
Topics in quantum algorithms - Adiabatic Algorithm,

Quantum Money, and Bomb Query Complexity

by

Han-Hsuan Lin

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Ph.D. in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
Author

Certified by

Department of Physics
I\ / May 22, 2015

~ II I I // L

Signature redacted
r Edward Farhi

Professor of Physics
Thesis Supervisor

Signature redacted
Accepted by

(

N ergis Mavalvala
Associate Department Head for Education

-

LO -c::>
('o.J

C>
("I')

z
::::>
-:>

-

CJ)
U..I
Ct:
<t: er
Q)
.:::;

2

Topics in quantum algorithms - Adiabatic Algorithm,

Quantum Money, and Bomb Query Complexity

Abstract

by

Han-Hsuan Lin

Submitted to the Department of Physics
on May 22, 2015, in partial fulfillment of the

requirements for the degree of
Ph.D. in Physics

In this thesis, I present three results on quantum algorithms and their complexity.
The first one is a numerical study on the quantum adiabatic algorithm(QAA) . We
tested the performance of the QAA on random instances of MAX 2-SAT on 20 qubits
and showed 3 strategics that improved QAA's performance, including a counter intu
itive strategy of decreasing the overall evolution time. The second result is a security
proof for the quantum money by knots proposed by Farhi et. al. We proved that
quantum money by knots can not be cloned in a black box way unless graph isomor
phism is efficiently solvable by a quantum computer. Lastly we defined a modified
quantum query model, which we called bomb query complexity B(J), inspired by the
Elitzur-Vaidman bomb-testing problem. We completely characterized bomb query
complexity be showing that B(f) = 8(Q(J)2

). This result implies a new method
to find upper bounds on quantum query complexity, which we applied on the maxi
mum bipartite matching problem to get an algorithm with O(nl.75) quantum query
complexity, improving from the best known trivial O(n2) upper bound.

Thesis Supervisor: Edward Farhi
Title: Professor of Physics

3

4

Acknowledgments

I want to thank my advisors Edward Far hi and Peter Shor. Thanks to my collabora

tors Edward Far hi, Peter Shor, Cedric Lin, and Elizabeth Crosson . Thanks to Aram

Harrow and Scott Aaronson for useful discussions and mentoring. Thanks to Aram

Harrow for J¥IEX help. Thanks to Shelby Kimmel, Robin Kothari, Seth Lloyd, Issac

Chuang, and everyone around the MIT quantum information community. Thanks to

my parents.

5

6

Contents

1 Introduction

1.1 Quantum adiabatic algorithm

1.2 Quantum money ...

1.3 Bomb query complexity

1.3.1 Our work ...

1.3.2 Past and related work

2 Different Strategies for Optimization Using the Quantum Adiabatic

Algorithm

2.1 Instance Selection .

2.2 The Hare Beats the Tortoise

2. 3 Going Lower by Aiming Higher

2.4 The Meandering Path May Be Faster

2.5 Conclusion

9

12

14

15

16

18

19

19

21

25

27

34

3 Cloning Component Quantum Money Solves Graph Isomorphism 37

3.1 Preliminaries

3.1.1 Quantum Money

3.1.2 Component Mixers and Labelling functions.

3.1.3 Component Quantum Money

3.1.4 Graph Isomorphism

3.1.5 Random Functions and Quantum-Secure Pscudorandom Fune-

tions

7

37

38

38

41

44

46

3.2 Main Theorem . 47

3.2.1 Generating graph state IX9) by cloning subgraph states . 48

3.2.2 Cloning without querying labelling functions .

3.2.3 Proof of Main Theorem

50

62

3.3 Quantum money from knots [1] and generalized component money 62

3.4 Proof of the upper bound on bJ..,k, Lemma 19 65

4 Upper bounds on quantum query complexity inspired by the Elitzur-

Vaidman bomb tester

4.1 Preliminaries . . .

4.1.1 The Elitzur-Vaidman bomb testing problem

4.1.2 Quantum query complexity

4.2 Bomb query complexity

4.3 Main result

4.3.1 Upper bound

4.3.2 Lower bound

4.4 Generalizations and Applications

69

69

69

71

72

74

75

79

80

4.4.1 Generalizing the bomb query model . 80

4.4.2 Using classical algorithms to design bomb query algorithms . 82

4.4.3 Explicit quantum algorithm for Theorem 27 . . 84

4.5 Improved upper bounds on quantum query complexity

4.5.1 Single source shortest paths for unweighted graphs

4.5.2 Maximum bipartite matching

87

87

89

4.6 Projective query complexity 93

4. 7 Proofs 95

4.7.1 Proof of the adversary lower bound for B(f) (Theorem 23) 95

4.7.2 Proof of Theorem 27 105

4.7.3 Proof of Theorem 29 108

8

Chapter 1

Introduction

Quantum computing combines computer science and quantum mechanics. Physicists

today believe the universe to be fundamentally quantum mechanical. On the other

hand, computers, one of the most influential modern technology, are classical. Quan

tum computers bridge the difference: they are computers that store and manipulate

data in the form of quantum states.

Are quantum computers better than classical computers? Many argue that the

exponentially large Hilbert space and entanglement allows quantum computers to be

more powerful than classical computers, and there is strong evidence for a positive

answer, for example, Shor's factoring algorithm [2] and Grover search [3]. However,

the power of quantum computers arc still unknown in many areas. For example,

one of the most sought-after question of quantum computing is whether quantum

computers can efficiently solve NP-complete problems. In this thesis, we try to further

our understanding in three different areas of quantum algorithms: quantum adiabatic

algorithms, component quantum money, and bomb query complexity.

The quantum adiabatic algorithm was proposed by Farhi et. al. [4) to solve con

straint satisfaction problems (CSP). It works by slowly changing an easily-solvable

Hamiltonian to the complex problem Hamiltonian. By the adiabatic theorem, if the

change in the Hamiltonian is slow enough (adiabatically), a system initially in the

ground state will evolve as the instantaneous ground state of the changing Hamilto

nian and end in the ground state of the final problem Hamiltonian, which encodes the

9

answer of the CSP. We can solve any CSP with the adiabatic algorithm. However,

the runtime required by the adiabatic algorithm is not known for most CSPs. Thus

we cannot in general compare the efficiency of the quantum adiabatic algorithm with

classical algorithms.

The first part of this thesis is a numerical study of quantum adiabatic algorithm

and provides three strategics to improve its success probability. We numerically

study the performance of the quantum adiabatic algorithm on randomly-generated

20-bit instances of MAX 2-SAT with a unique maximally satisfying assignment. The

probability of getting this unique assignment at the end of the quantum evolution is

the success probability. We pick out instances with low success probabilities and test

three strategics on those hard instances. The strategies are: decreasing the overall

evolution time, initializing the system in excited states, and adding a random local

Hamiltonian to the middle of the evolution. All three strategies consistently improve

the success probability on the hard instances.

The no-cloning theorem of quantum mechanics gives hints that quantum money

cannot be counterfeited. Classical information is easy to copy: given a string on a

computer, you can just copy and paste it. Therefore, if a bank hands out a secret

string as a bill, a counterfeiter can easily clone it. This is why online banking requires a

trusted third-party. On the other hand, the no-cloning theorem says that an arbitrary

quantmn state cannot be cloned. This opens up the possibility of quantum money

that is physically impossible to counterfeit.

Formally, a quantum money scheme is defined by two procedures: 1. How the

mint produces quantum money. 2. How everyone verifies quantum money. Both

procedures need to be efficient for a practical quantum money scheme. Moreover, a

secure quantum money scheme cannot be counterfeited, meaning that no one outside

of the mint can forge additional valid quantum money state given one copy of a

quantum money state. A quantum money scheme is private-key if only the mint can

verify it; a quantum money scheme is public-key if everyone can verify a quantum

money state without sending it back to the mint.

There arc several proposed quantum money schemes. Wicsner's private-key quan-

10

tum money [5] is the earliest proposal and boasts a complete security proof for one

time use. However, it is private-key and insecure after repeated uses [6] [7]. As a

public key quantum money scheme, Aaronson and and Christiano constructed quan

tum money from hidden subspaces. In their scheme, every quantum money state is

associated with a secret ·(the hidden subspace), and everyone who knows the secret

can efficiently produce more copies of the corresponding quantum money state. The

security of the subspace quantum money scheme is tied to the hardness of finding the

zero-space of random multivariate polynomials. Last but not least, the focus of this

thesis is quantum money from knots, proposed by Farhi et. al [l].

The second part of this thesis provides evidence on the security of quantum money

from knots. Unlike quantum money from hidden subspaces, quantum money from

knots does not require the mint to hold a secret. In the knot quantum money scheme,

the mint starts with an equal superposition of oriented knots and measures its Alexan

der polynomial, a knot invariant. The post-measurement state, an equal superposition

of knots with the same Alexander polynomial, is issued as a quantum money state,

and the measured Alexander polynomial is published as a valid serial number. Be

cause the state created is determined by quantum randomness, even the mint itself

cannot easily reproduce a published quantum money state. The verification proce

dure checks whether a state has the correct Alexander polynomial and is invariant

under permutations of knots. However, no security proof is known for knot quantum

money except a vague insight that its security is closely related to the hardness of

knot isomorphism. Lutomirski generalized quantum money from knot to component

quantum money, replacing knots with an arbitrary set, measurement of the Alexander

polynomial with a "labelling function", and permutation of knots with "mixers" [8].

In this thesis, we build from Lutomirski's generalization of knot quantum money and

prove that knot quantum money is secure with black box calls to the labelling func

tion and mixers, unless quantum computers can efficiently solve graph isomorphism,

under reasonable assumptions.

In the last part of this thesis, we introduced a new query model, which we call

bomb query complexity B(f). Inspired by the Elitzur-Vaidman bomb testing prob-

11

lem, a bomb query is a controlled quantum query with the two extra restrictions:

1. The result of each query is immediately measured. 2. The algorithm fails

whenever a 1 is measured. We characterize bomb query complexity by showing

that B(f) = 8(Q(f)2
). This result gives a new way to generate quantum upper

bounds as follows: we give a method to modify a classical randomized algorithm

into a bomb query algorithm, which then gives nonconstructive upper bounds on

Q(f) = 8(J(B(f)). We subsequently find a method to construct explicit quantum

algorithms matching the nonconstructive upper bounds. Applying this method to

the maximum bipartite matching problem gives an algorithm using O(nl.75
) quan

tum queries, improving from the best known trivial O(n2
) upper bound.

In conclusion, in this thesis we discuss three different topics about quantum algo

rithms. We numerically test the quantum adiabatic algorithm, which is a quantum

algorithm for solving CSP. We give a security proof on quantum money from knots

with certain assumptions, which shed some light on capabilities of quantum algo

rithms cloning quantum states and quantum cryptography. Finally we introduce

bomb query complexity, which provides another angle to investigate quantum query

complexity.

1.1 Quantum adiabatic algorithm

The quantum adiabatic algorithm (QAA) can be used on a quantum computer as an

optimization method [4) for finding the global minimum of a classical cost function

f : {O, l}n --+IR. The cost function is encoded in a problem Hamiltonian Hp which

acts on the Hilbert space of n spin-~ particles,

Hp= L f(z)lz)(zl. (1.1.1)
zE{O,l}n

The Hamiltonian Hp is diagonal in the computational basis, and its ground state

corresponds to the bit string that minimizes f. To reach the ground state of Hp the

system is first initialized to be in the ground state of a beginning Hamiltonian, which

12

is traditionally taken to be

(1.1.2)

The ground state of HB, which can be prepared efficiently, is the uniform superposi

tion of computational basis states

(1.1.3)

The system is then acted upon by the time-dependent Hamiltonian

(1.1.4)

from time t = 0 to t = T according to the Schrodinger equation

(1.1.5)

For a problem instance with a unique string w that minimizes f, the probability of

obtaining w at time t = T,

P(T) = j(wl?/'(t = T))l 2
, (1.1.6)

is a metric for the success of the method on that particular instance.

By the adiabatic theorem, if we prepare the system initially in the ground state of

H B and evolve for a sufficiently long time T, then the state of the system at the end of

the evolution will have a large overlap with the ground state of Hp. Specifically, the

adiabatic approximation requires T > O(g~7n), where 9m-in is the minimum difference

between the ground state energy and the first excited state energy during the course

of the evolution.

In this thesis we explore strategies that do not necessarily require a run time

T > O(g~;,n)· We sidestep the usual question of determining how the run time T

needed to achieve a certain success probability scales with the input size n. Instead

13

we work at a fixed bit number, n = 20, and look at strategics for improving the success

probability for hard instances at this number of bits. We observe three strategics that

increase the success probability for all of the hard instances we generated: evolving

the system more rapidly ("the hare beats the tortoise"), initializing the system to be

in a superposition of the states in the first excited subspace of Hn ("going lower by

aiming higher"), and adding random local Hamiltonian terms to the middle of the

evolution path ("the meandering path may be faster").

1.2 Quantum money

One of the well known properties of classical information is its inherent copyability;

a piece of information can be duplicated an unlimited number of times. This often

taken-for-granted fact has ensured that money counterfeiters and governments are

engaged in a never-ending technological arms race. Moreover, digital commerce must

thus involve a trusted third-party (such as a credit card company) for verification. In

contrast, quantum information is inherently uncopyable, by virtue of the No-Cloning

Theorem. We could therefore hope for a cryptographic protocol, which we shall call

a quant·um money scheme, that (informally) satisfies the following requirements:

1. The mint can produce a quantum state I$) (which we call a money state).

2. Anyone with a quantum computer can verify whether the purported money

state is valid or not.

3. No one, except for the mint, can forge a money state; in other words, given one

money state it should be infeasible to produce another one.

How do we satisfy these requirements? For requirement 2, we could imagine issuing

each money state l$i) with a serial number i; the serial number would tell you how

to verify the money state. As for requirements 1 and 3, a natural approach is for

the mint to hold a secret with which it generates money states and serial numbers.

Hopefully, then, it would be difficult for anyone to forge a money state without the

14

secret. This is the route taken by Aaronson and Christiano in constructing their

quantum money from hidden subspaces (9].

In this thesis, we look at an alternative approach in which the mint does not

keep any secret at all, but relics on the randomness of quantum measurements to

generate serial numbers. This approach is realized in quantum money from knots

by Farhi ct. al. (1), first proposed in (10] and idealized to component money in

(8]. In this thesis, we work on the idealized version of (8) where some operations

are treated as oracles. Roughly speaking, a component money scheme is composed

of a partition {Si} on a large set S, and "component mixer" and "labelling function"

operations. The "component mixer" maps any clement of a component Si into another

clement of the same component uniformly, and the labelling function L identifies

which component an element is in (if s E Si, L(s) = i). The valid money states

are equal superpositions over the same component, ISil-1/ 2 I: Is) for some serial
sESi

number 'i. We can generate a money state by creating a uniform superposition over

S, applying the labelling function L, and then measuring the component (see Section

2). Valid money states can be efficiently verified by applying the component mixer

and labelling function. In the example of quantum money from knots, S is the set

of knots with certain size represented by link diagrams, each {Si} is the set of knots

with certain Alexander polynomial, i is the corresponding Alexander polynomial, and

the mixer is approximated by a Markov chain of grid moves.

