If the boson creation
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Figure 7-2: For appropriate boundary conditions, endpoints of A and B chains (red

and blue respectively) give surface excitations with mutual semionic statistics. Braid-

ing the anyons on the surface (first arrow) changes the sign of the wavefunction, for

consistency with the rule that configurations related by passing an A strand through

a B strand in the bulk (second arrow) appear in the wavefunction with opposite sign.

operators are ba (a =t, 1), then Si = lbt o-,obi. The occupation number btibi( is

equal to two to ensure spin one at each site. The AKLT state IL) is then created

by acting on the boson vacuum with operators St that create singlet pairs on the

links of the loop, which we normalize as St = (bb - btb>) This operator is

antisymmetric in (i, j), so to define 14)) we must fix an orientation for the links of each

fec sublattice. (The fec lattice has four sublattices, a, b, c, d, so for example we could

orient the links from a -- b, a -+ c, a -+ d, b -+ c -+ d -+ b, with the orientations on

each sublattice related by inversion symmetry.) Then for each sublattice

IC)= i Stlvac), (7.3)
(ij)EC

where i is the site at the tail of the oriented link (ij). These states satisfy (CIC) =

Roops(1+ (-1)e/ 3 -1), where f is the length of a given loop [139, 140].

It should be noted that that expectation values in the state 14)) are nontrivial, in

particular because overlaps (CIC') for distinct C, C' are nonzero. So while it is plausi-

ble that I<b) is in the eTmT phase, this cannot be established purely analytically. For

example, the state could in principle break spatial or spin rotation symmetry sponta-

neously. A cautionary example is given by the uniform-amplitude resonating valence

bond state for spin-1/2s on the cubic lattice: this has weak Noel order [152], despite

being a superposition of singlet configurations which individually have trivial spin

correlations. In the present model, the entanglement between sublattices supresses

off-diagonal elements of the reduced density matrix when written in the AKLT-chain
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Figure 7-3: Left: Loops on interpenetrating cubic lattices A and B. The state IT) is

a superposition of such configurations with signs determined by linking of A and B

loops. Right: the product of Pauli matrices defining the flip term F on a plaquette

(see Eq. 7.6).

basis1 . Together with the non-bipartiteness of the fec lattice, this makes spin order

seem less likely. But since I<b) is intended to illustrate the topological structure of

the phase, and not as a ground state of a realistic Hamiltonian, it may not be cru-

cial whether it is in the desired phase as written or whether further tuning of the

amplitudes is required.

7.2 'Pure loop' state

It is enlightening to look at the simplest model[137] that captures the (- 1 )"lin"ng sign

structure. To this end we take a system of spin-1/2s on the links of two interpene-

trating cubic lattices A and B, as shown in Fig. 7-3. We think of a down spin (in the

'z' basis) as an occupied link, and an up spin as an unoccupied one. The number of

occupied links at each vertex is always even in the state we consider, so the configu-

rations of occupied links, CA and CR, can be decomposed into closed loops.2 We refer

to CA and CB as loop configurations. Other solvable loop gas/string net models have

been considered in Refs. [144, 44], using the Walker Wang construction [143].

The 'pure loop' state analogous to 14<) above is (again we sum only over loop

I1n the 'pure loop' state of Sec. 7.2, the reduced density matrix for a single sublattice is diagonal:

PA X ECA ICA) (CAI. The reduced density matrix for the AKLT based state does not have a simple
form, but by analogy we expect a suppression of off-diagonal elements. (In the artificial limit where

they are completely suppressed, the spins are trivially short-range correlated.)
2With a harmless ambiguity when the number of occupied links at a vertex exceeds two.
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configurations with even winding numbers on each sublattice):

E) = (-1)X(CACB) ICA) CB). (7.4)
CA,CB

We may view CA and CB as the electric flux line configurations for a pair of coupled

Z2 gauge fields, with one Z2 gauge field living on each cubic lattice. Imposing the

above sign structure for the two sets of electric flux lines is equivalent to binding the

electric flux line of each gauge field to the magnetic flux line of the other, as will be

clear shortly.

It is straightforward to write down a gapped parent Hamiltonian Jtlinking for I I),
using the fact that flipping the occupancy of all the links on the plaquette changes the

linking number X(CA, CB) if and only if the link piercing the plaquette is occupied.

WHinking is a sum of terms for the plaquettes p of each cubic lattice:

Wfinking - J TA, + J E Fp). (7.5)
\ pEA pEB /

The operators T A and FB flip the occupancy of the links on a plaquette, with a sign

that depends on whether the link piercing it is occupied. Allowing p to denote both

a plaquette and the link piercing it, and denoting the Pauli operators on A and B by

a and r respectively,

T Ap =T J1 9 7X, FBp = Op (ri -6)
1ep 1ep

These operators all commute, so the Hamiltonian is trivially solvable. IT) is the

unique ground state and minimises each term of lifinking since T 'I) = IT) for each

plaquette operator.

The state IT) contains only closed loops, i.e. it satisfies

flcr1 =i for v E A, frli= 1 for v E B (7.7)
1Ev 1Ev
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where v denotes a vertex and 1 E v the links touching v. Any state satisfying F I') =

11F) for all the plaquette operators must also satisfy these vertex conditions, because

REV 01 and l, Tf can be written as products of Ts.

We may regard Eqs. 7.7 as the gauge constraints for a pair of pure Z2 gauge

theories (the Z2 versions of V.E = 0). The two electric fields are given by o- and TZ

and live on the links of A and B respectively. The magnetic field of each gauge field

lives on the links of the opposite lattice to its electric field. For example the magnetic

field of a is given by HE o-X, where p is a plaquette of A, or equivalently a link of B.

In this language, ilinking simply glues the electric flux line of each species to the

magnetic flux line of the other. The a-magnetic flux and the T-electric flux are equal

since FA = 1, and the c--electric and r-magnetic fluxes are equal via FB = 1.

The state I T) is not topologically ordered. Neither is it a time-reversal protected

SPT: it can be adiabatically transformed to a product state without breaking time

reversal symmetry. However it is protected if impose Eqs. 7.7 as constraints: i.e. if

we forbid open strands, as opposed to closed loops. In the gauge theory language,

this means forbidding charge. With this constraint it is impossible to reach a trivial

state without going through a phase transition, as follows from the self-duality of the

state described in Sec. 7.2.1.

We will explain these features from several points of view below. One convenient

approach which leads to a geometric picture is to switch from the (o-', r) basis used

in Eq. 7.4 to the (o-z, Tx) basis. The a- configuration is a loop configuration on the A

lattice, as above. We represent the T' configuration by a configuration of membranes

made up of plaquettes on the A lattice: r; = -1 represents an occupied plaquette,

and -r = 1 an unoccupied one.

The TB terms in RjLinagig act on a link of the A lattice together with the four

plaquettes touching it. TB = 1 imposes the rule that the o-z loops are glued to the

boundaries of the TX membranes, i.e. to the links where an odd number of occupied

plaquettes meet. This is the gluing of a-electric flux lines (where az = -1) to T-

magnetic flux lines (where H rx = -1) mentioned above.