In this thesis, we aim to provide some evidence for the security of this scheme, by

showing that if an attacker can forge a money state under this scheme with a black-box

attack (that is, the attacker never uses the "inner workings" of the component mixer

and the labelling function), then the attacker can solve the GRAPH ISOMORPHISM

problem (given two graphs, tell whether the two graphs are isomorphic).

1.3 Bomb query complexity

Quantum query complexity is an important method of understanding the power of

quantum computers. In this model we arc given a black-box containing a boolean

15

string x = x 1 · · · XN, and we would like to calculate some function J(x) with as few

quantum accesses to the black-box as possible. It is often easier to give bounds on

the query complexity than to the time complexity of a problem, and insights from

the former often prove useful in understanding the power and limitations of quantum

computers. One famous example is Grover's algorithm for unstructured search (3);

by casting this problem into the query model it was shown that 8(Vii) queries is

required [11), proving that Grover's algorithm is optimal.

Several methods have been proposed to bound the quantum query complexity.

Upper bounds are almost always proven by finding better query algorithms. Some

general methods of constructing quantum algorithms have been proposed, such as

quantum walks [12, 13, 14, 15] and learning graphs [16). For lower bounds, the main

methods arc the polynomial method [17) and adversary method [18). In particular,

the general adversary lower bound (19) has been shown to tightly characterize quan

tum query complexity (20, 21, 22), but calculating such a tight bound seems difficult

in general. Nevertheless, the general adversary lower bound is valuable as a the

oretical tool, for example in proving composition theorems [21, 22, 23) or showing

nonconstructive (!) upper bounds (23).

1.3.1 Our work

To improve our understanding of quantum query complexity, we introduce and study

an alternative oracle model, which we call the bomb oracle (see Section 4.2 for the

precise definition). Our model is inspired by the concept of interaction free meas'Ure

ments, illustrated vividly by the Elitzur-Vaidman bomb testing problem [24), in which

a property of a system can be measured without disturbing the system significantly.

Like the quantum oracle model, in the bomb oracle model we want to evaluate a

function f (x) on a hidden boolean string x = x1 · · · x N while querying the oracle

as few times as possible. In this model, however, the bomb oracle is a controlled

quantum oracle with the extra requirement that the algorithm fails if the controlled

query returns a 1. This seemingly impossible task can be tackled using the quantum

Zeno effect [25], in a fashion similar to the Elitzur-Vaidman bomb tester (26) (Section

16

4.1.1).

Our main result (Theorem 20) is that the bomb query complexity, B(f), is char

acterized by the square of the quantum query complexity Q(f):

Theorem 20.

B(f) = 0(Q(/)2
). (1.3.1)

We prove the upper bound, B(J) = 0(Q(/)2) (Theorem 22), by adapting Kwiat

ct al.'s solution of the Elitzur-Vaidman bomb testing problem (Section 4.1.1, [26]) to

our model. We prove the lower bound, B(f) = fl(Q(/)2) (Theorem 23), by demon

strating that B(f) is lower bounded by the square of the general adversary bound

(19), (Adv±(/))2 . The aforementioned result that the general adversary bound tightly

characterizes the quantum query complexity [20, 21, 22), Q(f) = 8(Adv±(f)), allows

us to draw our conclusion.

This characterization of Theorem 20 allows us to give nonconstrnctive upper

bounds to the quantum query complexity for some problems. For some functions f

a bomb query algorithm is easily designed by adapting a classical algorithm: specifi

cally, we show that (stated informally):

Theorem 27 (informal). Suppose there is a classical algorithm that comp·utes f(x) in

T queries, and the algorithm guesses the result of each query (0 or 1}, making no more

than an expected G mistakes for all x. Then we can design a bomb query algorithm

that uses O(TG) queries, and hence B(f) = O(TG). By our chamcterizatfon of

Theorem 20, Q(f) = O(./TG).

This result inspired us to look for an explicit quantum algorithm that reproduces

the query complexity 0(./TC). We were able to do so:

Theorem 28. Under the assumptions of Theorem 27, there is an expl-icit algorithm

(Algorithm 30} for f with query complexity 0(./TC).

Using Algorithm 30, we were able to give an O(n312
) algorithm for the single-source

shortest paths (SSSP) problem in an unweighted graph with n vertices, beating the

best-known O(n312 Jlogn) algorithm [27]. A more striking application is our O(n714
)

17

algorithm for maximum bipartite matching; in this case the best-known upper bound

was the trivial O(n2), although the time complexity of this problem had been studied

in [28) (and similar problems in [29)).

Finally, in Section 4.6 we briefly discuss a related query complexity model, which

we call the projective query complexity P(J), in which each quantum query to x is

immediately followed by a classical measurement of the query result. This model

seems interesting to us because its power lies between classical and quantum: we

observe that P(f) s; B(J) = 8(Q(J)2
) and Q(f) s; P(J) s; R(f), where R(J) is the

classical randomized query complexity. We note that Regev and Schiff [30) showed

that P(OR) = 8(N).

1.3.2 Past and related work

Mitchison and Jozsa have proposed a different computational model called counter

factual computation [31), also based on interaction-free measurement. In counterfac

tual computation the result of a computation may be learnt without ever running

the computer. There has been some discussion on what constitutes counterfactual

computation; see for example [32, 33, 34, 35, 36, 37, 38).

There have also been other applications of interaction-free measurement to quan

tum cryptography. For example, Noh has proposed counterfactual quantum cryptog

raphy [39), where a secret key is distributed between parties, even though a particle

carrying secret information is not actually transmitted. More recently, Brodutch ct

al. proposed an adaptive attack [6) on Wicsner's quantum money scheme [5); this at

tack is directly based off Kwiat et al.' s solution of the Elitzur-Vaidman bomb testing

problem [26].

Our Algorithm 30 is very similar to Kothari 's algorithm for the oracle identification

problem [40), and we refer to his analysis of the query complexity in our work.

The projective query model we detail in Section 4.6 was, to our knowledge, first

considered by Aaronson in unpublished work in 2002 [41).

18

Chapter 2

Different Strategies for Optilllization

Using the Quantulll Adiabatic

Algorithlll

In this chapter we describe 3 strategics to improve the quantum adiabatic algorithm.

This chapter is mostly excerpted from [42] which is joint work with Elizabeth Crosson,

Edward Farhi, Cedric Yen-Yu Lin, and Peter Shor.

2 .1 Instance Selection

We sought to accumulate an ensemble of instances of MAX 2-SAT on n = 20 bits that

are hard for the QAA as described above. Our instances arc constructed by randomly

generating 60 distinct clauses, each involving two distinct bits, and retaining the

instance only if there is a unique assignment w that minimizes the number of violated

clauses. We keep only those instances that have a unique minimal assignment because

degenerate ground states of Hp make the energy gap zero, and because we wish

to avoid the complication of having success probabilities depend on the number of

optimal solutions.

We generated 202, 078 instances and selected all those having a low success prob

ability at T = 100, using P(lOO) < 10-4 as our cutoff, resulting in a collection of

19

137 hard instances. To speed up the search for these instances, we used a mean-field

algorithm to approximate the QAA in equations 1.1.1 through 1.1.4 with T = 100,

and then we discarded the instances that had a final mean-field energy of 0.5 or less

above the energy of the optimal assignment . We checked that instances that are

easy for the mean-field algorithm would also have a high success probability under

the full Schrodinger evolution by sampling a separate population of 15, 000 instances,

and found that whenever the mean-field algorithm produced a final energy less than

0.5 above the ground state energy the instance had success probability P(lOO) > 0.2

according to the Schrodinger evolution. The use of this filter allowed us to discard

3 / 4 of the initial 202, 078 instances, and for the remainder we numerically integrated

the Schrodinger evolution with T = 100.

The success probabilities at T = 100 for the test population of 15, 000 instances are

given in figure 2.1.1. Most of the instances we generate have high success probability

at T = 100 (in fact, over half of this population had P(lOO) > 0.95), and hard

instances at this time scale and number of bits arc rare. This is why we needed to

generate roughly 200, 000 total instances, and search through them using over 20,000

hours of CPU time, to obtain our ensemble of 137 instances which have P(lOO) <

10- 4.

10-s 10-4 10- 3 10- 2 10-1

P(lOO)

Figure 2.1.1: The distribution of success probabilities for 15000 instances.

20

2.2 The Hare Beats the Tortoise

Considering the success probability P(T) as a function of the total evolution time T,

we find that all of our instances with low success probability at T = 100 exhibit higher

success probability at lower values of T. Figure 2.2.1 depicts this phenomenon for a

single hard instance, which happened to be the first instance we carefully examined.

We will refer to this instance as instance #1. We sec a distinct peak of success

probability at Tmax = 12 with P(Tmax) = 0.05, which is to be compared with P(lOO) =

5 x 10-5 and P(200) = 5 x 10-6 .

0.05

0.04

0.03

P(T)

0.02

0.01

0 50 100

T

150 200

Figure 2.2.1: The success probability as a function of total evolution time T for
instance # 1.

In figure 2.2.2 we plot the three lowest energy levels of instance #1, and we sec a

small energy gap which corresponds to an avoided crossing nears= 0.66. To see why

changing the Hamiltonian more rapidly increases the success probability, figure 2.2.3

gives the instantaneous expectation of the energy, (4,, (t) I H (t) 11/' (t)), as a function of

t for T = 10 and T = 100, together with the three lowest energy eigenvalues. We

sec that when the Hamiltonian is changed slowly, the T = 100 case, the system

remains close to the ground state for all time t < 0.66T, but then switches to closely

following the first excited state after the avoided crossing, and arrives with most of

its amplitude in the first excited state subspace of Hp with virtually no overlap with

lw).

21

s

Figure 2.2.2: The lowest three energy levels for instance #1.

6 •
5

4
;::....
OJ)
1-4
Q.) 3 i::

r.r.l

• T = 10
2

• T = 100

o'--=-____.__.____._----"'--_.__--'-_._-'---'----'----"~.__-'---_.___i_____.__.___,_~.__-"--'
0.0 0.2 0.4 0.6 0.8 1.0

t IT

Figure 2.2.3: The lowest three energy levels for instance #1, superimposed with the

instantaneous expectation of the energy as a function oft for T = 10 and T = 100.

In figure 2.2.4 we track the overlap of the rapidly evolved system (T = 10) with

the lowest two energy eigenstates of H (t), and see that the overlap of the system

with the ground state immediately after the crossing corresponds to the overlap with

the first excited state immediately before it. When evolving more rapidly, leaking

substantial amplitude into the first excited state prior to the crossing is responsible

22

for the increased probability of finding the system in the ground state at the end of

the evolution.

1.0
.....

.....

0.8

0.6

0.4

0.2

0.0 --------
0.0

' ' ' ' ' ' ' ' '

0.2

' ' ' ' ' ' \
' ' ' ' '

1(1/t(t)ll/to(t))12

l(l/t(t)ll/!1 (t))j2

-- ..,,- -- - -- - .. -- -- . --

1
;

••• - - • - ••••••••••• , ' ••••• 'L - - - - - - - - - - - - -

0.4 0.6 0.8 1.0

t/T

Figure 2.2.4: The overlap of the rapidly evolved system (T = 10) with the lowest two

instantaneous energy eigenstates of H(t), labeled here as l'l/10 (t)) and j'l{J1 (t)). The

bump in the overlap with the first excited state near s = 0.58 coincides with the

avoided crossing between levels 2 and 3, as seen in figure 2.2.2.

Having described this phenomenon for a single instance, we now present evidence

that it generalizes to many other hard instances. For each of our 137 hard instances

we determined the location Tmax where the success probability is maximized in the

interval [O, 40], and in figure 2.2.5 we compare the success probability at T max with

the success probability at T = 100. It is notable that every data point appears to the

right of the 45 degree line, indicating that every one of our instances was improved by

evolving the Hamiltonian more rapidly. The minimum improvement P(Tmax)/ P(lOO)

for this batch of instances is 108, and the median improvement is 809.

23

P(IOO)

10- s

10-6

/
/

/

/
I

/

I

/
/

I

/
I

/

/
I

I

/

I
/

/

/
I

I

.·

·.

/
10-1 ~~ ~~-'-~~-----'~~~-'--' ~~~~~-'-~~--'-~~-----'

10-1 10-6 10-s 10-4 10-3 10-2 10- 1

Figure 2.2.5: A log-log scatter plot comparing P(Tmax.) with P(lOO), where the value

of I'inax depends on the instance.

From an algorithmic perspective, it may not be possible to efficiently estimate

the value of Tmax for each instance in advance. The distribution of Tma.x for our 137

instances is shown in figure 2.2.6.

10 15 20 25 30

Figure 2.2 .6: The distribution of the times Trnax at which the success probabilities of

our hard instances are maximized in the interval [O, 40).

The phenomenon we arc describing is sufficiently robust that we can choose a fixed

short time such as T = 10 and still gain a substantial improvement for every instance.

24

In figure 2.2.7 we compare the success probabilities at T = 10 and T = 100. Here the

minimum improvement P(lO)/ P(lOO) is 15, and the median improvement is 574.

10-4

I
/

I 10-s
I

/
/

P(IOO) I
I

/
I

10-6
I

I
I

/
I

I
/

I
I

/

10-1 "------'--~--
10-7 10-6 10-s

/
I

I
I

/
/

/

_..__ __ __L_ __ ___J_ __ ~-~

10-4 10-3 10-2 10-1

P(IO)

Figure 2.2.7: A log-log scatter plot comparing P(lO) with P(lOO).

2.3 Going Lower by Aiming Higher

In the previous section we saw that having a substantial overlap with the first excited

state before the avoided crossing increases the overlap with the ground state at the

end of the evolution. In this section we attempt to directly exploit this effect by

preparing the system at t = 0 to be in one of the 20 first excited states of Hn,

obtained by taking the ground state (in equation 1.1.3) and flipping one of its qubits

from (IO)+ll))/J2 to (IO)-ll))/J2. We did this for each of the 20 first excited states

for each of our 137 hard instances. For each instance the average success probability

over the 20 excited states of Hn is given in figure 2.3.1, and the maximum success

probability for every instance is given in figure 2.3.2.

25

0.030 0.035 0.040 0.045 0.050

Average Success Probability

Figure 2.3.1: The average success probability at T = 100 for 137 instances obtained

by initializing the system in each of the 20 first excited states of Hs.

0.10 0.15 0.20 0.25 0.30 0.35

Maximum Success Probability

Figure 2.3.2: The maximum success probability at T = 100 for 137 instances obtained

by initializing the system in each of the 20 first excited states of Hs.

As shown in figure 2.3.1, this strategy produces an average success probability

near 1/20 for most of our 137 instances. This saturates the upper bound given by

26

probability conservation, since the sum of the success probabilities associated with

the 20 orthonormal initial states cannot exceed 1.

A similar strategy to ours was used in [43) to overcome an exponentially small gap

in a particular Hamiltonian construction by initializing the system in a random low

energy state. The authors argue that this technique is useful whenever there arc a

small number of low lying excited states that arc separated from the remaining space

by a large energy gap. The possibility of using non-adiabatic effects to drive a system

from its ground state on one side of a phase transition to its ground state on the

other side was considered in [44] as a problem in quantum control theory. Herc we

quantify the viability of this strategy for particularly hard instances of MAX 2-SAT

at 20 bits.

2.4 The Meandering Path May Be Faster

The traditional time-dependent Hamiltonian in equation 1.1.4 represents a path in

Hamiltonian space which is a straight line between HB and Hp. Here, as was pre

viously considered in [45], we modify this path by adding an extra randomly chosen

Hamiltonian HE,

H(t) = (1 -!) HB + _!_ (i -!) HE+ _!_Hp T T T T .
(2.4.1)

A reasonable constraint on HE is that it be a sum of local terms with the same

interaction graph as the problem Hamiltonian Hp, but should not use any other

information specific to the particular instance. We consider three categories of HE:

1. Stoquastic with zeroes on the diagonal. Stoquastic matrices are defined by

having non positive off-diagonal terms. We realize stoquastic HE in the follow

ing way: Each 2-local term of HE is a linear combination of 1 and 2-qubit Pauli

operators from the set {I ax, CJxl, O"zO"x, O"xO"z, O"xO"x, ayay}· For each 2-local term,

the 6 real coefficients arc sampled from a Gaussian distribution with mean zero,

and arc then normalized so that their squares sum to 1. Moreover, the coef-

27

ficicnts arc kept only if the local Hamiltonian term constructed in this way is

stoquastic (i.e. all of the off-diagonal matrix clements arc real and non-positive).

2. Complex with zeroes on the diagonal. Each 2-local term of HE is a linear

combination of 1 and 2-qubit Pauli operators chosen from the set

. For each 2-local term, the 12 real coefficients are sampled from a Gaussian

distribution with mean zero, and are then normalized so that their squares sum

to 1.

3. Diagonal. Each 2-local term of HE is a linear combination of 1 and 2-qubit

Pauli operators chosen from the set {Io-z, o-z I, a zO-z}. For each 2-local term, the

3 real coefficients are sampled from a Gaussian distribution with mean zero,

and are normalized so that their squares sum to 1.

The reason that we work with zero diagonal HE in the first two categories is to be

sure that we are exploring purely quantum strategies for increasing the success prob

ability, since the diagonal clements of HE could be seen as time-dependent classical

modifications to the energy landscape of Hp. The reason that we separate stoquastic

path change from general complex path change is that ground states of stoquastic

Hamiltonians have various special properties which may limit their computational

power. Ground state local Hamiltonian problems arc known to have lower compu

tational complexity when the Hamiltonians are restricted to be stoquastic [46)[47).

Moreover, ground state properties of stoquastic Hamiltonians can be determined. us

ing Quantum Monte Carlo (a collection of classical methods for finding properties of

quantum systems) at system sizes of up to a few hundred qubits (for a general review

sec [48), for an application to the QAA sec [49]). Non-stoquastic Hamiltonians have a

"sign problem" that prevents this, and we know of no efficient simulation techniques

for non-stoquastic Hamiltonians at system sizes of more than roughly 20 qubits. The

traditional QAA Hamiltonian defined by equations 1.1.1, 1.1.2, and 1.1.4 is stoquas-

28

tic, and we arc interested in seeing whether non-stoquastic path change can increase

the computational power of this algorithm.

As a first demonstration of the potential for path change to increase success prob

abilities, we return to instance #1 which had P(lOO) = 5 x 10- 5
. In figure 2.4.1 we

plot the spectrum for this instance with a particularly successful choice of complex

HE, and sec that the avoided crossings in figure 2.2.2 have been eliminated.

5

4

1

o~~~~~~~~~~~~~~~~~~~~
0.0 0.2 0.4 0.6 0.8 1.0

s

Figure 2.4. l: The energy spectrum of instance #1 with a particular choice of complex

HE which gives P(IOO) = 0.91.

We tested the performance of this strategy by simulating 25 trials of stoquastic,

complex, and diagonal path change for each of our 137 hard instances (which all have

P(lOO) < 10- 4 when HE = 0). The path changes are all chosen independently so that

there arc no correlations between the instances. Simulating these path change trials

for all of our instances required over 25,000 hours of CPU time. The full distribution

of success probabilities we obtained at T = 100 is given in figure 2.4.2.

29

150
• Stoquastic

75

0
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

150
•Complex

75

0
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

150
• Diagonal

75

0
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

P(lOO)

Figure 2.4.2: The distribution of success probabilities for 137 hard instances, when

each is run with 25 randomly sampled path changes.

While stoquastic path changes almost always increase the success probability

above 10-4 , we see that they rarely produce success probabilities near 1. This is

shown in the distribution of the maximum success probability we obtained for each

instance with 25 trials of path change, shown in figure 2.4.3.

30

80

60
• Stoquastic

40

20

0
10-2 10-1 1

80

60
•Complex

40

20

0
10-2 10-1 1

80

60
•Diagonal

40

20

0
10-2 10-1 1

max{P(lOO)}

Figure 2A.3: The maximum success probabilities for each of the 137 hard instances,

when each is run with 25 randomly sampled path changes.

To take into account the spread in the distribution we estimate the geometric

mean of the failure probabilities obtained by many trials of path change. For each

instance we use the 25 trials to compute

(

25) 1/25

x = n failure probability of the 'i-th trial
i = l

(2.4.2)

We take 1-x to be the effective success probability of a single trial of the path change

strategy. In figure 2.4.4 we give the distributions of 1 - x for our ensemble of 137

31

hard instances.

1

10-1 1

Figure 2.4.4: The effective success probabilities (given by 1 minus the geometric mean

of the failure probabilities) obtained by running each of the 137 hard instances with

25 randomly sampled path changes.

We find that all three types of path change increase the effective success probability

for all 137 of our hard instances, with complex path change typically producing the

largest increase in the effective success probability.

To check whether the widening of the spectral gap seen in figure 2.4.1 also occurs

for other successful trials of path change, we computed the minimum spectral gap

9min between the ground 8tate and the first excited state for a subset of our path

change trials. For each of our 137 hard instances we computed 9 ·min for the most

32

successful path change trial of each of the three types, and also for a randomly selected

trial of each of the three types. Figure 2.4.5 compares these minimum gaps to the

corresponding success probabilities.

P(100)
I

10- 2

I0-4

P(IOO)
1

10- 2
.·

•••• ,:;i..'-
·, .f:;;;, .. ~:·:

.·.~,~~~ '~ . :·

.. .

Stoquastic

Random

: \t" . ·
..... : ·=# .. '· . ,~ : ., :

• • • "" \l· .. : ..
.· ~· ... ~

"· Complex

Random

10-6 '-----~------'---~--'--~----'
10-6 10-4 I 0-2

P(IOO)
I

10-2

.. .. . :
..

I0- 2

Diagonal
Random

gmin
10-2

..

... . .
.· ::{:::=-< ,

=~. ; :. • • • Stoquastic

Best

10- 1

: ·:: .. i· ·, ·.:·t:.::i~
· .

. ·

10- 1

Complex

Best

. ·;AJ~-
···.;;·~ ..

.....
• l ·.1 .. •
' ·'· ..

10- •

Diagonal
Best

P(l00)
l

0.5

0.2

0. 1

0.05

P(LOO)
l

0.5

0.2

0.1

0.05

P(lOO)
I

0.5

0.2

0.1

0.05

Figure 2.4.5: A comparison of success probabilities with the minimum spectral gap

for several trials of path change. The plots in the left column contain one random

path change trial for each instance. In the right column we plot the most successful

path change trial for each instance. Note that the scales for the probabilities and the

minimum gaps are djffercnt between the left column (random) and the right column

(best).

33

We sec a correlation between high success probability and large gaps, and almost

no data with large gaps and low success probabilities.

2.5 Conclusion

We generated over 200,000 instances of MAX 2-SAT on 20 bits with a unique opti

mal satisfying assignment, and selected the subset for which the numerically exact

time-simulation of QAA governed by equations 1.1.1 through 1.1.5 finds success prob

abilities of less than 10-4 at T = 100. We gave three strategies which increase the

success probability for all of these instances. First we ran the adiabatic algorithm

more rapidly, and observed an increased success probability at shorter times for all

137 instances. Second, we initialized the system in a random first excited state of H B

and saw that the average success probability for this strategy is close to the upper

bound 0.05 for the majority of hard instances. Finally, we observe that adding a

random local Hamiltonian to the middle of the adiabatic path often increased the

success probability, and that different types of path changes produced different dis

tributions, with the stoquastic case most often increasing the success probability, the

complex case being the most likely to give success probabilities close to 1, and the

diagonal case having the most spread and highest likelihood of reducing the success

probability.

To guard against the possibility that what we observe are low bit number phe

nomena, we also tested these strategics for the QAA version of the Grover search

algorithm. Here the problem Hamiltonian Hp assigns energy 1 to all of the compu

tational basis states aside from one of them which is assigned energy 0. The Grover

problem requires exponential time for any quantum algorithm, so we expect that our

strategies should not improve the success probability. Indeed, at n = 20 qubits they

do not.

One striking thing about these strategies is that they increase the success proba

bility for all of the very low success probability instances we generated. This may be

a consequence of testing our strategies on particularly hard instances, which have the

34

most room for improvement. Figure 2.1.l shows that the overwhelming majority of

instances we generated at 20 bits are far easier than the ones we selected. At higher

bit number it may be that most instances have very low success probability when the

traditional QAA is run for a time that scales polynomially in the number of bits. If

the only effect of these strategies is to bring the most difficult instances in line with

the typical instances, which may in fact have very low success probabilities, then the

algorithmic value of these strategics is limited. We hope that one day these strategics

will be tested on a quantum computer running the Quantum Adiabatic Algorithm at

high bit number where classical simulations arc not available.

35

36

Chapter 3

Cloning Coinponent Quantum Money

Solves Graph Isoniorphisin

In this chapter we give a security proof to quantum money from knots. We will intro

duce and focus on the idealized version, component quantum money, where mixers

and labelling functions arc given as black boxes. We prove that component quantum

money is secure unless there is a efficient quantum algorithm for GRAPH ISOMOR

PHISM. Therefore to counterfeit quantum money from knots, the counterfeiter must

look into the inner workings of the mixer and labelling function or provide a fast al

gorithm for GRAPH ISOMORPHISM. This is joint work with Edward Farhi, Cedric

Yen-Yu Lin, and Peter Shor.

3.1 Preliminaries

We call a function f (x) negligible if f (x) = o(l/xn), \Jn. We call an algorithm

efficient if the number of gates (and oracle calls, if any) it uses is polynomial in the size

of the input. We denote the symmetric group of 1! clements by Symg. Recall that the

fidelity between two quantum states is defined by F(p, O") =Tr(J p 1/ 20"pl/2). We say

that two m-qubit quantum states p and O" arc negligibly different if F (p, O") = 1- f (m)

for some negligible function .f.

Throughout this chapter, within a kct the"+" and"-" signs always mean addition

37

and subtraction modulo the dimension of the register. For example, we take la+ b) to

mean l(a+b) (mod D)) if the register has dimension D. Similarly, la-b) is shorthand

for l(a - b) (mod D)).

3.1.1 Quantum Money

In this section, we formally define the meaning of a quantum money scheme.

Definition 1 (Quantum Money Scheme). A quantum money scheme is defined by

two efficient procedures:

1. How the mint generates quantum money states

2. How the public verifies quantum money states

Moreover, we say a quantum money scheme is secure if a counterfeiter cannot effi

ciently copy a quantum money state; given a state that passes the verification pro

cedure, the counterfeiter cannot generate two states that both passes the verification

procedure with high probability.

Scott Aaronson and Paul Christiano gave more detailed definitions in (9], including

the definition of a mini-scheme and how to handle serial numbers. For the purpose

of our work, the simple definition above suffices.

3.1.2 Component Mixers and Labelling functions

In this section, we introduce component mixers and labelling functions, two operations

central to construction of component quantum money. The component mixer and

labelling function of a component qua~tum money scheme are based on a partition

{Si} of a large set S ~ { 0, 1} m. We call the subpartitions Si components and index

them by some set LAB. In other words, Sin sj = f/J for i-=/:- j ands= uiELAB Si· We

now proceed to define the component mixer and labelling function corresponding to

{Si}:

38

Definition 2 (Component Mixers). Let {Afa}aEindM be a family of one-to-one maps,

indexed by a set IndM ~ {O, l}poly{m). We say {.Ma} is a component mi~rer on the

partition {SihELAB if all of the following hold:

• All of the Nfa's do not mix between components: for all s E Si and a E IndM,

A1a(s) E Si.

• {Ma} instantly mixes within each component: for all s E Si, if a is taken

uniformly random from IndM, the total variation distance between Afa(s) and

a uniform sample from Si is no more than 2-rn-2 .

We will often simply write the component mixer { A1a} as A1, i.e. we drop the subscript

a and the brackets.

For a concrete example, suppose S is the set of all undirected graphs with n

vertices encoded by the adjacency matrices, with each component containing graphs

that are isomorphic to each other. Then one component mixer for this partition is

the set of all permutations of n vertices: permutations only map between isomorphic

graphs, and a random permutation maps a graph to a uniform sample from the same

component. In this case, IndM = Symn, the symmetric group of n elements.

In the case of quantum money from knots, S is the set of oriented knots of a

certain size encoded as grid diagrams. Each component Si is the set of knots with

the same Alexander polynomial, a knot invariant. The component mixer arc maps

between isomorphic knots. However, there arc several caveats. Firstly, since the size

of a knot is an ambiguous idea, S is actually a Gaussian distribution over different

grid sizes with tails cut off. Secondly, the component mixer arc actually approximated

by a Markov chain of grid operations. Finally, we only mix between isomorphic knots

instead of all knots with the same Alexander polynomial, so the mixer docs not

instantly mix. The first two issues are approximations of bounded error, and in the

end of this chapter we show that our security proof can work around the last issue.

An algorithm having quantum query access to a component mixer basically means

that it can coherently apply component mixer operations A1a described in Definition

2. We formally define quantum query access to a component mixer as follows:

39

Definition 3 (Quantum Query Access to a. Component Mixer). An algorithm has

quantum query access to a component mixer { l\d a.} if the algorithm can do all of the

following coherently:

• Test a string for membership in lndM.

• Create the uniform superposition over all clements of IndM,

IIndMl-112 L la).
aElndM

• Perform the "controlled-AP' operator CM, defined by

C.Mlo:, a, s) =la, a, .M~(s))

. Herc a E {1, 0, -1}, a E IndM, ands ES.

In our security proof of general component money, we think C .f\;f as a black box,

and when we talk about "querying the component mix:cr", we mean applying C Af.

Let us also define a labelling function: a function that, given an clement s E S,

tells us which component s is in:

Definition 4 (Labelling Function). The labelling function L : S --+ LAB on the

partition {SihELAB is defined as follows: ifs E S.i, then L(s) = i.

Continuing from our previous example, suppose S = LJ Si is the set of all n-vertex
i

undirected graphs, where each Si contains graphs that arc isomorphic to each other.

Then an example of a labelling function for this partition would be f (g) = gcanon,

where gca.non is the canonical graph, a graph isomorphic to g and with vertices ordered

in some canonical fashion. Of course, computing a labelling function for isomorphic

graphs is at least as difficult as solving the GRAPH ISOMORPHISM problem (see

section 2.3), since to determine whether two graphs arc isomorphic we could simply

check whether they have the same canonical graph. There is therefore no known

quantum or classical algorithm to efficiently compute such a labelling function.

40

For quantum money from knots, the labelling function is the Alexander polyno

mial, which can be computed efficiently on a classical computer. Therefore anyone

with a quantum computer has quantum query access to the labelling function of quan

tum money from knots. Note that it is tempting to partition S into isomorphic classes

of knots and use the corresponding labelling function. But similar to the previous

paragraph, we do not know how to efficiently calculate the canonical knots, which

solves knot isomorphism. Tracing this line of logic back, this is why we partition S

according to Alexander polynomials instead and leads to the inability to instantly

mix.