Let M denote a membrane configuration, and IM) the corresponding state with
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Figure 7-4: After a basis change, IT) is a superposition of membrane configurations

(TX = -1 on shaded plaquettes) with red loops (where o' = -1) glued to membrane

boundaries. (The red loops are a-electric lines and the membrane boundaries are

T-magnetic lines.)

TX = -1 on the occupied plaquettes. Let DM be the loop configuration given by the

boundaries of the membranes in M. Then IT) can be written (neglecting an overall

constant)

IT) ICA) IM). (7.8)
CA M

OM=CA

Fig. 7-4 shows the geometrical interpretation of this state. It is a soup of rx mem-

branes, with o' loops glued to their boundaries.

Confinement of string endpoints is easy to see in this basis. A pair of vertex exci-

tations at which IJl , f = -1 are connected by an open string. Since the boundary

of M contains only closed loops, the open string makes it impossible to satisfy the

gluing of strings to membrane boundaries demanded by the YB terms in Rinking. If

the separation of the vertex defects is D, there must be at least D unsatisfied links,

giving a linear confining potential for such defects. For similar reasons, a configu-

ration with an odd number of winding a-' strands in some direction costs an energy

proportional to the spatial extent of the system in this direction. By symmetry, this

applies equally to the TZ strings that are present in the original basis.

We can also understand the confinement of string endpoints algebraically (Refs. [144,

44] give analogous arguments for bulk confinement and surface topological order in

the Walker Wang models). The Hamiltonian in Eq. 7.5 is clearly exactly soluble not

just for the ground state but for all excited states. An 'elementary' excitation is given
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by a 'defect' in some square plaquette, say on the B lattice, with

FBp = -1 (7.9)

while F = +1 on all other plaquettes of either sublattice. Such a defect plaquette

costs energy 2J. It leads to a violation of the closed loop vertex constraint for a'

on the two vertices of the A sublattice connected by the A-link that penetrates the

defect plaquette. Thus the excitation we have created has two string end-points on

nearest neighbor A-sites. To move these string endpoints apart by a distance D we

must create O(D) such defect plaquettes. Consequently the energy cost is also O(D)

and we have linear confinement of string endpoints.

In the gauge theory language, the reason for the absence of deconfined excitations

is that the tensionless lines in this state are not lines of pure electric flux, but rather

of electric flux together with magnetic flux of the other species. If such lines could

end, their endpoints would be deconfined excitations. But the Hilbert space does

not allow for such excitations: a magnetic flux line cannot terminate in the bulk (by

virtue of its definition in terms of e.g. H -r').

Despite the lack of deconfined endpoints in the bulk, A and B strings that termi-

nate on a boundary can give deconfined e and m particles in a surface Z2 topologically

ordered state. To see this, we terminate the system as in Fig. 7-5, including in the

Hamiltonian the natural plaquette and vertex terms at the surface. The surface string

operators that create pairs of e or pairs of m excitations can then be written explicitly

(see Fig. 7-5). They satisfy the same algebra as the string operators in the toric code

[136], confirming that e and m are mutual semions as expected from the heuristic

argument of Fig. 7-2.

We can adiabatically transform IT) to a product state so long as we allow the

intermediate states to violate the closed-loop constraints on at least one sublattice.

The membrane picture gives an obvious way to do this, by giving the membranes in

M a surface tension. If 'Area' denotes the number of occupied plaquettes in M, the
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interpolating state is

) S e--YxArea CA) IM) (7.10)
CA M

aM=CA

When -y = 0 this is the initial state, and when -y -+ oo only the term with zero

area survives. This is the state with no loops and no membranes, i.e. the product

state IUZ = 1) Xr = 1). To get a gapped parent Hamiltonian for I|),, we modify the

plaquette flip term .FA in 'Uiinking to FAp = (cosh -y) 1 [r H1EP U + (sinh -y) Tj. This

preserves the simple algebraic properties of the plaquette terms. From the fact that

the modified FAp does not commute with the closed-loop constraint on the B lattice

(or by directly transforming to the r' basis) we see that IT), violates this constraint

when y > 0.

7.2.1 Self-duality of IT) and protection by constraints

When the interpolating state above is rewritten in the original (O, TZ) basis, it in-

cludes configurations with open strands, as well as closed loops, on the B lattice.

What if we impose the constraint that both lattices have only closed loops? In

this case it is impossible to go from IT) to a trivial state without a phase transi-

tion. (We will take the reference trivial state to be that with no loops, Itrivial) =

IUZ = 1) ITrZ = 1).)

This follows from a simple duality transformation which exchanges the electric

Figure 7-5: String operators creating surface excitations. Left: acting with a chain

of o,' operators on the links of the upper layer (A lattice surface) gives a pair of e

excitations (i.e. endpoints of bulk A strings). Right: a pair of m excitations (i.e.

endpoints of B strings) are created by a chain of r operators (thick green strand) on

the lower layer (B surface), together with a- operators on the corresponding links in

the upper layer (thick purple links).
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Figure 7-6: Under the mapping (7.11), a a (or TZ) operator on a link is exchanged
with a product of rr (resp. ax) operators on the surrounding links of the other lattice.

(Links of one lattice can equally be thought of as plaquettes of the other.)

flux of each species with the magnetic flux of the other species. The duality maps [I)

to itself, but exchanges the trivial state with a topologically ordered one. Thus there

is no adiabatic path from IT) to the trivial state. If there were, duality would yield

an adiabatic path from IT) to the topologically ordered state, and this is impossible

since I') is not topologically ordered.

The duality transformation makes sense for states obeying the closed loop con-

straint. (To be precise, we must also impose the global constraint that the loop

configurations have even winding in each direction.) As shown in Fig. 7-6, its action

is:

TfI rX 7-+ flog" (7.11)
PcI 1E1,

Here p E 1 denotes the four plaquettes p surrounding link 1. We have labelled the os

by 1 for link and the rs by p for plaquette, but the duality acts on the two sets of

degrees of freedom symmetrically. It preserves the locality of any Hamiltonian acting

in the constrained Hilbert space.

For completeness, we write the action of the duality on states explicitly. Return

to the picture of loops + membranes on the A lattice, i.e. the (oZ, Tx) basis. One

may check that any state satisfying the constraints can be written as a sum over two

loop configurations on the same lattice,

If) = S f(CAC7)ICA),.C),, (7.12)
CA,CA

where |C)' is defined as the uniform superposition of all membrane configurations
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IM), with boundary OM = CA. We have added subscripts to the kets as a reminder of

the degrees of freedom involved. (CA is the a-electric flux configuration, and C' the

T-magnetic flux configuration; the fact that the wavefunction depends on M only

through 0M is simply a statement of gauge invariance.) The duality then simply

exchanges the two kinds of loops,

f(CA, CA) <-+ f(C, CA). (7.13)

The flip operators TA and T
B (Eq. 7.6) are clearly invariant under the duality

in Eq. 7.11 and therefore so is WHinking. (We can also see that IT) is invariant from

Eq. 7.13 and Eq. 7.8.) On the other hand, the trivial Hamiltonian

trivial = - (J a + J E TZ (7.14)
\1E A 1EB /

is exchanged with

lideconfined ( E JZF J - J E R T , (7.15)
\pEA Ep pEB lp/

which describes a pair of deconfined Z2 gauge theories. This establishes the claim at

the beginning of this subsection: while the linking state is invariant, the trivial state

is exchanged with a topologically ordered state. It follows that the linking state is

in a distinct phase from the trivial state if we do not allow open endpoints in the

Hilbert space. (We know from Eq. 7.10 that they are in the same phase if we do allow

endpoints.)