We also define quantum query access to a labelling function as the ability to

perform the operation Is, ·i) -+ Is, L(s) + i) coherently.

3.1.3 Component Quantum Money

We now introduce component quantum money, as proposed in [8}. We assume the

public (mint, users, and counterfeiters) have quantum query assess to the component

mixer and the labelling function. Recall that a quantum money scheme consist of

a procedure to generate money states and a procedure to verify money states. The

procedure to generate component money state is:

Algorithm 5 (Generate Component Money). The mint uses the following steps to

generate component quantum money states:

1. The mint creates the uniform superposition

1s1-112 L Is).
sES

(We require that this can be done efficiently. For quantum money from knots,

this requirement is trivial.)

2. The mint applies the labelling function with an ancilla register, giving

1s1-112 L L li)ls).
iELAB sESi

41

3. The ancilla register is measured, collapsing the second register to the equal

superposition of the measured random label k

ISk) = ISkl-112 L Is).
sESk

The mint takes the state ISk) to be the money state and appends k as its serial

number.

The notation ISk) defined in the last step will be used throughout this chapter.

The mint repeats this procedure polynomially many times, each time generating

a different money state IS1J; now the mint publishes a list of all valid serial numbers.

For the money scheme to be secure, we require the number of labels I LAB I to be su

perpolynomial in m, the number of qubits used to store the money state. In this case,

a naive counterfeiter repeating the mint's procedure will fail to forge a money state

because the probability of getting a serial number in the published list is negligible.

To show that a merchant can verify a valid money state with quantum query

access to the mixer and labelling function, we use the following lemma proved in [8]:

Lemma 6 (Projection using Component Mixer). Oiven query access to a component

mixer { A1a} of a partition { SihELAB, a quantum computer can, with negligible error,

rneasure the projector

(3.1.1)

with two queries to the component mixer. The labelling function is not required

for this measurement.

In other words, using the component mixer, we can efficiently measure the sub

space spanned by the component money states of all labels. To verify that a quantum

state is a valid money state, i.e. ISk) with serial number k, a verifier checks the serial

number using the labelling function and measures the projector P = I: ISi)(Sil·
iELAB

42

Quantum money from knots is very similar to quantum money with component

mixers. As mentioned previously, quantum money from knots partitions the set of

knots of certain size by the Alexander polynomial; in other words, each component

consists of knot diagrams of the same Alexander polynomial. A labelling function on

this partition is provided; however the mixer only mixes between isomorphic knots,

and therefore each component is further divided into subcomponents of isomorphic

knots which the mixers actually mixes. This mismatch between the labelling func

tion and the component mixer results in the verification procedure accepting many

states that are not the bank note issued. Nevertheless, the recipes used to create and

verify knot quantum money is very similar to that of a component mixer quantum

money. In Section 3.3, we will describe the situation in detail and introduce gener

alized component money, which quantum money from knots is an example of. We

will then show that our security proof holds for generalized component money, but

the construction is unnecessarily complicated , so most of this chapter just discusses

component quantum money. A careful reader might recall that quantum money from

knots also suffers from the ambiguity of knot size and the component mixer being

inexact. We argue that errors to those approximations are well bounded and can be

neglected, following [1).

In this thesis, we give a security proof for component quantum money. Specifically,

we are concerned about a powerful counterfeiter that can break all component quan

tum money schemes. Such a counterfeiter can be abstracted as a quantum algorithm

that takes one copy of valid money as input, queries the corresponding component

mixer and labelling function as black box quantum operations, and outputs two copies

of valid quantum money in polynomial time. This algorithm can be treated as a fam

ily of circuits, with one circuit for each size of the money state. We will denote the

circuit that takes as input an m-qubit money state, and queries mixer A1 and labelling

function L, as Clonem(Af, L). The main result of this chapter shows that one can

leverage Clone to efficiently solve GRAPH ISOMORPHISM.

43

3.1.4 Graph Isomorphism

The problem GRAPH ISOMORPHISM is defined as the following:

Problem 7. GRAPH ISOMORPHISM

Input: Two n-vertcx graphs 91 and g2.

Output: 1 if g1 is isomorphic to g2, and 0 otherwise.

GRAPH ISOMORPHISM is in the complexity class NP, since one could give the

isomorphism as a certificate. On the other hand, no known algorithm, classical or

quantum, solves GRAPH ISOMORPHISM in polynomial time.

Considerable effort has been put into the search of an efficient quantum algorithm

for GRAPH ISOMORPHISM. Although none of the attempts have yet to succeed, our

work builds on a popular line of thought. The idea is to create the equal superposition

of all isomorphic graphs IX 9) for a graph g and then use a swap test to compare

two such states. Seemingly feasible, all attempts to efficiently create the coherent

superposition have failed. In the main result of this chapter, we leverage the powerful

cloning algorithm Clone to efficiently create jX9). To create jX9), we introduce a

ladder of partially mixed states IX:), where Ix;) = jg), lx;i) = jX9). We create

the states IXD one by on, climbing up the ladder from jg) to jX9) with the help of

Clone. Now let us give the formal definitions:

Definition 8 (Graph States and Subgraph States). Given a graph g with n vertices,

with some specified ordering of the vertices, let jg) be the quantum state of g repre

sented by its adjacency matrix, and let permutations 7r E Syme act on g by permuting

the first £vertices. We define the following states, omitting normalization factors:

• The graph state of g is IX 9) ex: L7rESymn j 7r g)

• Then subgraph states arc IX!) ex: L7rESyme j7rg), £ = 1, ... , n

When we write Ix:), we mean the normalized state.

Remark 9. Ix;)= lg), Ix;)= jX9).

44

Remark 10 (Normalization of Subgraph States). We note the fact that overlap be

tween consecutive subgraph states is polynomial sized. In fact,

(3.1.2)

If the graph has no automorphism, (xi-11x:) = l/e, the relation trivially holds.

If the graph is invariant under some permutation, we need to be careful about the

normalization. Let Ce,9 be the number of permutations of the first e vertices that

leave g invariant. Then the sum 2:7rESyme l7rg) counts each distinct graph Ce,9 times,

and so the correct normalization is

(3.1.3)

From the definition of Ce,9 it is clear that

Ce,9 ~ Ce-1,9 (3.1.4)

and Eq. (3.1.2) follows.

As mentioned previously, if one could efficiently generate IX9) for any graph g,

one can solve graph isomorphism by doing a SWAP test on IX91) and IX92). If g1

and g2 are isomorphic, IX91) = IX92). The graph states arc orthogonal otherwise.

We will consider the subgraph states IX!) as component money states: S is the

set of all n-vcrtex graphs and the component Si are graphs isomorphic under the

permutation on the first e vertices. The mixer is the set of permutation on the first e
vertices, which can be implemented efficiently even classically. The labelling function

needs to map g to some canonical representative of the set { 7rgl7r E Syme}· However,

implementing such a labelling function solves GRAPH ISOMORPHISM, so no one

has quantum query access to the labeling function of this component quantum money

scheme.

We can now provide a more detailed sketch of our security proof. First, inspired

45

by Remark 10, we give a simple procedure that produces IXD from 1x:-1
) with

probability at least l/n. We can efficiently produce one copy of Ix:) from one copy

of 1x:-1
) by this procedure if we have the ability to copy jxi-1

). Secondly, we prove

that we can trick the cloning algorithm Clone to copy a component money state even

without access to the labelling function, i.e. having access to the mixer is enough.

Therefore, we can copy IXD with Clone. Combining this result with the procedure

of the first part, we are able to efficiently produce IX9) starting from lg), and thus

solve GRAPH ISOMORPHISM.

3.1.5 Random Functions and Quantum-Secure Pseudorandom

Functions

A random function is defined as follows:

Definition 11 (Random Function). Let [P] = {O,··· ,P-1} and [Q] = {O,··· ,Q-

1} be two discrete sets. Then we say a function f : [P) -+ [Q] is (uniformly) random if

f is chosen from the QP-sizcd set of functions from [P) to [Q] uniformly at random, i.e.

each possible function is picked with probability Q-P. Equivalently, for all x E [P),

each f(x) is independently chosen uniformly at random from [Q].

We will use random functions in our work. Despite it often being said that ran

domness comes "for free" in quantum computing, it is unknown whether a quantum

computer gains computational power by getting access to random functions of expo

nentially sized P and Q. Even though a quantum computer can get random bits by

measuring qubits, to construct a random function the quantum computer needs to

guarantee that the same output is always returned on the same input, so it is not

obvious how to do this.

Quantum-secure pscudorandom functions arc deterministic functions that mimic

random functions:

Definition 12 (Quantum-Secure Pscudorandom Function (QPRF)). A quantum

secure pseudorandom function (QPRF) is a function QP RF : [K) x [P] -+ [Q],

K = O(poly(P)), which:

46

• is efficiently implementable on a quantum computer, and

• no quantum computer can distinguish between the following two cases with

non-negligible probability:

- oracle access to a random function from [P] to [Q]

- oracle access to the function Q P RF (k) treated as a function from [P] to

[Q], where k is uniformly chosen from the keyspace [K] = {O, · · · , K - 1}

and hidden.

Zhandry proved that if quantum secure one-way functions exist, then QPRFs exist.

[50).

In the technical part of our security proof, Section (3.2.2), we use random functions

to obscure the labelling function and fool Clone to work without a correct labelling

function. When we use Clone to create the graph state IX9), we replace the random

function with a quantum-secure pseudorandom function, which we assume exists.

3.2 Main Theorem

Our main theorem is a security proof for component quantum money, which can be

generalized to include quantum money from knots. (1)

Theorem 13 (Main Theorem). Suppose there is a q'uantum algorithm, a uniformly

generated family of circuits {Clonem(Af, L)}, that given an m-q'ubit component money

state l'lfl) and black box access to the corresponding component m:ixer A1 and labelling

function L, outputs a state negligibly different from 1·1/J)®2 in polynomial time and

polynomial number of queries. Then assuming quantum-secure pseudorandom func

tions exist_, there exists an efficient quant-um algorithm that solves GRAPH ISOMOR

PHISM.

Informally, this theorem says that if there is a quantum algorithm Clone that can

break all component quantum money schemes, without looking inside the black boxes

47

of .M and L, then modulo some cryptographic assumptions, we can leverage Clone

to solve GRAPH ISOMORPHISM.

We will show this in two steps. In the first step, we present an algorithm that solves

GRAPH ISOMORPHISM by efficiently generating the graph state jX9), defined in

Definition 8, given a subroutine that clones the subgraph states jx:) for a graph

g. In the second step, we demonstrate how to clone the subgraph states 1x;) with

Clone. We observe that the subgraph states 1x;) can be treated as component

money states: each £corresponds to a different component money scheme, S is the

set of graphs with the same number of vertices, and the components Si are the

set of graphs isomorphic under permutation of first £ vertices, and the mixers are

permutations of the first e vertices. However, we do not have access to the labelling

function of the subgraph states, since such a labelling function would already solve

graph isomorphism. Therefore, if we apply Clone to the subgraph states, we cannot

provide the correct labelling functions, so Clone is free to send back whatever state

it likes, since Clone is only contracted to clone a state if you are able to provide

both the mixer and the labelling function. This is fixed by generalizing a theorem of

Lutomirski [8]. We show a way to modify a component money scheme by appending

p = B(m) bits, exponentially enlarge the state space S, and randomly permute the

new labelling function. Because the state space is too large, Clone cannot check in

polynomial time whether we provide the correct labelling function, so it is tricked to

work even without the correct labelling function being provided.

The result docs not directly apply to quantum money from knots, because quan

tum money from knots is not a component money scheme. However, they are really

similar, so in Section 3.3 , we define generalized component money, of which quan

tum money from knots is an example, and show how our result could be applied to

generalized component money.

3.2.1 Generating graph state IXg) by cloning subgraph states

Herc we give the first part of the proof of the Main theorem 13.

48

Theorem 14 (Generating Graph State). Define graph states IX9) and subgraph states

Ix:) as in Definition 8. Suppose there is an efficient quantum algorithm that can

clone the subgraph states I XD for any graph g and any f E { 1, · · · , n}, that is, given a

description of g, the integer f, and the state IX:), the algorithm returns IX:) 1x;) with

neglig·ible error. Then there is another efficient quantum algorithm that, starting from

scratch, generates the graph state IX9)., and thus solve GRAPH ISOMORPHISM.

Proof Sketch. We show a procedure that, given a copy of 1x;-1
), generates the state

IX:) with probability at least 1 / f. We can then generate the whole sequence of

subgraph states, starting from IX;) = lg) and ending in lx;i) = IX9). The starting

state jg) is easily generated. To obtain the state IX;), we make a large number of

copies of 1x:) (either by running the cloning algorithm, or by simply creating lg)
multiple times) and run the procedure multiple times. Then we can make a large

number of copies of IX;) by using the given cloning algorithm and run the procedure

to arrive at IX;). We keeps making a large number of copies and trying for the next

subgraph state until we reach IX9) = IX;).

Proof: We demonstrate a quantum algorithm that, starting from scratch, generates

the subgraph state IX:), for .e from 1 ton. We show this by induction on .e. The case

e = 1 is immediate, since IX;) = lg). Now assuming we can generate· the subgraph

state 1x:-1) efficiently, we give a procedure to generate IX:) given the state 1x:-1
):

1. Clone one copy of 1x;-1
). This can be done efficiently by the assumption of

the theorem.

2. Prepare .}e I:i=I jk) on ancilla qubits to get

f £
__!.__ ~ lk) I xe-1) = 1 1 ~ ~ lk) 17r)
v'£ {;:{_ ~ 9 JC JCe-1,9 (€ - 1)! {;:{_ 7rE{;:e-i g

(3.2.1)

where Ce,9 is defined in Remark 10.

49

3. Perform a controlled transposition between vertex C and vertex k to get

l
1 1 ~ ~

~ ~ lk) 1(£k) Kg)
v1f_ JCe-1,g(f - 1)! J.~:::;l rrESyme-1

(3.2.2)

where (Ck) denotes the permutation that is the transposition of vertices £ and

k, and (Ck)Kg is the graph arrived at by applying the permutations 7r followed

by (Rk) to the graph g.

4. Perform a quantum Fourier transform on the ancilla qubits to get

(3.2.3)

5. Measure the ancilla qubits. With probability ~ 0~~·:.~?~)! 2: } , we measure j = 0

obtain the state

=IO) jx;). (3.2.4)

Otherwise we start over from step 1. The procedure is expected to succeed in

0(£) iterations.

If the cloning algorithm has negligible error, the above algorithm to generate the graph

state IX9) also has negligible error, since the algorithm only takes polynomially many

~~. D

3.2.2 Cloning without querying labelling functions

In this section, we give the second part of the proof of the Main theorem 13, which is

a generalization of the main theorem in [8], modified mainly to make it time efficient.

50

Colloquially, we show that if there is a cloning algorithm Clone which guarantees to

clone any component money state wherever we supply it with the corresponding mixer

and labelling function, we can trick it to clone any component money state, supplying

the mixer but not the labelling function. This is done by extending the space storing

the money state and hide the new labelling function with a random permutation.