7.2.2 Heuristic relation between symmetry protection of eTmT

and closed-loop constraint

The proposed wave function for the eTmT phase has the two loop species 'stuffed'

with Haldane/AKLT chains. The linking sign factor ensures that the ground state

is not topologically ordered as required for a topological paramagnet. In particular
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the open end-points of the loops - which now harbor a Kramers doublet - are

confined. However as described in Sec. 7.1.1 the surface implements time-reversal

'anamolously' exactly characteristic of the eTmT state.

We now briefly consider whether the results in the previous subsection for the 'pure

loop' state yield a heuristic 'bulk' understanding of why the eTmT state is protected

by time reversal. So let us imagine perturbing the schematic eTmT wavefunction of

Sec. 7.1.1, and ask why we cannot reach a trivial state without a phase transition.

We make use of the heuristic analogy between the AKLT loops of the spin-1 system

and the 'pure loops' of the coupled gauge theory.3 The result for the pure loop state

then indicates that if we only have closed AKLT loops on each sublattice, we cannot

get to a trivial state without a phase transition. So, we must consider proliferating

open strands on at least one sublattice. But in the spin-1 system, unlike the pure-loop

system, open strands introduce bulk spin-1/2 Kramers doublet degrees of freedom.

(Binding these emergent spin-1/2s into singlets with others on the same sublattice

merely heals the AKLT chains, taking us back to the original situation with separate

closed loops on each sublattice.) When time reversal is broken, these spin-1/2s are

innocuous - for example we can gap them out using a magnetic field. But it is

natural to expect that when time reversal is preserved they prevent us reaching a

trivial state without closing the gap.

However, the above argument is incomplete as it does not rule out the possibility

of getting to a trivial state by proliferating nearby pairs of open strands on opposite

sublattices. Such a pair gives two spin-1/2s which can be bound into a singlet to avoid

a gapless degree of freedom. In the gauge theory, such pairs correspond to bound

pairs of electric charges, one from each Z2 gauge field. The stability of the eTmT

state suggests that the pure loop state remains protected even when such double

charges are allowed. We note that at the surface these double charges correspond

to the bound state of the e and m particle (in the surface topological order). This

is a Kramers singlet spin-0 fermion (conventionally denoted c). The surface Fermi

3Recall that the singlet basis allows us to represent any spin-zero state of the spin-1 system in
terms of loops of spin-1/2 singlet bonds; these may form minimal length 'loops' which backtrack on
a single link, i.e. spin-1 singlet bonds, or longer AKLT loops.
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statistics suggests a potential obstruction to 'trivializing' the bulk by proliferating

the double charges. We leave an explicit demonstration of this for the future.

7.3 Parton constructions

Though the description of the eTmT topological paramagnet in terms of a loop gas

wave function is physically appealing it is desirable to have alternate descriptions

which enhance our understanding and which may help with evaluating the energetic

stability of this phase in microscopic models. To that end, in this section we propose

explicit parton constructions for some topological paramagnets in spin-1 systems.

Historically the parton approach has provided variational wave functions and effec-

tive field theories both for spin liquids [10] and non-fractionalized symmetry-breaking

states [1531. The parton construction inevitably introduces a gauge symmetry. It

describes a fractionalized spin liquid phase whenever it yields an emergent deconfined

gauge field. To obtain a non-fractionalized phase such as conventional antiferromag-

net or valence bond solid paramagnet, the gauge field should either be Higgsed or

confined.

Recently the parton construction has been used to construct SPT states in two

[128, 129, 130, 131] and three [132, 133, 154] dimensions. The general idea is to

construct a gauge theory (with matter fields) that is confined, but with certain non-

trivial features surviving in the confined state that make it an SPT state. However,

the currently known constructions in three dimensions use either Z2 or U(1) gauge

theories, which do not confine automatically: strong gauge coupling is needed to

reach the confined phase. Furthermore, the constructions using U(1) gauge theories

[132, 133] require highly nontrivial dynamics of the gauge fields to condense composite

dyon-like objects.

In three dimensions, a continuous non-abelian gauge symmetry is needed to guar-

antee confinement. We propose two parton constructions in three dimensions with

SU(2) gauge symmetry, which confine even if the bare gauge coupling is small, giving

rise to topological paramagnets. A similar construction was used previously [131] in
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2D to describe an SPT phase of a spin-1 magnet protected by spin SU(2) symmetry

and time reversal. We also propose a construction with U(1) gauge symmetry, which

confines at sufficiently strong coupling. Crucially, this U(1) construction differs from

previous ones in that we only condense simple monopoles to confine the gauge theory,

which can be achieved at strong coupling without exotic form of gauge field dynamics.

The spin-i operators are re-written using the two-orbital fermionic parton repre-

sentation proposed in Ref. [138],

S = E fCiOoajfafi. (7.16)
a=1,2

where a = 1, 2 is the orbital index. As will be discussed below, the two-orbital

structure is natural for topological bands corresponding to topological paramagnets.

This gives another reason for favoring spin-1 systems.

The physical spin states are represented in the parton description as

iS, = 0) = _ (f f + f f) Ivac),

IS2 = +1) = fgftAvac), ISz = 1) = flf Ivac).

where jvac) is the state with no fermions. States in the physical spin Hilbert space

thus have two fermions at each site, Ea, faJafIa = 2, and the two fermions form a

singlet in orbital space: denoting the Pauli matrices in orbital space by r',Y,', this is

Ea faTabfba = 0.

The representation in Eq. 7.16 actually has an Sp(4) gauge redundancy [138] which

becomes apparent when we represent the fermions using Majoranas, f = I (I1 - iq2).

Here 771,2 are Hermitian operators satisfying {rii, 17s8} = 2 6 ss'6 u, where s, s' = 1, 2

are the new indices associated with the Majoranas and I, J represent all other indices

(site, spin, orbital). The Majorana representation of the spin is

S= -8 E n, E = (pYO-", oY, pYU.), (7.17)8

where p'Y' are Pauli matrices acting on the Majorana index. The generators of the
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gauge symmetry are ten anti-symmetric imaginary matrices that commute with the

physical spin operators:

F {p', PYT", '"z Y pX Z YT TX' Z, rT}, (7.18)

where ri are Pauli matrices acting on the orbital index. The spin in Eq. 7.17 is

invariant under the Sp(4) gauge transformation q -+ eso'jm

The effective field theory associated with the parton construction is a gauge theory.

The gauge symmetry is determined by the mean field band structure of the partons,

and is in general a subgroup of the full Sp(4) group due to some generators being

Higgsed. The gauge structure allows symmetry to act projectively on the iJ fermion

[101. In particular, time-reversal could be either Kramers (T2 = -1) or non-Kramers

In 3D, band structures of Kramers fermions with T symmetry are classified by

an integer index [21, 22] v which counts the number of Majorana cones on the sur-

face. It was realized [110, 4, 114] that in the presence of interactions the state with

v = 16 is trivial, while that with v = 8 is equivalent to a topological paramagnet.

More specifically, for v = 8 the surface state with four Dirac cones (eight Majorana

cones) can be gapped without breaking any symmetry via strong interactions, and

the resulting gapped surface state must have intrinsic topological order. The simplest

such topological order is a Z2 gauge theory in which the e and m particles are bosons,

but transform under time-reversal as Kramers doublets (T2 = -1). Therefore we

can put the slave fermions into a band with v = 8, and let the gauge fields confine

the fermions (either automatically through an SU(2) gauge field or at strong cou-

pling through a U(1) gauge field). Crucially, the topological quasi-particles (e and

m) on the surface do not carry the gauge charge, and they survive on the surface

as deconfined objects. The resulting phases are therefore confined paramagnets with

nontrivial surface states protected by time-reversal symmetry.

Non-Kramers fermions, by contrast, cannot host non-trivial band structure with

time-reversal symmetry alone. However, if spin-S, conservation is present, the band
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structures can again be assigned an integer topological invariant v' [21, 22] which is

the number of Dirac cones on the surface (or half the number of Majorana cones). It

is known [110, 4, 114, 155] that with interactions the state with V' = 8 is trivial, while

that with v' = 4 is equivalent to a topological paramagnet. We can then put the slave-

fermions into a band with v' = 4 and let the gauge fields confine the fermions, which

produces a topological paramagnet with time-reversal and spin-S2 conservation.

In both cases we need to put the slave fermions into band structures with four

Dirac cones on the surface. Band structures with two Dirac cones (v = 4) have been

studied on the cubic [84] and diamond [115] lattices. Therefore we. can obtain the

desired structure simply by putting the partons into two copies of the v = 4 band.

This can be easily done by taking advantage of the two orbitals in Eq. 7.16, making

the topological paramagnets very natural in spin-1 systems.

In the next section we outline a similar construction for the one-dimensional

Haldane chain, by confining slave fermions which form four copies of the Kitaev

chain. This illustrates the essential idea of our constructions in a simpler and more

familiar context.

7.3.1 Parton construction for Haldane/AKLT chain

The Haldane phase is an SPT phase with gapless boundary degrees of freedom that are

protected by time reversal. As a warm-up exercise, we outline how this phase can be

constructed from a topological superconductor of slave fermions. This illustrates some

features we will meet again in 3D. A different parton construction for the Haldane

phase was considered in Ref. [1561.

The fermions are taken to be non-Kramers (T2 = 1). In 1D, superconducting band

structures for free non-Kramers fermions are labelled by a Z-valued index [21, 22], V,

which is the number of protected Majorana zero modes at the boundary. The state

with a given v can be viewed as v copies of Kitaev's p-wave superconducting chain

[15]. Interactions reduce this classification to Z8, i.e. the V = 8 state becomes trivial

[40, 41, 42]. Further, the state with v = 4 is topologically equivalent to the Haldane

chain, modulo the presence of gapped fermions in a trivial band.
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Here we therefore put the slave fermions into four copies of the Kitaev bandstruc-

ture, in an SU(2)-symmetric manner. Gauge fluctuations (or Gutzwiller projection)

will then remove the unwanted degrees of freedom, leaving a topological paramagnet

in the Haldane phase.

Starting with an antiferromagnetic spin-1 chain,

W = J Si.Si + ... ,(7.19)

we represent the spins with slave fermions as in Eq. 7.16 or equivalently Eq. 7.17.

The valence bond picture of the AKLT state suggests using a mean-field Hamiltonian

for the partons with hopping t and spin-singlet, orbital-singlet pairing A,

HMF -- L[if+ 1 + h.c. + A [f-tUYTYftT + h.c.].

In terms of the Majoranas, this is

HMF -1 ETMmi+1, M= tpY + iApUYTY. (7.20)

We first consider this as a free fermion problem, then include the gauge fluctuations.

For simplicity take A = t, which makes the terms in HMF for different links

commute. The Hamiltonian is simply four copies of the Kitaev chain, as can be seen

immediately by going to a basis where OTr is diagonal. To be more explicit, it is

useful to define the matrix

X = PZU-Yry. (7.21)

Firstly, we use this to define the action of time reversal T on the fermions:

T : - * X 1 . (7.22)

This definition ensures that the spin changes sign under T and that HMF is invariant.

The fermions are non-Kramers (T2 = 1 onq).
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Secondly let us define matrices that project onto a given value of X, and corre-

sponding fermion modes:

1
1 -(1 i X), (7.23)
2

In an appropriate basis, q(+) has four nonzero components. Next, note that

M = 'P MP+, (7.24)

since M = tpy(1 + poUyrY) - (2tp)P+, etc. So we may rewrite HMF as

HMF = -M M ++(. (7.25)

Taking open boundary conditions, and denoting the leftmost site of the chain by L,

we see that the four modes in ri+) do not appear in the Hamiltonian.

These four Majoranas correspond to two complex fermion modes that can be

occupied or unoccupied, i.e to a degenerate four-dimensional boundary Hilbert space.

At the level of free fermions, this degeneracy is protected by time reversal symmetry

T, under which 77+) is invariant (since by definition Xr7(+) = (+)).4

Once we go beyond mean field theory, the fermions are coupled to confining gauge

fluctuations. We will see below that two of the four boundary states are not gauge

invariant - i.e. they can be thought of as having an unscreened gauge charge sitting

at the end of the chain. Confinement removes these states from the low energy

Hilbert space, leaving a single boundary spin-1/2 whose gaplessness is protected by

time reversal.

HMF treats spin and orbital degrees of freedom symmetrically, and preserves

SU(2),pi, x SU( 2 )orbital symmetry. The four boundary states can be labeled by the

occupation numbers of two complex fermions c1,2. Since the partons transform as

4Any quadratic term i?7 (+)TAr7(+) (where A is real antisymmetric) is forbidden as it is odd under
T. However in the presence of interactions a four fermion term 'yly2737y4 - where 'y axe the
components of 7(+) in some basis - is allowed by time reversal, and lifts the boundary degeneracy
to a single doublet as in the Haldane chain [1091.
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doublets under each SU(2), the fermions c 1 ,2 should also form doublets under each

SU(2). In an appropriate basis the transformations are

SU(2)spin : (Ci, C2)' --- u(Ci, C2)'

SU(2)orbital (ci, C ---+ U'(C, ct T. (7.26)

where U,, are SU(2) matrices. It follows that states which are singlets under SU(2),pi'

are doublets under SU( 2 )orbital and vice versa. We denote the spin doublet It), 4-)

and the orbital doublet 11), 12). The spin operator for the boundary spin-1 can

be split into contributions from the dangling boundary modes T ) and from 7&:

SL =SL L+ Sjwith

S = _ 7(+)TE 9( ) E = (pu, a', puOZ). (7.27)
8

We can make a similar splitting for the orbital spin T, which is related to S by

swapping the as for Ts. We denote the matrices appearing in T by Q:

T(+) = 1q(*)Tn n ( ), Q = (PYT', TY, PTZ). (7.28)
8

The pairs (IT) ,| )) and (11) , 12)) are both Kramers doublets, since the spin and orbital

operators for the boundary modes, S(+) and T(+), change sign under T. This can

also be checked explicitly by considering the transformation of the boundary states

(labeled by fermion occupation numbers) under T, with the fermions transforming

as T : c1 ,2 - C1,2.