Assuming the money state we want to clone is m-qubit, we append p = O(m) ancilla

qubits to it, making the dimension of the state space 2P times larger. We define a new

partition on the enlarged state space which trivially extends the original partition, so

that the original money state appended with zeros is still a money state in the new

partition, and the new mixer can be easily simulated with a few queries to the original

mixer. Clone also works on the new (m + p)-qubit component money scheme because

it works on all component money schemes. Now we apply a random permutation

to the appended money state along with the new partition, hiding the position of

the original partition. Now since Clone runs in polynomial time, it cannot find the

original partition in the exponentially large space by the Grover search lower bound

[11]. Therefore even if we lie on the labels of parts corresponding to the original

partition, Clone must still work with negligible error, and that is what we do. We

ask Clone to copy our money state in this randomly permuted large space, giving

it the correct mixer and a carefully crafted labelling function that is correct on all

the trivial extension part but lies on the original partition. Because Clone cannot

caught us lying, it must copy the state as its guarantee. Finally we revert the random

permutation on Clone's output, getting two copies of the original component money

state.

Here is a more detailed sketch of the proof. Suppose we would like to clone a

component money state with support S = {O, l}m, partition {Si}, and component

mixer {.Nfa}· Without loss of generality, we assume that the component money state

we would like to clone is IS1) = L: Is).
sES1

We proceed by extending the support space to S' = {O, 1 }P x S, and defining a

new money scheme on this space. We treat this new support as having two indices,

the first index being a number from 0 to 2P - 1, and the second index an clement of

51

S. We will sometimes visualize S' as a rectangle, with 2P rows and ISi = 2m columns.

Now we want to apply the circuit Clonem+p, which clones any (m+p)-qubit money

state, on S'. To this end we partition S' into the following components :{0} x Si, for

all ,i, and {(r, s)}, for all r > 0 and alls ES. In other words, the components of the

original money scheme are placed in the first row, while every other clement outside

of the first row is its own component. We can easily implement the corresponding

component mixer

. . {(O,.M0.(s))
A.1~.ncon (r, s) =

(r,s)

r=O
(3.2.5)

otherwise.

However, implementing the corresponding labeling function requires us to label the

original partition of S, which we cannot do. But we can implement the following

labelling function which is inconsistent with Mincon:

L·incon (r, 8) = {*
(r,s)

r=O

otherwise.
(3.2.6)

The set of labels is contained in ({O, 1 }P x S) U { * }, where* is a special symbol.

Lincon correctly labels most of the components, but gives a blank answer on original

partition, which is a exponentially small fraction. Jv[incon and Lincon arc gates that

we can and will implement in our algorithm to clone the component money state, but

since Lincm is inconsistent with /!.;/~neon, there is no guarantee that Clonem+p works

with Afincon and Lincon .. More precisely, Lincon fails to distinguish {O} x S.i between

different i, and therefore Lincon violates the promise that two elements have the same

label if and only if they are from the same component.

We want to argue that giving Clonem+p Ji..,Jincon and Lin.con is good enough. To

this end, we define the the ideal mixer

. { (0, .Ma. (s))
M~dea.l (r, s) =

(r,s)

r=OandsES1
(3.2.7)

otherwise.

52

and the ideal labelling function

Lideal (r, S) = {*
(r,s)

r=OandsES1
(3.2.8)

otherwise.

Contrarv to Af'incon and Lincon .Afideal and Lideal arc "ideal" in the sense that they
.., '

arc a valid mixer and labelling function for IO)IS1), and hence would clone this money

state when used with Clonem,+p· Specifically,]\,[ideal and Lideal a.re the component

mixer and labelling function for the following partition of S' : { 0} x S1, and { (r, s)}

for all other clements of S'. In other words, we keep the component corresponding

to the money state at the first row, and trivially extend every other clement to its

own component. Since the partition depends on the label of the money state we want

to clone, without access to the labelling function we cannot and will not implement

either]l.;fideal or Didea.l. They arc just auxiliary constructions for the proof.

Since the differences between { lvf incan, L incan} and { Afidea.l, Di deal} occur only on

an exponentially small (2-P) fraction of the support space (namely {O} x S), it is quite

possible that these differences will not be detected by the cloner at all. However, an

algorithm checking the first row will quickly found their difference. Therefore we hide

the difference by applying a random cyclic permutation on each column.

We formally define "cyclic permutation on each column" as follows: define F as

the set of all functions from S to {O, · · · , 2P - 1 }. For each). E F, define a classical

function K;.. : S'--+ S' and corresponding unitary operator K>. as follows:

K>.(r, s) = (r + ,.\.(s), s)

K>.lr, s) =Ir+).(s), s), (3.2.9)

where addition is taken modulo 2P. In other words, k>. cyclically shifts the contents

of the s-th column by).(s) (sec Figure 3.2.1). We now formally define the meaning

of applying a permutation to the algorithm:

Definition 15 (Apply ,.\.). When wc apply a function)., we modify the cloning

53

algorithm Clonem+p into the following steps:

1. Apply k).. to the starting state IO) IS1).

2. Change the mixer M to K >.M K-;1
.

3. Change the labelling function L to LK-;1
. Also relabel the singleton components

so their labels do not give away any possible incriminating information to the

cloner. The relabelling is defined in details in Algorithm 16.

4. Apply the cloning algorithm C lonem+p to the current state, with the modified

component mixer and labelling function.

5. At the end of the algorithm, apply k-;1 0 k-;1 to the final (cloned) state.

We will 11 apply ,\" to either the inconsistent or 'ideal algorithm. The above mixer

and labelling function { Af, L} are either "inconsistent", { Afincon, Lincon} or "ideal",

{J\,fideal, L'idea.l}. We claim that if we apply a random,\ E F, the action of Afincon and

Lincon is "hidden" on the components {O} x Si for any 'i except 'i = 1. Therefore, we

will argue that the "inconsistent" mixer and labelling function arc indistinguishable

from the "ideal" versions. Intuitively, for any column s ~ S 1 , K;>..A1incortK;1 and

K>..J\,Jidea.tK-; 1 differ only at the random location r = /\(s). 1 We will show, in the

manner of the BBBV lower bound for Grover's problem [11), that we need !1(v'2P)

queries to distinguish them, while Clonern+p only queries them poly(m + p) times.

Therefore with a reasonably large p (such as p = 8(m)), we cannot distinguish

between Afincon and Af'idea.l. A similar reasoning applies for the relabelled versions of

Lincon K-;1 and Lidea.t K-;1.

Since l\Jidea.l and Lideal arc the component mixer and labelling function for the par

tition S' : {O} x 8 1 , and {(r, s)} for all other elements of S', Clonem+p(JvJideal, Lideal)

will clone the starting state IO) IS1). Note that Clonem+p(Midea.l, Lidea.l) clones IO) IS1)

even with the application of any,\ by construction: K)..Midea.l K-;1 and the relabelled

Lideal K-; 1 are a valid component mixer and labelling function pair for K)t.IO) IS1), and

1The S1 component is different because the algorithm gets a clue of its location from the permuted
money state k\IO)IS1).

54

1 l 1 l l 1 l 1
l l

1

Figure 3.2.1: Schematic drawing of an example of]{>..· The effect of I<>.. is to shift the
contents of each column independently.

hence the Clonem+p algorithm always works as expected at step 4, giving the state

(K>..10) IS1)) 02 . Applying (K); 1
)
02 in step 5 will thus give the state (IO) IS1)) 02

. Be

cause Cl onem+p (AJideal, Didw.l) is indistinguishable to C lone.rn+p (Af'incon, Dincon) with

a random .A, Clonem+p(Afincon, Lin.con) must clone the state, too.

We now formally define our algorithm that clones component money states with

no calls to the corresponding L:

Algorithm 16 (Label-Free Cloning Algorithm). The following algorithm clones com

ponent money states without access to the corresponding labelling function, given the

access to a random oracle

Input.

• An m-qubit money state IS1) = ~ I: Is).
Y /Si/ sES1

• Quantum query access to the component mixer {.lHa}, but not an associated

labelling function.

• C lonem+p, a circuit that efficiently clones any (m + p)-qubit quantum money by

querying its component mixer and labeling function. We will assume that the

output of the circuit is a pure state, for which the first 2(m + p) qubits contain

the two copies of the money state.

Output. A state negligibly different from (IO) IS1))
02

.

Procedure.

55

1. Append a p-qubit register initialized to 0, so we have IO) IS1). Append an (m+p)

qubit register initialized to 0. This register is where the cloned copy of the money

goes to. Append ancilla qubits required by Clonem+w

2. Choose ,,\ E F uniformly randomly, where F is the set of all functions from

S to {O, · · · , 2P - 1}. Apply k>.. to IO)IS1), getting the state k>..IO)IS1) =

I:sES1 j.-\(8)) Is)·

3. Apply Clonern+p(K>..NtincO'fi K-;:1, L~icon) to the current state, where Li:f:cm is de

fined as

L~ncon (r, s) = {*
(r,s)

and Afincon is defined as

r = .-\(s)

otherwise,

. . {(O, Ma (s))
N!~ncon (r, s) =

(r, s)

r=O

otherwise.

(3.2.10)

(3.2.11)

Quantum queries of L~ncO'fi. can be implemented efficiently from ,,\. Note that

D~i.con and LinconK-;:1 label the same set of components, but give different labels

to the singleton components. We need to relabel Lincon K-;:1 into L~ncon so the

singleton components do not give away information of,\. Sec the following Re

mark 17 for details. Quantum queries of A1~ncon can be implemented efficiently

from A1a. and .-\.

4. Apply k-;_1 ® k-;: 1 to the first 2(m + p) qubits of the current state; these qubits

will contain a state negligibly different from (I 0) IS 1)) 02
.

Remark 17 (Relabelling L'inc011·K-;: 1
). Compare L~icon, the labelling function used in

our algorithm, with Line011·K-;:1
. The latter is

r = .-\(s)
(3.2.12)

otherwise.

56

82

81

81

81 82

81

81

81

..
83

82

83

82

..

..

0
1
2
3

0
1
2
3

*
*

* *

*
*

*

*
*

£ideal
>..

*
*

*
* *

*

Figure 3.2.2: Schematic drawings of the components represented by K ;.)\!Jincon K-;1
,

Lincon K f\,fidea.l K- 1 and £ideal s· represents an element of the component S· while >.. ' >.. >.. ' >.. • i i'

blank squares arc singleton components. Here the shift function A is the one repre-
sented in Figure 3.1. Note that the components of K>..l\Iideal K-; 1 and L\deal match.

If we were to use Line<m1<;1 in our algorithm, then the original cloner Clanem+p co.uld

easily gain information about/\, since LinconK-;1 maps (r, s) to (r-A(8), s) for almost

all inputs. We hide this information from the cloner by relabelling the label of all

singleton components {(r, s)} from (r - ,X(s), s) to (r, s), i.e. by using L~ncon in place

of LinconK-;1
. The relabelling can be easily done.

Proof of validity of Algorithm. 16. Denote ?/1rlcon as the full 2(m+p)-qubit-plus-ancilla

state we obtain from Algorithm 16, for a particular choice of,.\ in step 2. We will write

11/-1) as 'if' to reduce cluttering. We will define an ideal mixer and labelling function

momentarily; if we use them instead in step 3, denote similarly the output state as

·if1ideal. The ideal mixer and labelling function arc defined as follows:

L~dea.z (r, 8) = {*
(r,s)

57

r = ,.\(s), s E 81
(3.2.13)

otherwise,

. . { (0, Ma (s))
l14~deal (r, s) =

(r,s)

r = 0, s E 81
(3.2.14)

otherwise.

The idealized version of the algorithm is a construction for this proof and is not

meant to be implemented since we are assuming that we do not have access to a

labelling function that can identify clements of 8 1 . See Figure 3.2.2 for a sketch of

the difference between the ideal and inconsistent labelling functions.

We will need the following facts:

1. E;i.. jj'lf'incon - ·l/Jideal 11
2 ~ 0, where E;i.. stands for the expectation over uniformly

random A.

2. For all functions A, we have that 'lf;ijeal = (IO)l81))02 @ lwork,x) for some final

state of the work bits lwork.x) (the state (IO)IS1))02 is our desired output).

Fact 2 is immediate by construction: note that K,xA.Jideal 1c;1 and Lijea.l arc a

valid component mixer and labelling function pair for K,xlO)IS1), and hence the ideal

algorithm always clones as expected at step 3, giving the state (K;i..IO) 181)) 02@lwork;i..).

Applying (k; 1)
02 to the first 2 (m + p) qu bits in step 4 will thus give the state

·l/Jideal = (IO) 181)) 02 0 lwork_x), as expected.

In the following, we will prove the first fact. We will then conclude from these

two facts that after discarding the ancilla qubits, the final state of Algorithm 16,

TrworkE>.l1/1i1'1.can)('l/1inconi, is negligibly different from (IO)IS1))®2
.

To prove that E,x ll'lf'incon - ·~1\deal 11
2 ~ 0, we use an argument similar to the BBBV

lower bound for the Grover problem[ll]. The presentation here follows that of Nielsen

and Chuang (51). We define the permuted oracle O;i.. as a quantum query to either

K,xA1 K,\1 or L,x as called for by the algorithm. Let the input state to the original

cloner, i.e. the state after step 2 of our algorithm, be l·l/J~tart) = K,xlO) 181) 0 IO) ID) 0

IOa.ncilla} Define the intermediate states after k oracle calls:

,.1,incon = u o·inCO'nu oincon oinconu; 1·11,start)
Cf/ .A,k - 1..~ >. k-1 ,\ . . . >. 0 If'>.

,.,1,ideal = u oidealu oicleal 0-i.dealu; 1"1,sta:rt)
Cf/ >.,k - k ,\ k-1 >. . . . >. 0 If',\ ' (3.2.15)

58

where U0 , Ui, ... , Uk arc unitary operations implemented by algorithm 16 between

0>.,. We also define the progress function

D = E 11·1 11inc.on _,./,ideal 112 k - >.. 'f' A.,k 'f' >..,k • (3.2.16)

Intuitively, Dk is the average difference between the idea and the inconsistent cases.

Assume the algorithm makes T = poly(m + p) queries in total, and note that ·l/Jricon =

(f(-1 /0\ f(- 1)·1/,incan and .,1,idea.l - (k-1 0 f{-l),.1,idea.l We prove that the progress >.. '<Y >.. '+' >.,T '+ >. -). >.. If' >..,T ·

function in upper bounded by a quadratic function:

Lemma 18 (Upper bound on progress function).

4k2

Dk<-. - 2P.

Dk is the progress function defined in Eq. (3.2.16)

(3.2.17)

Proof. We give an inductive proof. The base clase of the induction is clearly true;

when k = 0, Dk= 0. For the inductive step, note that

D _ E II (Oideal)toincmi,,;1·incan _ .1 ;,idea.l112
k+ 1 -).). >.. 'f' >..,k If' >..,k

_ E 11oif(~1,incan. _,.;,ideal)+ (Oif _ I)·11,ideal11
2

-).). tf-').,k If' >..,k >.. '+' >.,k (3.2.18)

where

(3.2.19)

is an oracle recoding the difference between the ideal oracle and the inconsistent

oracle. Moreover we define the unnormalized state

b = (Oif _ !)·11,ideal).,k - >.. '+'>..,k . (3.2.20)

b>..,k characterize the difference between Dk and Dk+li as showed in the following.