Now we consider the effect of gauge fluctuations or Gutzwiller projection. We have

listed the generators for the Sp(4) gauge group in Eq. 7.18. However, some gauge

generators are Higgsed in the above mean field state. In general, to determine the un-

broken gauge group we must examine Wilson loops of the form W = ui i2 I.i,

where HMF = > ij ql'Uij [10]. The unbroken gauge generators are those that com-

mute with the Wilson loops. Here, the only nontrivial Wilson loop is the matrix X

defined in Eq. 7.21. This leaves a subset of six unbroken generators, which may be
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written in terms of the matrices Q appearing in the orbital spin (Eq. 7.28):

r1D= {, XQ}. (7.29)

Taking linear combinations, we can use instead5

r1D = (7.30)

We denote the unbroken gauge group SU(2) ita x SU(2)dita.

To make the Hamiltonian in Eq. (7.20) a reasonable ansatz, we must check that

the Sp(4) gauge charges are all zero on average: (Fi) = 0 for all i. Fortunately the

unbroken gauge symmetry 1m guarantees this.

The boundary modes involve only 7(+), so are invariant under SU(2)3ita. How-

ever, 11) and 12) are not invariant under SU(2)(iit. Therefore after confinement

only the doublet It), [4) survives, with corresponding spin S(+). This is the boundary

spin-1/2 of the Haldane phase.

In this 1D example we can confirm explicitly that Gutzwiller-projecting the mean-

field wavefunction gives the desired SPT phase. In fact the Gutzwiller-projected state

for A = t, denoted I spin), is precisely the AKLT state. To see this we adopt a trick

from Ref. [156]. Using the fact that the terms in HMF commute, we can check that

I spin) has zero amplitude for a pair of adjacent sites to be in a spin-two state. I'spin)

is therefore the ground state of the AKLT Hamiltonian, since this can be written as

a sum of projectors onto the spin-two subspace for each link.6

It is interesting to consider inversion symmetry here. In the free fermion problem,

5To be more precise, the two types of generators in Eq. 7.29 correspond to elements of the
invariant gauge group (IGG) [101 at different momenta, k = 0 and k = 7r, so when we take linear
combinations the two types of generators in Eq. 7.30 alternate on even and odd sites. This is not
crucial here. Another subtlety is that the IGG is enlarged at the special point A = t.

6This correspondence with the AKLT state is less obvious if we simply Gutzwiller-project the BCS
ground state of HMF. The ground state of the Kitaev chain involves a long-range Cooper pair wave-
function, C(r) = (L - 2r)/L 11571, so in the present case I I.,pi') is obtained by acting on the vacuum
with an exponented sum of long-range singlet creation operators, exp(E2 Z,> C(r)fr ruf, ),
and projecting. The AKLT state may of course be written using only short-range singlet creation
operators, IAKLT) oc P f I(ftoyryf )|vac). By the previous argument, the two states must be
equivalent.
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v -4 -v under inversion, so that a nonzero value of v can only be realised with

a Hamiltonian which breaks inversion symmetry. With interactions, v ~ V + 8,

suggesting that v = 4 can be realised in inversion-symmetric interacting system

[158]. The present example is a nice realisation of this. The mean field Hamiltonian

HMF appears to break inversion symmetry. However, the symmetry can be restored

by combining it with a gauge rotation. So the projected wavefunction is actually

inversion symmetric.

We now move on to 3D states.

7.3.2 Cubic lattice

Making use of the cubic band structure studied in Ref. [84], we construct an SU(2)

gauge theory which confines to a topological paramagnet. We choose the mean field

Hamiltonian

HMF i jjP + j iX 3ii7p xurT 7hj (7.31)

(ii) ((ij))

(((ii)))

whee he eaes-neghor opin tigiesa grfu on every square plaq4tte the~

body-diagonal pairing Xij follows the pattern studied in Ref. [84], and the next-

nearest-neighbor pairing xi is a small perturbation introduced to reduce the gauge

group to SU(2) and is not responsible for the gap or the band topology.

To determine the unbroken gauge group, we examine the Wilson loops as above.

The fundamental nontrivial ones are proportional to pZuy and pXTYTY. The unbroken

gauge group is generated by those of the Sp(4) generators that commute with the

Wilson loops. It is then straightforward to see that the unbroken gauge group is an

SU(2) generated by

cubic= {pU'YrX T, PZUYrZ} (7.32)

One can choose to implement time-reversal T as T : q , ipzu?7, and it is

straightforward to see that T : HMF -+ HMF, S -+ -S, and "cubic - ~~ cubic. The
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band structure in Eq. (7.31) preserves time-reversal symmetry, and the SU(2) gauge

rotation commutes with T. Notice also that T2 = -1 on the nj fermions.

We must check that the Sp(4) gauge charges are all zero on average, (F) = 0.

The unbroken gauge symmetry 1
cubic guarantees that (F) = 0 for all i except for

17 = pZ'y. Furthermore, time-reversal invariance T guarantees that (175) = 0. Hence

the condition is indeed satisfied for any i.

To determine the band topology, it is sufficient to consider the Hamiltonian HMF

with only the nearest-neighbor and body-diagonal terms in Eq. (7.31). In HMF,

fermions with different orbital indices are decoupled and form two identical bands.

Each band is the same as that studied in Ref. [84], with v = 4 (two Dirac cones on

the surface). So the band has v = 8 in total (four Dirac cones). So Eq. (7.31) indeed

gives rise to a topological paramagnet.

In order to understand the role played by spin-rotation symmetry, we examine the

surface state in more detail. We start from the surface Dirac theory with SU(2)gauge x SU(2)spin X

T symmetry, with four Dirac cones in total:

H = ft(ptpx + PYpz) 0 ro 0 ao4o, (7.33)

with time-reversal

T : ip, 0 To 0 0-00t, (7.34)

gauge SU(2)

Ug :7 o 0 U, o-00, (7.35)

and spin SU(2)

Us: o 0 To 09,. (7.36)

We have denoted the SU(2)gauge Pauli matrices by r, but they should not be confused

with the Pauli matrices for the orbital spin.

Next we will consider driving this surface theory into a Z 2 topologically ordered

state by first introducing an order parameter A which gaps out the Dirac fermions,

but breaks time reversal symmetry, and then restoring time-reversal symmetry by
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proliferating double vortices in A. The single vortex remains gapped, and gives rise

to anyonic surface excitations with nontrivial time reversal properties.

To analyse the symmetry properties it is useful to consider the auxiliary U(1)a

transformation

Ua(0) : 4 -+ eO (7.37)

(which is an emergent symmetry of Eq. 7.33, but not a microscopic symmetry). The

gap term of interest is

HA i pA 4 ry 0 Ty&o-y + h.c. (7.38)

This is invariant under the SU(2)gauge x SU(2)spi, symmetry. It is not invariant under

time reversal T or under U(1), separately, but it is invariant under the modified time-

reversal transformation 1 = Ua(7r/2)T. Notice that 'T2 = 1 on the parton fermions

, in contrast to the original T under which they are Kramers.

As shown in Refs. [3, 4, 1141, the fundamental vortex in A transforms projectively

under 'T, i.e. T 2 = -1. We now examine the SU(2)gauge x SU(2),pi, spins carried

by the vortex. A key point is that there are four Majorana zero modes trapped in

the vortex core. One can label the internal Hilbert space with two complex fermions

c1 ,2 . Since both SU(2) groups are preserved in the intermediate gapped phase and the

partons transform as doublets under both SU(2), the two complex fermions c1 ,2 should

also be doublets under both SU(2). In an appropriate basis the transformations are

U : (c1, c2)T ' U(c1, c2),

US : (ci, C2)T + U(ci, c2)T. (7.39)

It follows that states which are singlets under SU(2)gauge are doublets under SU(2),Pji

and vice versa. Specifically, there are two distinct kinds of vortices, labeled by the

fermion parity (-1)cic1+2c2: both have '2 = -1, but one transforms as (0, 1/2) under

SU(2)gauge x SU(2),pi., and the other as (1/2, 0).

We now restore time-reversal symmetry by condensing double-vortices that trans-
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form trivially under both SU( 2 )gauge x SU(2)spin and '~, giving Z2 topological order

on the surface [80, 104]. Single vortices with even and odd fermion parity yield

mutual semions which we denote e and fi respectively. Both are Kramers bosons

('V = -1), and e transforms as (0, 1/2) under SU(2)gauge x SU(2) ,pj while i trans-

forms as (1/2, 0). Their bound state, E, is non-Kramers, fermionic, and transforms

as (1/2,1/2).

So far, our treatment of the surface has neglected the confining gauge field.7 When

we take it into account, only excitations that are neutral under SU(2)gauge survive. In

addition to e, these include bound states m = O/ and e = Oi got by attaching a 0

fermion to i and . This shifts the self-statistics, so m is bosonic while e is fermionic

(all three particles are mutual semions). Since E is the bound state of e and m (and

its properties follow from this) we do not discuss it further. Note that m = 'Oj is

Kramers since V) is.

The upshot is that the surface topological order surviving after 'gauge neutral-

ization' has an e particle that is Kramers and spin-doublet, and an m particle that

is Kramers but spin-singlet. Since both e and m are Kramers bosons, this state is

indeed the eTmT phase, like the wavefunction discussed in Sec. 7.1.

However if spin-rotation symmetry is preserved, a finer classification is possible,

under which the present state is dubbed eCTmT, where the 'C' indicates that e is a

spin doublet [11.8 This finer classification emphasises a difference between the eTmT

state constructed here, in which e is a spin doublet and m is not, and that constructed

in Sec. 7.1, where both e and m are spin doublets.

Like the 1D example of the previous section, the cubic lattice construction violates

inversion symmetry at the free fermion level (this is inevitable if v is nontrivial [159])

but the resulting spin state is inversion symmetric as a result of gauge invariance.

7The fermions in the bulk are confined, giving a non-fractionalized bulk state. It is known 11151
that the SU(2) gauge theory has a 0-term at 0 = (v'/2)7r. For v' = 4, as here, we have 0 = 27r which
has the same physics as at 0 = 0. The confined state then can preserve time reversal symmetry. In
contrast if v' = 2, we will have 0 = ir and the resulting confined phase of the SU(2) gauge theory
must be non-trivial in some way. It either breaks time reversal or becomes a quantum spin liquid
with long range entanglement.

8The eCTmT state is topologically equivalent to the combination of a generic eTmT state and
the state eCmT; the analogue of the latter for U(1) spin symmetry is discussed in Sec. 7.3.3.

203



Here, the hopping term in HMF is invariant under inversion, while for an appropriate

choice of x' the pairing terms change sign under inversion. Therefore inversion can

be restored by combining it with the gauge transformation f -+ if, i.e. 'q -+ ipyrj.

(With the arrow conventions of Sec. 7.1.2, the fluctuating AKLT state is also inversion

symmetric.)

7.3.3 Diamond lattice

Next we consider parton theories on the diamond lattice, making use of the band

structure of Ref. [115]. First we construct a theory with an SU(2) gauge field which

naturally confines (Sec. 7.3.3). The resulting state is a topological paramagnet which

requires both time-reversal and XY-spin rotation symmetry to be protected. Then

in Sec. 7.3.3 we construct a U(1) gauge theory, which confines at strong coupling.

The confined state is a topological paramagnet which only requires time-reversal

symmetry.

Topological XY paramagnet from SU(2) gauge theory

The mean field Hamiltonian is

HMF = ij i p rjjp - Ai3rTp r, (7.40)
(Oi) (OM) (OM)

where the nearest-neighbor hopping t is isotropic, while the next-nearest-neighbor

hopping t'; and pairing Aij follow the patterns discussed in Ref. [1151. Notice that

the pairing term is a singlet in orbital space, but is a triplet in spin space. Hence the

spin rotation symmetry is reduced from SO(3) down to 0(2) rotations about the SY

axis, corresponding to XY anisotropy in the spin model.

We again calculate the nontrivial Wison loops: the simplest nontrivial ones consist

of three links and are proportional to py and pXTY. The unbroken gauge group is

generated by

l'diamond - {pT',TYpYTz}. (7.41)
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These are precisely the orbital SU(2) generators Q.

One can implement time-reversal symmetry T as q -+ pZuo-YrT, under which 7 is

non-Kramers (T2 = 1) and S -+ -S and of course HMF - HMF-

As above we must check that the Sp(4) gauge charges are all zero on average:

(1i) = 0. The unbroken gauge symmetry ldiamond guarantees that (17) = 0 for all

i except for IF = py, which is nothing but the total fermion occupation number

(minus two). Fortunately the mean field Hamiltonian Eq. (7.40) has a special lattice

symmetry9 that sets (1) = 0.

To determine the topology of the mean field band structure, it is convenient to

consider the modified time-reversal symmetry T' : q -+ ipTrvy (with T'2 = -1), which

is the combination of time-reversal and spin rotation ioy. Fermions with different

physical spins (T/t and rj.) do not mix under the modified time-reversal. Furthermore,

they are decoupled in the mean field Hamiltionian HMF and form two copies of an

identical band. Therefore the topological index v' is defined for each band separately.

Now each band is identical to that studied in Ref. [115], with v' = 4. The total band

therefore has v' = 8, with four Dirac cones in total on the surface.