Applying Ila+ bll 2
:::; llall 2 + 21lall1Jbll + llbll 2 with a = o1 ('~1t,1J:0n - ·l/Ji~za.1) and b,\,k,

59

gives

Applying the Cauchy-Schwarz inequality to the second term gives

Dk+l ~ Dk+ 2 E,\ll'l/Ji~kan - 7/J~~ka.lll\/ E,\llb,\,kll 2 + E.xllb.x,kll 2

=Dk+ 2vfj5;, E,\llb,\,kll 2 + E.xllbull 2

(3.2.21)

(3.2.22)

We will show in Lemma 19 that EAllb,\,kll 2 < 4/2P; it will then follow from the

inductive hypothesis Dk ~ 4k2 /2P that

(3.2.23)

and we complete the induction. 0

Lemma 19 (Upper bound of bu)·

(3.2.24)

where b,\,k is defined in Eq. (3.2.20}.

The proof is straightforward but quite lengthy. Sec Section (3.4) for the proof of

Lemma 19.

Now that we have proved the progress Dk is trivial, the only remaining work is to

carefully sum the difference over different A with a suitable distance measure while

keeping track of the work qubits.

Since C lonem+p is an efficient algorithm, it cannot make more than T = poly(m +
p) queries to O_x. Recalling from Lemma 18 that

Dr= E,x ll'l/lt~cm - ·l/Ji~¥L1 ll 2 ~ 4T2 /2P = O(poly(m + p)/2P),

60

we have

E>- ll~'r1.can - 4,idea.zll2 = E>. ,,(K,\1 0 k;1)(¢t,ifan - ~'i~a.z)112

= E>-117/Jt~fan -1/Ji~alll 2

=Dr

= O(poly(m + p)/2P)

=> E>.R.eN1i7ic01il·l/Jideal) = 1 - O(poly(m + p)/2P). (3.2.25)

Finally we change the distance measure to fidelity and wrap up the proof. For

the inconsistent case, define the density matrix we obtain by tracing out the ancilla

(work) qubits in the final state to be

(3.2.26)

For the ideal case, the cloner behaves perfectly and therefore

(3.2.27)

where the target state l<Ptarget) = (IO)IS1))02 . Then we obtain

F(E>.,p~icon' I ¢target) (<f/arget j) ~ E>.F(p~ic01i., l<Ptarget) (¢/a:rget j) (concavity of fidelity)

~ E/\ I (1/Jtiwn l·l/Jidea.l) I
~ E .-\Re (¢ti.con I ·l/J ideal)

= 1 - O(poly(m + p)/2P). (3.2.28)

where the second inequality holds since the fidelity can only increase when a subsystem

(in this case, the work qubits) is traced out. Let us pick p to be the same order as

m; then it follows that the final state of Algorithm 16, E >.P~icon, is negligibly different

from the target state, completing the proof.

D

61

3.2.3 Proof of Main Theorem

We now observe that Theorem 14 and Algorithm 16 together imply Theorem 13:

Proof of Theorem. 13. Assume, as in the hypothesis, that there exists an algorithm to

clone all component money states. Also assume that quantum-secure pseudorandom

functions exist. By Algorithm 16, any component money state with an efficiently

implemcntable component mixer can be cloned without access to the labelling func

tion but with access to a random function. We can then replace the random function

with a QPRF and clone the subgraph states of a graph g

ix;) = L IKg) , £ = 1, ... , n (3.2.29)
7rESyme

, since they arc component money states under the component mixer Symg. By

Theorem 14, this implies that GRAPH ISOMORPHISM can be efficiently solved. D

3.3 Quantum money from knots [1) and generalized

component money

Recall that in Section 3.2.2 we assume the existence of a black-box cloner Clone that

clones component quantum money states using only black-box accesses to the mixer

M and the labelling function L. We then provide evidence against the existence of

such a cloner, by showing that (Theorem 13) one could use the cloner to efficiently

solve GRAPH ISOMORPHISM. The related scheme of quantum money from knots

[1) is not component quantum money; nevertheless, we discuss in this section why

Theorem 13 is relevant in that setting.

We give a simple review of quantum money from knots. 2 Given some Alexander

polynomial p (a knot invariant), the corresponding knot quantum money state is the

2We will ignore finite si:L:e corrections in this review; refer to Ill for full details.

62

equal superposition of all knots with Alexander polynomial p, i.e.

l$p) = L IG), (3.3.1)
G:J(G)=p

where f (G) evaluates the Alexander polynomial of a knot G. Knot quantum money

is very similar to a component mixer money state: we have a labelling function (!),

and we can also implement a component mixer that instantly mixes within sets of

isomorphic knots. However, if we treat knots with the same Alexander polynomial

as components, the mixer only instantly mi.xes in some subset of the components

because non-isomorphic knots might have the same Alexander polynomial.

To verify the money state l$P), one first checks that the Alexander polynomial of

the constituent knots is p. One then uses Lemma 6 to verify that the money state is

in the span of uniform superposition states over isomorphic knots. In other words,

the verifier can test that the money state is of the following form:

(3.3.2)

where the aa's are complex complex amplitudes, Gp is a set of canonical knots of the

isomorphic classes with same Alexander polynomial p, i.e.

if G E CP, then f (G) = p

(3.3.3)

where rv indicates isomorphism. ICPI is the number of different isomorphic classes

with the Alexander polynomial p. ISa) is the equal superposition of isomorphic knots

ISc) = I: IG'). (3.3.4)
G':G'"'G

Since a whole subspace of states has the form (3.3.5), there arc many states, aside

from the genuine money state, that pass the verification. Ill gives a discussion on

63

why (hopefully) we might expect such other states to be difficult to generate.

We now argue what it means for a cloner to clone quantum money from knots

in a "black-box" manner. We can define a generalized component money scheme

which also has a. component mixer and la.belling function, but ea.ch component is

further partitioned into subcomponents, and the mixer only instantly inside the sub

components. Quantum money from knots is an example of a generalized component

money. Given a label p, states which pass the verifier arc of the form

(3.3.5)

where GP is the set of labels subcomponents of the component p, and I Sc) is the equal

superposition of the subcomponent G.

The banknotes issued by the mint l$P) is the equal superposition of states in the

component p, so in terms of ac and ISc), it can be written in the form of

1
$) - " IGI IS)

p - ~ VL IGl2 G '
GE Gp

(3.3.6)

where IGI is the size of the subcomponent G.

We argue that a black-box cloner for generalized component money states, with

quantum query access to a mixer .Ai and a labelling function L, can take the bank note

as input, and output two possibly entangled states that both pass the verification.

On states that pass the verifier, the cloner would act as follows:

(3.3.7)

The cloner that we assume exists in Section 3.2.2, Clone, is weaker than this

generalized black-box cloner, since the generalized cloner functions as Clone when L

labels the components of A1 uniquely. Therefore if we could clone all generalized com

ponent money states, including quantum money from knots, in a black-box fashion,

we can solve GRAPH ISOMORPHISM as well, by Theorem 13.

64

3.4 Proof of the upper bound on bJ\,k, Lemma 19

Lemma 19.

(3.4.1)

where b>.,k is defined in Eq. (3.2.20)

Proof. Recall that 'l/,J\~'kal depends on)\ in the following places in Algorithm 16: the

application of K >. in step 2, and the use of the labelling function L \dea.L and mixer

K;i,..Afideal K; 1
. Using 3.2.13 and 3.2.14 we can write these functions explicitly:

L\deal (r, 8) = {*
(r, s)

r = J\(s),s E 81
(3.4.2)

otherwise,

. { (.J\(s), Ma. (s)) r = J\(s), s E 81
K;i,.Midea.tK;1 (r, s) =

(r, s) otherwise.
(3.4.3)

We see that L\deal and l(:.,l\!fideal K; 1 only depend on A's values on 8 1 (these

functions act as the identity when s ~ 8 1). Similarly, at step 2 K;i,. is applied to

IO)IS1), and therefore the values of,,\ on S - 81 arc never used. It follows that ·l/Ji~kal

only depends of the values of)\ on 8 1 .

We therefore split up the average over ,,\ into two parts: the average over /\ when

restricted to 8 1 , and the average over ,,\ when restricted to Sf = S - 8 1 . (Notationally,

we will write E;i,. = E;i,.(si)E>..(sf))· This is possible because Fis a random function,

and therefore /\(81) and J\(Sf) arc independently randomly chosen. We then have

E llb 112 E . E ;,1,idea.LJ(oift I)(Oif I)J"'·ideal)
>. >.,k = >.(S1) ,\(Sf) \°lfJ >.,k >.. - ,\ - 'f-1>.,k

E / 1 1,ideal IE (Gift I) (Oif I) I"' ideal) = ,\(81) \lf/.:\,k >..(Sf) >.. - .:\ - ~>.,k

~ llE>.csn(ort - !)(or - n11 (3.4.4)

where the matrix norm in the last line is the spectral norm.

65

We analyze the two cases of O;..:

• If O;.. represents a quantum query to L>.., Oij = (Oideat)toincan is

1 {lr,s)ll+*-(r,s))
o~ Ir, s) IL) =

lr,s)ll)

r = .A(s), s (j_ 81
(3.4.5)

otherwise

for some encoding of { *} U {(r, s)} into integers. We sec that Oij acts as the

identity on most inputs, and gives a{* - (r, s)} label on the set {r = .A(s), s (j_

8 1}. Therefore by direct calculation,

(oijt - I)(Oij - I)lr, s)ll) =

lr,s)(2ll) - ll + * - (r, s))

-ll-*+(r,s)))

0

r = .A(s), s (j_ 81

otherwise.

(3.4.6)

Now taking the average over /\(Sf), since each r has a 1/2P chance to equal

/\ (s) we have that

2
1vlr,s)(2ll)- ll+*-(r,s))

E>.(sf)(oijt - I)(Oij - !)Ir, s)ll) = -ll - * + (r, s))) s (j_ 8 1

0

(3.4.7)

Reading off the matrix elements,

E>.(sf)(oijt - J)(Oij -1) = ;P [LL Ir, s)(r, sl
r sflS1

® (21 -~(II+*- (r,s))-11-H (r,s)))(ll)]

(3.4.8)

66

Note that the matrix E>..(Sf)(oijt - I)(Oij - I) is block-diagonal, with each

(r, s) forming an independent block with spectral norm no more than 4/2P.

Thus llE,x(sf)(o1t - I)(Oij - J)ll :::; 4/2P, and E>..llb,x,kll 2
:::; 4/2P, as claimed.

• If 0>.. represents a quantum query to K>..MaK; 1
, Oij = (O~deat)toincon is instead

.1 . {IA.(Ma(s)),A1a.(s))
O~lr,s)=

lr,s)
(3.4.9)

otherwise

So we have

2lr, s) - l>{l\1a.(s)), Af0.(s))

-l,\(Af0~ 1 (s)), A1;1(s)) r = ,\(s), s ¢ 81

0 otherwise

2/2Plr, s) - 2;P 2=r'

[Ir', .Ma (s)) + Ir', A1; 1 (s))) s ¢ 81

0 s E 81

E>.(sf)(0'/1
- I)(O'/ - I)= ;vPsr - 2!P (~ ~ lr')(ri)

0 (L l.LVfa(s))(sl + L IA1;1(s))(sl)
sgS1 sgS1

') 2 1 .
E,xllb,.\,k11~ :::; 2P + 22p2P(l + 1)

4
2P. (3.4.10)

When going from the first to the second equation, the first term picks up a

1 /2P factor from the probability of r = ,\ (s) and the second term picks up a

1/22P factor from the probabilities of r = ,\(s) and r' = ,\(Ma(s)). In the third

equation WC simply read off the matrix clements of E >..(Sf) (oijt - I) (ot - J)'

and Psf is the projector onto Sf.

67

This finishes the proof that E,\llbull 2
:::; 4/2P for all cases. D

68

Chapter 4

Upp er bounds on quantulll query

coinplexity inspired by the

Elitzur-Vaidinan boinb tester

In this chapter we introduce bomb query complexity. This chapter is mostly excerpted

from [52], which is joint work with Cedric Yen-Yu Lin.

4.1 Preliminaries

4.1.1 The Elitzur-Vaidman bomb testing problem

The Elitzur-Vaidman bomb testing problem (24) is a well-known thought experiment

to demonstrate how quantum mechanics differs drastically from our classical per

ceptions. This problem demonstrates dramatically the possibility of interaction free

measurements, the possibility of a measurement on a property of a system without

disturbing the system.

The bomb-testing problem is as follows: assume we have a bomb that is either

a dud or a live bomb. The only way to interact with the bomb is to probe it with

a photon: if the bomb is a dud, then the photon passes through unimpeded; if the

bomb is live, then the bomb explodes. We would like to determine whether the bomb

69

is live or not without exploding it. If we pass the photon through a beamsplittcr

before probing the bomb, we can implement the controlled probe, pictured below:

le) T le)
IO) -i I or X H2} explodes if 1

(4.1.1)

The c = 0 corresponds to the photon traveling in a trajectory away from the

bomb, and c = 1 corresponds the the photon probing the bomb. The controlled gate

is I if the bomb is a dud, and X if it is live. The bomb explodes only if the photon

hits and the bomb is live. It was shown in [26] how to determine whether a bomb

was live with arbitrarily low probability of explosion by making use of the quantum

Zeno effect [25). Specifically, writing R(B) = cxp(iBX), the unitary operator rotating

IO) to 11) in rr/(20) steps, the following circuit determines whether the bomb is live

with failure probability 0(fJ):

,----------------------------,
IO)

1
R(8) R(B) (4.1.2)

I
dO) I or X IO) I or X
L----------------------------~

7f / (W) times in total

If the bomb is a dud, then the controlled probes do nothing, and repeated appli

cation of R(fJ) rotates the control bit from IO) to 11). If the bomb is live, the bomb

explodes with 0(82) probability in each application of the probe, projecting the con

trol bit back to IO). After 0(1/8) iterations the control bit stays in IO), with only a

O(B) probability of explosion. Using 0(1/8) operations, we can thus tell a dud bomb

apart from a live one with only 0(0) probability of explosion.

70

4.1.2 Quantum query complexity

Throughout this chapter, all functions f which we would like to calculate arc assumed

to have boolean input, i.e. the domain is D ~ {O, 1 }N.

For a boolean strings x E {O, 1 }N, the quantum oracle Ox is a unitary operator

that acts on a one-qubit record register and an N-dimensional index register as follows

(ffi is the XOR function):

(4.1.3)

lr)B Ox
Ii)

We want to determine the value of a boolean function J(x) using as few queries

to the quantum oracle Ox as possible. Algorithms for f have the genera.I form as the

following circuit, where the Ut 's arc unitaries independent of x:

Uo

The quantum query complexity Q0(f) is the minimum number of applications of Ox's

in the circuit required to determine f (x) with error no more than 8 for all x. By gap

amplification (e.g. by performing the circuit multiple rounds and doing majority

voting), it can be shown that the choice of 5 only affects the query complexity by a

log(l/8) factor. We therefore often set 8 = 0.01 and write Q0.01 (f) as Q(f).

71

4.2 Bomb query complexity

In this section we introduce a new query complexity model, which we call the bomb

query complexity. A circuit in the bomb query model is a restricted quantum query

circuit, with the following restrictions on the usage of the quantum oracle:

1. We have an extra control register le) used to control whether Ox is applied (we

call the controlled version COx):

COxlc, r, i) =le, r EB (c ·xi), i). (4.2.1)

where · indicates boolean AND.