We now consider the surface Dirac theory with SU( 2 )gauge x U(1),pi. x T symmetry,

with four Dirac cones in total:

H = 0t (pxLx + pyptz) 0 T0 0 T0z,01 (7.42)

with modified time-reversal

': -+ is0 0ro 9 Uo/t, (7.43)

gauge SU(2)

U, :) /.o 0 Ug (o9lf, (7.44)

9 The symmetry is the combination of a 7r/2 rotation along -, a reflection z -+ -z, then followed by
a particle-hole transformation ca = otgr/dCi b, where {a,#3} denote the spin, {6, A} denote

the orbital, and {a, b} denote the sub-lattice index (-y is a Pauli matrix acting on the sub-lattice
indicies).
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and spin U(1)

U,(0) : --+ e'o#. (7.45)

The actual time-reversal is T = Us(7/2)':

T @-+ o 0 U 0-0. (7.46)

Now consider the gap term

HA = iA 0py 0 Ty 0 co + h.c., (7.47)

which preserves both SU(2)gauge and T, but breaks U(1),;pi,. To restore the U(1)spin

symmetry and preserve the gap, we need to proliferate vortices in the order parameter

field A. It was shown in Ref. [3, 4, 1141 that the fundamental vortices have T2 = -1,

so condensing double-vortices gives a Z2 gauge theory, with e being Kramers, fi being

Kramers and SU(2)gauge-doublet, and Z being non-Kramers and SU(2)gauge-doublet.

We can then gauge-neutralize the particles by binding V) fermions to in and . The

neutralized theory then has e being Kramers, and m = ZV being non-Kramers (recall

that '2 = 1 on 4) but carrying spin-1/2 under U(1) jpj due to the S, spin carried by

4. This state is dubbed eCmT in Ref. [1].

The fermions will be confined once the fluctuation of the SU(2) gauge field is

introduced, and we obtain a non-fractionalized bulk state. On the surface, the eCmT

topological order survives the confinement, since all the non-trivial quasi-particles in

the theory are gauge-neutral and are hence decoupled from the gauge field. We have

thus obtained the eCmT topological paramagnet.

As a side note, if the spin-1 operators are pseudo-spins such that T: {S2, Sy, S} -+

{Sx, -Sy, S,}, then the modified time-reversal T' : q - ip'ry2 (with T'2 = -1) could

represent the physical time-reversal symmetry. In this case we obtain a topological

paramagnet that requires time-reversal only, as will be shown in See 7.3.3.
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Stable U(1) quantum spin liquids and topological paramagnets

The parton construction of course also gives access to stable quantum spin liquid

phases. Of particular interest to us is a time reversal symmetric U(1) quantum spin

liquid phase on the diamond lattice. For greater generality we allow for full SU(2)

spin symmetry. As usual such a phase has a gapless emergent photon. In addition

it has a gapped fermionic spin-1/2 Kramers doublet spinon which has internal 'elec-

tric' charge10 and a gapped bosonic spin-0 magnetic monopole that transforms to an

antimonopole under time reversal. We will give the spinons the band structure of

a topological superconductor (as in previous sections). The resulting quantum spin

liquid phase then inherits the non-trivial surface states of the topological supercon-

ductor. The relevance to the present chapter comes from asking about the confined

phase that results when the magnetic monopole is condensed. We show below that

this is the eCTmT topological paramagnet.

SPT phases in 3D have been accessed previously through confinement of emergent

U(1) gauge fields [132, 133]. However in these previous studies the confinement was

achieved in a highly non-trivial way involving the condensation of dyons (bound states

of magnetic and electric charges). The novel aspect of our construction is that the

confinement is achieved directly by simply condensing the magnetic monopole, which

will result from the usual dynamics of the gauge field at strong coupling.

Consider the following mean field ansatz:

HMF --- t 3 p437 + %t'3pr + 77z Pa 773
(ij) Wbj) (0b))

+ A'y [pXo-yi + 5 it")p"Tr77g, (7.48)
(ij),ieA

where the nearest-neighbor hopping t and on-site pairing A' are uniform and isotropic,

while the next-nearest-neighbor hopping t'- and pairing Ai, follow the patterns dis-

cussed in Ref. [115]. Note that the first two terms are the same as in Eq. (7.40),

10This 'electric' charge couples to the emergent photon in this spin liquid, and not to physical
external electromagnetic fields.
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and the third is got by exchanging the role of orbital and physical spin. Contrary to

Eq. (7.40), the pairing term A is a singlet in physical spin and a triplet in orbital

space, so the full spin rotation symmetry is preserved. The nearest-neighbor antisym-

metric hopping term t" is introduced to reduce the gauge symmetry, and does not

affect the other arguments in this section as long as it is kept small.

The simplest nontrivial Wilson loops are proportional to py, p'ay and pYs. The

resulting unbroken gauge group is a U(1) generated by TV.

We implement time-reversal symmetry T through q -+ ipZ'yq (which has T2

-1). It is straightforward to check that S -> -S and HMF -+ HMF under the chosen

time-reversal symmetry. Moreover, the U(1) gauge charge TY is also odd under T,

which allows for topologically non-trivial band structures for the partons.

We now check that (1i) = 0. The unbroken U(1) gauge symmetry and time-

reversal guarantee that (17i) = 0 for all i except for pY and pooy, which are nothing

but the total fermion occupation number (minus two) and the real part of the on-site

pairing. The lattice symmetry again sets (pY) = 0. For the on-site pairing amplitude,

there is no symmetry to set it to zero automatically. We must therefore adjust the

11on-site pairing term A' in Eq. (7.48) to make it zero on average .

To determine the topology of the mean field band structure, notice that fermions

with different orbital indices (T indices) do not mix under time-reversal T : -+

ipzo-y2 . They are also decoupled in the mean field Hamiltionian HMF, forming two

copies of an identical band. Therefore the topological index v' is defined for each

band separately. Now each band is almost identical to that studied in Ref. [115], with

V' = 4. The total band therefore has v' = 8, with four Dirac cones in total on the

surface.

We now consider fluctuations of the U(1) gauge field. In the weak coupling regime

the gauge theory is deconfined, and we have a stable U(1) quantum spin liquid phase.

The spinon band structure has time reversal protected surface states that provide a

1 We must check that this does not close the gap. The total pairing term in momentum space
Ak - A' must not be positive (or negative) definite, since the onsite pairing vanishes: (fitfi) = 0.
It is easy to show that this requires IA'I < 121A. One can then show that such a value of A' can
never close the gap opened by A. Therefore the mean field Hamiltionian Eq. (7.48) can be smoothly
connected to a Hamiltionian with no A' term without closing the gap.
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distinction between this spin liquid and more conventional ones. For a compact U(1)

gauge theory, there are always gapped magnetic monopole excitations in the theory.

In Ref. 13, 41 it was shown that for the spinon band structure we have here, this

magnetic monopole is a spin-0 boson that simply transforms into an antimonopole

under time reversal.

As the gauge coupling strength increases, the monopole mass gap decreases and

eventually becomes zero. The monopoles will then condense and confine the gauge

theory. The trivial symmetry properties of the monopole implies that this condensate

does not break T or the physical spin SU(2) (if present). The confined state is thus a

non-fractionalized symmetry preserving paramagnet. To determine which SPT phase

the paramagnet belongs to, we need to examine the surface state in more detail.