2. The record register, Ir) in the definition of COx above, must contain IO) before

COx is applied.

3. After COx is applied, the record register is immediately measured in the com

putational basis (giving the answer c · ~ri), and the algorithm terminates imme

diately if a 1 is measured (if c ·xi = 1). We refer to this as the bomb blowing

up or the bomb exploding.

le}~
IO} Ox~mb
Ii) Ii)

(4.2.2)

explodes if c · Xi = 1

We define the bomb query complexity B€,0(J) to be the minimum number of times

the above circuit needs to be applied in an algorithm such that the following hold for

all input x:

• The algorithm reaches the end without the bomb exploding with probability at

least 1 - c We refer to the probability that the bomb explodes as the probability

of explosion.

72

• The total probability that the bomb either explodes or fails to output f (x)

correctly is no more than c5 2: E.

The above implies that the algorithm outputs the correct answer with probability at

least 1 - 5.

The effect of the above circuit is equivalent to applying the following projector on

le, i):

N

Mx = CPx,O =LID, i)(O, ii+ L ll, i)(l, ii (4.2.3)
i=l X-i=O

=l- E11,i)(1,i1. (4.2.4)
Xi=l

CPx,o (which we will just call Mx in our proofs later on) is the controlled version

of Px,o, the projector that projects onto the indices i on which xi = 0:

Px,O = L l'i)('il. (4.2.5)
Xi=O

Thus Circuit 4.2.2 is equivalent to the following circuit :

[c)~[c)
Ii) Px,O (1 - C ·Xi) Ii)

(4.2.6)

In this notation, the square of the norm of a state is the probability that the state

has survived to this stage, i.e. the algorithm has not terminated. The norm of

(1 - c · xi)lx,i) is 1 if c ·Xi = 0 (the state survives this stage), and 0 otherwise (the

bomb blows up).

A general circuit in this model looks like the following:

73

Uo

It is not at all clear that gap amplification can be done efficiently in the bomb query

model to improve the error 8; after all, repeating the circuit multiple times increases

the chance that the bomb blows up. However, it turns out that the complexity BE,6(!)

is closely related to Q0(f), and therefore the choice of 8 affects B€,0(f) by at most

a log2 (1/6) factor as long as 6 ~ E (see Lemma 21). We therefore often omit 8 by

setting 8 = 0.01, and write BE,o.01 (!) as B€(/). Sometimes we even omit the E.

Finally, note that the definition of the bomb query complexity B(J) is inherently

asymmetric with respect to 0 and 1 in the input: querying 1 causes the bomb to

blow up, while querying 0 is safe. In Section 4.4.1, we define a symmetric bomb

query model and its corresponding query complexity, B€,0 (J). We prove that this

generalized symmetric model is asymptotically equivalent to the original asymmetric

model, B€,c5(!) = 8(B€,c5(f)), in Lemma 24. This symmetric version of the bomb

query complexity will turn out to be useful in designing bomb query algorithms.

4.3 Main result

Our main rcsul t is the following:

Theorem 20. For all functions f with boolean inp·ut alphabet, and n'Umbers E satis

fying 0 < E ~ 0.01,

B (!) = 8 (Qo.01(!)2) . €,0.01
E

(4.3.1)

Here 0.01 can be replaced by any constant no more than 1/10.

74

Proof. The upper bound B€,8 (!) = 0(Q 8 (f)2 / E) is proved in Theorem 22. The lower

bound B€,8(!) = O(Q0.01 (f)2/E) is proved in Theorem 23. D

Lemma 21. For all functions f with boolean input alphabet, and numbers E, 8 satis

fying 0 < E ::; 8 ::; 1/10,

(4.3.2)

In particular_, if 8 is constant,

(4.3.3)

Proof. This follows from Theorem 22 and the fact that Q0 .1 (f) - 0(Q8(f)) and

Q8(J) = O(Qo.1(!) log(l/8)). D

Because of this result, we will often omit the 0.01 in B€,o.01 and write simply Be

4.3.1 Upper bound

Theorem 22. For all fu.nctions f with boolean input alphabet, and numbers E, 8

satisfying 0 < E ::; 8 ::; 1/10,

(4.3.4)

The proof follows the solution of Elitzur-Vaidman bomb-testing problem ([26], or

Section 4.1.1). By taking advantage of the Quantum Zeno effect (25}, using O(Q~f))

calls to Mx, we can simulate one call to Ox with probability of explosion O(Q(n).

Replacing all Ox queries with this construction results in a bounded error algorithm

with probability of explosion 0(Q(J) Q(J)) = 0(E).

Proof. Let e = Ir /(2£) for some large positive integer L (chosen later), and let R(O)

75

be the rotation

(

cos 8 - sin 8)
sine cos()

(4.3.5)

We claim that with 2£ calls to the bomb oracle Mx = CPx,o, we can simulate Ox by

the following circuit with probability of explosion less than Jr
2 /(2L) and error 0(1/ L).

Ir) _____ _......--f

r: - - - - - - - -,

IO) 1--------------H R(-8) jO) (discard)
~~ IL-~--'

Ii) --+----f Ii)

repeat Jr /28 times repeat Jr /28 times (4.3.6)

In words, we simulate Ox acting on Ir, i) by the following steps:

1. Append an ancilla qubit IO), changing the state into Ir, 0, i).

2. Repeat the following L times:

(a) apply R(8) on the second register

(b) apply A{c on the third register controlled by the second register.

At this point, if the bomb hasn't blown up, the second register should contain

3. Apply CNOT on the first register controlled by the second register; this copies

1 - Xi to the first register.

4. Apply a NOT gate to the first register.

5. Repeat the following L times to uncompute the second (ancilla) register :

(a) apply R(-B) on the second register

76

(b) apply Mx on the third register controlled by second register

6. Discard the second (ancilla) register.

We now calculate explicitly the action of the circuit on an arbitrary state to

confirm our claims above. Consider how the circuit acts on the basis state Ir, 0, i)

(the second register being the appended ancilla). We break into cases:

• If xi = 0, then Px,oli) = Ii), so the controlled projections do nothing. Thus in

Step 2 the rotation R(B)L = R(7r /2) is applied to the ancilla qubit, rotating it

from 0 to 1. After Step 2 then, the state is Ir, 1, i). Step 3 and 4 together do

not change the state, while Step 5 rotates the ancilla back to 0, resulting in the

final state Ir, 0, i).

• If Xi = 1, then Px,o Ii) = 0, and

MxlO,i) = IO,i), _l\,fxll,i) = 0 (for X.i = 1) (4.3.7)

Therefore in Step 2 and Step 5, after each rotation R(±0), the projection C Px,o

projects the ancilla back to 0:

.MxR(O)IO,i) = Mx(cos8IO) + sinOll))li) = cosOIO,i) (for Xi= I) (4.3.8)

Each application of AI:r:R(0) thus has no change on the state other than to shrink

its amplitude by cos e. The CNOT in Step 3 has no effect (since the ancilla

stays in 0), and Step 4 maps Ir) to Ir EB 1). Since there arc 2L applications of

this shrinkage (in Step 2 and 5), the final state is cos2LOlrEB 1,0,i).

We can now combine the two cases: by linearity, the application of the circuit on

a general state Lr,i ar,,dr, i) (removing the ancilla) is

L ar,-ilr, i) -t L ar,iJr, i) + L ar,i cos2L(O)lr EB 1, i) (4.3.9)
r,i rE{O,l},xi=O rE{O,l},xFl

= L ar,i cos2
Lx,. (2~) Ir EB Xi, i) = 1117') (4.3.10)

r,i

77

Thus the effect of this construction simulates the usual quantum oracle Ir, i) -+

Ir EB xi, i) with probability of explosion no more than

(
2)2L 2 4L Jr 7f Jr

1- cos (-) < 1- 1- - < -.
2L - 4L2 - 2L

(4.3.11)

Moreover, the difference between the output of our circuit, l'!/7'), and the output on

the quantum oracle, l·iP) = Lr,i ar,ilr EB Xi, i/, is

11 l·l/J') - 11/i >II = (4.3.12)
rE{O,l},xi=l

1r 7f2
< 1 - cos2

L - < -.
- 2L - 4L

(4.3.13)

Given this construction, we can now prove our theorem. Suppose we. are given a

quantum algorithm that finds f (x) with Q o' (f) queries, making at most 5' = 5 - f

error. We construct an algorithm using bomb oracles instead by replacing each of the

applications of the quantum oracle Ox by our circuit construction (4.3.6), where we

choose

(4.3.14)

Then the probability of explosion is no more than

(4.3.15)

and the difference between the final states, l'l/11) and l1P!), is at most

(4.3.16)

78

Therefore

1(1i'!IPl¥i!)- \'l/J1IPl,l/J1)I ~ 1(¥1/IPl,l/J!)- ('if111Pl¥1/)I + l(li'!IPl1/'1) - (~'1IPl¥11)I
(4.3.17)

~ 1114'/) 1111 P (I 1f'/) - I ·l/J 1)) 11 + 11 P (I 1/'/) - I ·l/J 1)) 11111·l/J1 > 11

(4.3.18)

(4.3.19)

for any projector P (in particular, the projector that projects onto the classical answer

at the end of the algorithm). The algorithm accumulates at most E extra error at

the end, giving a total error of no more than 5' + E = 5. This algorithm makes

2LQ 8' (!) < :
2
Q~, (f) + 2Q 8' (!) queries to the bomb oracle, and therefore

From this we can derive that Bt,0 (!) = 0(Q0(!)2 / E):

4.3.2 Lower bound

(4.3.20)

(4.3.21)

(4.3.22)

(4.3.23)

(4.3.24)

D

Theorem 23. For all functions f with boolean inp,ut alphabet,. and numbers E, 8

satisfying 0 < E ~ 8 ~ 1/10,

(4.3.25)

79

The proof of this result uses the generalized adversary bound Adv±(!) (19]: we

show that B€(f) = n(Adv±(f)2 /c), and then USC the known result that Q(f) -

O(Adv±(f)) (22]. The complete proof is given in Appendix 4.7.1.

4.4 Generalizations and Applications

We now discuss applications of the result BE(!) = 8(Q(f)2 / f) that could be useful.

4.4.1 Generalizing the bomb query model

We consider modifying the bomb query model as follows. We require that the input

string x can only be accessed by the following circuit:

le) ----------- (4.4.1)

10) explodes if 1

Ii) Ii)
la) ------------

Compare with Circuit 4.2.2; the difference is that there is now an extra register la),

and the bomb explodes only if both Xi = a and the control bit is 1. In other words,

the bomb explodes if c · (x.i EB a) = 1. The three registers c, 'i, and a arc allowed to

be entangled, however. If we discard the second register afterwards, the effect of this

circuit, written as a projector, is

Stx = L IO,i,a)(O,i,al + L 11,·i,a)(l,i,al. (4.4.2)
·iE[N],aE{0,1} i,a:xFa

Let B€,6 (!) be the required number of queries to this modified bomb oracle A-f x to

calculate f (x) with error no more than 8, with a probability of explosion no more

than E. Using Theorem 20, we show that B and B arc equivalent up to a constant:

Lemma 24. If f : D-+ E, where D ~ {O, l}N, and 8 ~ 1/10 is a. constant, then

B€,8(f) = 8(B€,8(f)).

80

Proof. It should be immediately obvious that B£,0(!) ~ B€,0(f), since a query in the

B model can be simulated by a query in the B model by simply setting a = 0. In the

following we show that B€,0(!) = O(B£,0(!)).

For each string x E {O, 1 }N, define the string x E {O, 1 }2N by concatenating two

copies of x and flipping every bit of the second copy. In other words,

if i ::; N
(4.4.3)

if i > N

Let fJ = {i : x ED}. Given a function f: D ~ {O, 1}, define J: fJ ~ {O, I} by

f (x) = f(x).

We claim that a B query to x can be simulated by a B query to x. This can be

seen by comparing Afx:

Afx = L ID, i, a)(O,-i, al+ L jl, i, a)(I, i, aj. (4.4.4)
iE(NJ,a

J\;fx = L loJ)(o,il + L 11,I)\1,II. (4.4.5)
iE[2N} iE [2NJ :xi =0

Recalling the definition of x in 4.4.3, we see that these two projectors arc exactly

equal if we encode I as {i, a), where i =I mod Nanda= l'i/NJ.

Since f (x) = f(x), we thus have B€,0(!) = B€,0(.f). Our result then readily follows;

it can easily be checked that Q(/) = Q(f), and therefore by Theorem 20,

(4.4.6)

D

81

There are some advantages to allowing the projector l\fa: instead of A1x. First of

all, the inputs 0 and 1 in x arc finally manifestly symmetric, unlike that in A1 x (the

bomb originally blew up if Xi = 1, but not if Xi = 0). Moreover, we now allow the

algorithm to guess an answer to the query (this answer may be entangled with the

index register i), and the bomb blows up only if the guess is wrong, controlled on c.

This flexibility may allow more leeway in designing algorithms for the bomb query

model, as we soon utilize.

4.4.2 Using classical algorithms to design bomb query algo

rithms

We now demonstrate the possibility that we can prove nonconstrnctive upper bounds

on Q(f) for some functions f, by creating bomb query algorithms and using that

Q(f) = 8(yf EBE(f)). Consider for example the following classical algorithm for the

OR function:

Algorithm 25 (Classical algorithm for OR). Pick some arbitrary ordering of the N

bits, and query them one by one, terminating as soon as a 1 is seen. Return 1 if a 1

was queried; otherwise return 0.

We can convert this immediately to a bomb query algorithm for OR, by using the

construction in the proof of Theorem 22. That construction allows us to implement

the operation Ox in O(c1
) queries, with O(E) error and probability of explosion if

xi = 1 (but no error if x.i = 0). Thus we have the following:

Algorithm 26 (Bomb algorithm for OR). Query the N bits one-by-one, and apply

the construction of Theorem 22 one bit at a time, using 0(1/E) operations each time.

Terminate as soon as a 1 is seen, and return 1; otherwise return 0 if all bits arc 0.

Since the algorithm ends as soon as a 1 is found, the algorithm only accumulates

E error in total. Thus this shows BE(OR) = O(N/E).

Note, however, that we have already shown that Q(J) = 8(J EBE(!)) for boolean

.f. An O(N/E) bomb query algorithm for OR therefore implies that Q(OR) = 0(Vii).

82

We have showed the existence of an 0(./N) quantum algorithm for the OR function,

without actually constructing one!

We formalize the intuition in the above argument by the following theorem:

Theorem 27. Let f : D -t E, where D ~ {O, 1 }N. Suppose there is a classical

randomized que·ry algorithm A, that makes at most T queries, and evaluates f with

bounded error. Let the q·uery results of A on random seed SA be xP1' xP2, · · · , xPr(x)'

T(:r) ~ T, where x is the hidden query string.

Suppose there is another (not necessarily time-efficient} randomized algorithm Q,

with random seed sg,, which takes as input Xp1 , • • • , xPt-i and SA., and mdp,uts a guess

for the next query result xPt of A. Assume that Q makes no more than an e1;pected

total of G mistakes (for all irwuts x). In other words,

(4.4.7)

Note that g 'is g'iven the random seed s A of A,, so 'it can predict the ne:rt query index

of A.

Then BE(!)= O(TG/E), and thus (by Theorem 20} Q(f) = 0(ffG).