The argument is largely parallel to that in Sec. 7.3.2, with the simple modification

that the SU(2) gauge symmetry discussed in Sec. 7.3.2 is reduced to U(1). The

conclusion remains the same: the paramagnet is the nontrivial SPT dubbed eCTmT

in Ref. [1]. The representative surface state is a gapped Z2 topological order, with

e being Kramers and spin-doublet, and m Kramers but spin-singlet. (If the spin-

rotation symmetry is broken, this becomes a generic eTmT state.)

7.3.4 Spin wavefunctions

The parton constructions suggest spin wave functions that may be useful as variational

states in future work on specific microscopic models. Following the standard proce-

dure [101 we construct a spin wave function from the mean-field fermion wave function

14'MF) by projecting onto the subspace obeying the constraints Ea faiafaa = 2 and

Zaba faaTabfba = 0:

|Wspin) = P'PMF)- (7.49)

Such a projection is expected to roughly mimic the effect of gauge fluctuations. For the

states constructed in Sec. 7.3.2 and 7.3.3, the SU(2) gauge fluctuations automatically

confine the states. We therefore expect the projected wave functions to represent

the confined spin SPT states. For the state in Sec. 7.3.3, the U(1) gauge field is
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deconfined at weak coupling, and confines to an SPT state at strong coupling. So it

is not clear a priori whether the projected wave function will give the U(1) quantum

spin liquid state or the confined SPT state.

These spin wave functions are alternate possibilities to the loop gas wave func-

tions described in the first part of the chapter. While the loop gas wave functions

are physically appealing they are likely not very tractable numerically due to the

linking signs. The parton wave functions, on the other hand, may be studied through

variational Monte Carlo calculations though the physical connection to SPT physics

is less directly obvious. This situation is similar to existing descriptions of quantum

spin liquid phases through either loop gases (string-nets) or through partons which

each have their advantages and disadvantages.

For the topological paramagnets, at present we do not have a direct connection

between the parton and loop gas wavefunctions. Establishing such a connection is a

target for future work, and will confirm the general correctness of the projected wave

functions as faithfully capturing the state accessed through the parton description.

7.4 Discussion: Towards models and materials

We have emphasized that frustrated spin-1 magnets in 3D may be fruitful in the

search for spin SPT phases.

In the ongoing search for quantum paramagnetism in frustrated systems, the bulk

of the attention has focused on spin-1/2 systems. This is guided by the intuition that

increasing the spin only leads to more 'classical' physics and hence to a greater ten-

dency to order. Caution however is required in taking this intuition too seriously. In

one dimension the spin-1/2 chain is almost antiferromagnetically ordered (power law

correlations) while the spin-1 chain is a good paramagnet with a spin gap. This has

the following amusing consequence. Consider a two-dimensional rectangular lattice

with nearest neighbor antiferromagnetic interactions:

Hrect = Jj E Sr - Sr+x + Ji Sr - Sr+y (7.50)
r r
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For J11 = J1 the model is antiferromagnetically ordered for all spin S. When J is
J11

decreased from 1 the spin-1/2 model stays ordered unless J1 = 0. The spin-1 model

on the other hand becomes a spin gapped paramagnet below a non-zero critical value

of -. So there is a range of parameters in this 2D model where the spin-1 system is

a quantum paramagnet although the spin-1/2 system has long range Neel order.

There are some interesting examples of frustrated spin-1 magnets - most notably

NiGa2 S4 and Ba3 NiSb 209 , in both of which the spin-1 Ni ion forms a triangular

lattice [160, 1611. Apart from new and interesting kinds of quantum spin liquids,

spin-1 magnets may also harbor novel broken symmetry states (such as spin nematics

[162, 163, 164, 165]) more naturally than their spin-1/2 counterparts. To this we add

the SPT phase discussed in this chapter as a possible fate for a frustrated 3D spin-1

magnet.

Our results suggest a route to guessing possible microscopic models that might

harbor an SPT phase. Starting from the parton mean field Hamiltonian we can write

down a lattice gauge theory that captures fluctuations. A strong coupling expansion

of this lattice gauge theory will result in a spin Hamiltonian which may then be in the

same phase as the same lattice gauge theory at weaker coupling. Such an approach has

previously been successfully used to write down lattice models for various spin liquid

phases. Given that we are interested here in confined phases we may be cautiously

optimistic that a similar approach has an even better chance of resulting in spin

models for the SPT phases. As an application let us consider the diamond lattice

parton construction. With full SU(2) spin symmetry, the mean field state of Section

7.3.3 suggests (at leading order of the strong coupling expansion in the resulting U(1)

gauge theory) an interesting frustrated spin-1 model: the "J1 -J2 " antiferromagnet on

the diamond lattice 12:

H = Ji Sr - Sr, + J2  Sr - Sr, (7.51)
(rr') ((rr'))

' 2 Strictly speaking, the J2-coupling obtained from the previous mean-field ansatz should be

anisotropic. It is not clear whether this anisotropy is in reality essential for realizing the topo-
logical paramagnet.
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The next-nearest neighbour coupling J2 introduces frustration. Indeed classically once

J2 > !- there are an infinite number of degenerate ground states [166] that are not

related by global spin rotation. For large spin, it has been argued that the ground

state is magnetically ordered as a result of quantum order by disorder [167]. The

ground state for S =1 (or S = 1/2) is not known. The SPT paramagnet discussed

in this chapter is a candidate. The various descriptions we have provided should be a

useful guide in future numerical studies should a paramagnetic ground state be found

for this model.

It is interesting to note that since the diamond lattice is 4-fold coordinated

classical 2-sublattice Neel order is likely to be more easily destabilized by frustra-

tion/quantum fluctuations than in the cubic lattice. Thus the J1-J2 diamond mag-

net for low spin (S = 1/2 or 1) may be an excellent candidate to find an interesting

quantum paramagnetic ground state.

The frustrated diamond lattice model appears to describe well [1661 the physics

of the spinel oxide materials MnAl 2 04 and CoA1204 [1681 which belong to a general

family of materials of the form AB204 . The A site forms the diamond lattice and

is magnetic. The Mn and Co compounds have S = and S = i respectively. In2 2

searching for a material that realizes the S = 1 model it is natural then to consider

Al C TT... -11 bliL lbal L..ZU ~lll A 1 1 Li C U~u
N11-i12 4 . LOWever thbs dis uiverse bpuine, ill Wihic Uith A" sie s instdU ccupie

by Al and the octahedrally coordinated B site is shared randomly between Ni and Al

[169]. This randomness will presumably lead to different physics in this compound.

If the regular spinel compound could be synthesized the Ni is expected to be in a d'

Ni2 + configuration and have spin-1. However the A site is tetrahedrally coordinated,

and in the resulting crystal field, the Ni 2+ ion will have orbital degeneracy in addition

to spin-1. Further spin-orbit coupling will split the resulting spin-orbital Hilbert space

and the physics of the lattice will be determined by its competition with inter-site

spin/orbital exchange[170J. Thus spinels with Ni atoms at the A-site, even of they

exist, will not be simply described by a spin-1 diamond lattice model.

Nevertheless we hope that our considerations motivate an experimental search for

and study of other frustrated spin-1 magnets.
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