As an example, in our simple classical example for 0 R we have T = N (the

algorithm takes at most N steps) and G = 1 (the guessing algorithm always guesses

the next query to be O; since the algorithm terminates on a 1, it makes at most one

mistake).

Proof of theorem 27. We generalize the argument in the OR case. We take the clas

sical algorithm and replace each classical query by the construction of Theorem 22,

using O(G/E) bomb queries each time. On each query, the bomb has a O(E/G) chance

of exploding when the guess is wrong, and no chance of exploding when the guess is

correct. Therefore the total probability of explosion is O(E/G) · G = O(E). The total

number of bomb queries used is O(TG/E).

For the full technical proof, sec Appendix 4.7.2. D

83

4.4.3 Explicit quantum algorithm for Theorem 27

In this section we give an explicit quantum algorithm, in the setting of Theorem 27,

that reproduces the given query complexity. This algorithm is very similar to the one

given by R. Kothari for the oracle identification problem [40].

Theorem 28. Under the ass,umptions of Theorem 27, there is an explicit quantum

algorithm for f with query complexity 0(JTG).

Proof. We will construct this algorithm (Algorithm 30) shortly. We need the following

quantum search algorithm as a subroutine:

Theorem 29 (Finding the first marked clement in a list). Suppose there is an ordered

l-ist of N elements, and each element is either marked or unmarked. Then there is a

bounded-error quantum algorithm for finding the first marked element in the list (or

determines that no marked elements e;rist), such that:

• If the first marked element is the d-th element of the list_, then the algorithm

uses an expected 0(Vd) time and queries.

• If there are no marked elements_, then the algorithm uses 0(vfN) time and

queries_, b·ut always determ,ines correctly that no marked elements e2~ist.

This algorithm is straightforward to derive given the result in [53), and was already

used in Kothari's algorithm [40). We give the algorithm (Algorithm 47) and its

analysis in Appendix 4.7.3.

We now give our explicit quantum algorithm.

Algorithm 30 (Simulating a classical query algorithm by a quantum one).

Input. Classical randomized algorithm A that computes f with bounded error. Clas

sical randomized algorithm g that guesses queries of A. Oracle 0 x for the hidden

string x.

Outp;ut. f(x) with bounded error.

84

The quantum algorithm proceeds by attempting to produce the list of queries

and results that A would have made. More precisely, given a randomly chosen ran

dom seed SA, the quantum algorithm outputs (with constant error) a list of pairs

(Pi(x), Xp1(x)), · · · , (Pr(x)(x), ~rPr(x)(x))- This list is such that on random seed SA, the

i-th query algorithm of A is made at the position Pi(x), and the query result is xPi(x)

The quantum algorithm then determines the output of A using this list.

The main idea for the algorithm is this: we first assume that the guesses made

by Q arc correct. By repeatedly feeding the output of Q back into A and Q, we can

obtain a list of query values for A without any queries to the actual black box. We

then search for the first deviation of the string x from the predictions of Q; assuming

the first deviation is the d1-th query, by Theorem 29 the search takes 0($,) queries

(ignoring error for now). We then know that all the guesses made by Q arc correct

up to the (di - 1)-th query, and incorrect for the d1-th query.

With the corrected result of the first di queries, we now continue by assuming

again the guesses made by Q arc correct starting from the (di + 1)-th query, and

search for the location of the next deviation, d2 . This takes 0(y' d2 - di) queries; we

then know that all the guesses made by Q arc correct from the (d1 + 1)-th to (d2 - 1)

th query, and incorrect for the drth one. Continuing in this manner, we eventually

determine all query results of A after an expected G iterations.

We proceed to spell out our algorithm. For the time being, we assume that

algorithm for Theorem 29 has no error and thus requires no error reduction.

1. Initialize random seeds BA and sg for A and Q. We will simulate the behavior

of A and. Q on these random seeds. Initialize d = 0. d is such that we have

determined the values of all query results of A up to the d-th query. Also

initialize an empty list £ of query pairs.

2. Repeat until either all query results of A arc determined, or lOOG iterations of

this loop have been executed:

(a) Assuming that Q always guesses correctly starting from the (d + 1)-th

query, compute from A and Q a list of query positions Pd+ I, Pd+2 , · • • and

85

results ad+i, ad+2, · · · . This requires no queries to the black box.

(b) Using our algorithm for finding the first marked element (Theorem 29,

Algorithm 4 7), find the first index d* > d such that the actual query result

of A differs from the guess by g, i.e. xPd #- ad; or return that no such

d* exists. This takes 0(v' d* - d) time in the former case, and 0(JT - d)

time in the latter.

(c) We break into cases:

L If an index d* was found in Step 2b, then the algorithm decides the

next mistake made by g is at position d*. It thus adds the query pairs

(Pd+i, ad+l), · · · , (Pd* -i, ad*-l), and the pair (Pd* , 1 - ad*), to the list

£. Also set d = d*.

IL If no index d* was found in Step 2b, the algorithm decides that all

remaining guesses by g are correct. Thus the query pairs (Pd+1, ad+i),

· · ·, (Pr(x)' iit(x)) arc added to £, where T(x) ::; T is the number of

queries made by A.

3. If the algorithm found all query results of A in lOOG iterations of step 2, use £

to calculate the output of A; otherwise the algorithm fails.

We now count the total number of queries. Suppose g ::; lOOG is the number of

iterations of Step 2; if all query results have been determined, g is the number of

wrong guesses by y. Say the list of d's found is d0 = 0, di,··· , d9 . Let d9+1 = T.

Step 2 is executed for g + 1 times, and the total number of queries is

(4.4.8)

by the Cauchy-Schwarz inequality.

We now analyze the error in our algorithm. The first source of error is cutting off

the loop in Step 2: by Markov's inequality, for at least 99% of random seeds sg, sg,

g makes no more than lOOG wrong guesses. For these random seeds all query results

of A arc determined. Cutting off the loop thus gives at most 0.01 error.

86

The other source of error is the error of Algorithm 47 used in Step 2b: we had

assumed that it could be treated as zero-error, but we now remove this assumption.

Assuming each iteration gives error 8', the total error accrued could be up to O(g<5').

It seems as if we would need to set 8' = 0(1/G) for the total error to be constant,

and thus gain an extra logarithmic factor in the query complexity.

However, in his paper for oracle identification [40], Kothari showed that multiple

calls to Algorithm 47 can be composed to obtain a bounded-error algorithm based

on span programs without an extra logarithmic factor in the query complexity; re

fer to [40, Section 3] for details. Therefore we can replace the iterations of Step 2

with Kothari's span program construction and get a bounded error algorithm with

complexity O(v'TG).

D

Note that while Algorithm 30 has query complexity 0(v'TG), the time complexity

may be much higher. After all, Algorithm 30 proceeds by simulating A query-by

qucry, although the number of actual queries to the oracle is smaller. Whether or not

we can get a algorithm faster than A using this approach may depend on the problem

at hand.

4.5 Improved upper bounds on quantum query com

plexity

We now use Theorem 28 to improve the quantum query complexity of certain graph

problems.

4.5.1 Single source shortest paths for unweighted graphs

Problem 31 (Single source shortest paths (SSSP) for unweighted graphs). The ad

jacency matrix of a directed graph n-vcrtex graph G is provided as a black box; a

query on the pair (v, w) returns 1 if there is an edge from v to w, and 0 otherwise.

We arc given a fixed vertex Vsta.rt. Call the length of a shortest path from Vsta.rt to

87

another vertex 'W the distance dw of w from Vstart; if no path exists, define dw = oo.

Our task is to find dw for all vertices w in G.

In this section we shall show the following:

Theorem 32. The quantum. query com.ple:Dity of single-source shortest paths in an

unweighted graph is 8(n312) in the adjacency matrix model.

Proof. The lower bound of fl(n312
) is known (54). We show the upper bound by

applying Theorem 28 to a classical algorithm. The following well-known classical

algorithm (commonly known as breadth first search, BFS) solves this problem:

Algorithm 33 (Classical algorithm for unweighted SSSP).

1. Initialize dw := 00 for all vertices W ::/= Vstart, dvstart := 0, and £ := (Vstart). £

is the ordered list of vertices for which we have determined the distances, but

whose outgoing edges we have not queried.

2. Repeat until £ is empty:

• Let v be the first (in order of time added to£) vertex in£. For all vertices

w such that dw = oo:

- Query (v, w).

- If (v, w) is an edge, set dw := d,0 + 1 and add to to the end of£.

• Remove v from £.

We omit the proof of correctness of this algorithm (see for example {55)). This

algorithm uses up to T = 0(n 2
) queries. If the guessing algorithm always guesses

that (v, iv) is not an edge, then it makes at most G = n - 1 mistakes; hence Q(J) =

0(v'TG) = O(n3/2).1

D

1 It seems difficult to use our method to give a corresponding result for the adjacency list. model;
after all, the result of a query is much harder to guess when the input. alphabet is non-boolean.

88

The previous best known quantum algorithm for unweighted SSSP, to our best

knowledge, was given by Furrow [27]; it has query complexity O(n312 y'logn).

We now consider the quantum query complexity of unweighted k-source shortest

paths (finding k shortest-path trees rooted from k beginning vertices). If we apply

Algorithm 33 on k different starting vertices, then the expected number of wrong

guesses is no more than G = k(n - 1); however, the total number of edges we query

need not exceed T = O(n2
), since a.n edge never needs to be queried more than once.

Therefore

Corollary 34. The q'Uantum query complexity of unweighted k-source shortest paths

in the adjacency matrix model Ls O(k112n 312), where n 'is the number of vertices.

We use this idea - that T need not exceed 0(n 2) when dealing with graph problems

- again in the following section.

4.5.2 Maximum bipartite matching

Problem 35 (Ma-ximum bipartite matching). We arc given as black box the adja

cency matrix of an n-vcrtcx bipartite graph G = (V = XUY, E), where the undirected

set of edges E only run between the bipartite components X and Y. A matching of

G is a list of edges of G that do not share vertices. Our task is to find a ma-ximum

matching of G, i.e. a matching that contains the largest possible number of edges.

In this section we show that

Theorem 36. The q'uantum query complexity of maximum bipartite matching 1,s

O(n714) 'in the adjacency matrix model., where n is the n'Umber of vertices.

Proof. Once again we apply Theorem 28 to a classical algorithm. Classically, this

problem is solved in O(n512
) time by the Hopcroft-Karp [56] algorithm (here n = !VI).

We summarize the algorithm as follows (this summary roughly follows that of [28]):

Algorithm 37 (Hopcroft-Karp algorithm for maximum bipartite matching [56]).

1. Initialize an empty matching M. M is a matching that will be updated until

it is maximum.

89

2. Repeat the following steps until M is a maximum matching:

(a) Define the directed graph H = (1/', E') as follows:

V' = X u Yu { s, t}

E' = {(s,x) Ix EX, (x,y) ti:. M for ally E Y}

U {(x, y) Ix EX, y E Y, (x, y) EE, (x, y) ti:. M}

U {(y,x) Ix E X,y E Y, (x,y) EE, (x,y) EM}

U { (y, t) I y E Y, (x, y) rj: M for all x E X} (4.5.1)

wheres and t arc two extra auxilliary vertices. Note that if (s, x 1 , yi, x2 , y2 ,

· · · , xe, Ye, t) is a path in H from s tot, then xi EX and Y·i E Y for all i.

Additionally, the edges (aside from the first and last) alternate from being

in M and not being in M: (xi, Y·i) ti:. M, (y.i, xi+1) E M. Such a path is

called an augmenting path in the literature.

We note that a query to the adjacency matrix of E' can be simulated by

a query to the adjacency matrix of E.

(b) Using the breadth-first search algorithm (Algorithm 33), in the graph H,

find the length of the shortest path, or distance, of all vertices from s. Let

the distance from s to t be 2e + 1.

(c) Find a maximal set S of vertex-disjoint shortest paths from s to t in the

graph H. In other words, S should be a list of paths from s to t such that

each path has length 2f. + 1, and no pair of paths share vertices except for

s and t. Moreover, all other shortest paths from s to t share at least one

vertex (except for sand t) with a path in S. We describe how to find such

a maximal set in Algorithm 38.

(d) If Sis empty, the matching Mis a maximum matching, and we terminate.

Otherwise continue:

(c) Let (s, x1, yi, X2, Y2, · · · , xe, Ye, t) be a path in S. Remove the f. - 1 edges

(X·i+I' Yi) from M' and insert the e edges (Xi' Yi) into M. This increases

90

IM I by 1. Repeat for all paths in S; there arc no conflicts since the paths

in S a.re vertex-disjoint.

Once a.gain, we omit the proof of correctness of this algorithm; the correctness is

guaranteed by Bcrgc's Lemma [57), which states that a. matching is maximum if there

arc no more augmenting paths for the matching. Moreover, 0(fa) iterations of Step

2 suffice [56).

We now describe how to find a maximal set of shortest-length augmenting paths

in Step 2(c). This algorithm is essentially a modified version of depth-first search:

Algorithm 38 (Finding a maximal set of vertex-disjoint shortest-length augmenting

paths).

Input. The directed graph H defined in Algorithm 37, as well as the distances dv of

all vertices v from s (calculated in Step 2(b) of Algorithm 37).

1. Initialize a set of paths S := 0, set of vertices R := { s }, and a stack2 of vertices

£ := (s). £ contains the ordered list of vertices that we have begun, but not

yet finished, processing. R is the set of vertices that we have processed. S is

the set of vertex-disjoint shortest-length augmenting paths that we have found.

2. Repeat until£ is empty:

(a) If the vertex in the front of£ is t, we have found a new vertex-disjoint

pa.th from s to t:

• Trace the path from t back to s by removing clements from the front

of £ until s is at the front. Add the corresponding pa.th to S.

• Sta.rt again from the beginning of Step 2.

(b) Let v be the vertex in the front of£ (i.e. the vertex last added to, and

still in, £). Recall the distance from s to v is dv.

2 A stack is a data structure such that elements that are first inserted into the stack are removed
last.

91

(c) Find w such that w tJ. R, dw = dv + 1, and (v, w) (as an edge in H) has

not been queried in this algorithm. If no such vertex 'W exists, remove v

from£ and start from the beginning of Step 2.

(d) Query (v, w) on the graph H.

(e) If (v, w) is an edge, add w to the front of£. If 'W =/=- t, add w to R.

3. Output S, the maximal set of vertex-disjoint shortest-length augmenting paths.

We now return to Algorithm 37 and count T and G. There is obviously no need

to query the same edge more than once, so T = O(n2
). If the algorithm always

guesses, on a query (v, w), that there is no edge between (v, w), then it makes at

most G = O(n312
) mistakes: in Step 2(b) there arc at most O(n) mistakes (see

Algorithm 33), while in Step 2(c)/ Algorithm 38 there is at most one queried edge

leading to each vertex aside from t, and edges leading tot can be computed without

queries to the adjacency matrix of H. Since Step 2 is executed 0(fo) times, our

counting follows.

Thus there is a quantum query algorithm with complexity Q

O(n7/4).

O(v'TG)

D

To our knowledge, this is the first known nontrivial upper bound on the query

complexity of maximum bipartite matching. 3 The time complexity of this problem

was studied by Ambainis and Spalek in [28); they gave an upper bound of O(n2 logn)

time in the adjacency matrix model. A lower bound of n(n.312
) for the query com

plexity of this problem was given in [58, 59).

For readers familiar with network flow, the arguments in this section also apply

to Dinic's algorithm for maximum flow [60) on graphs with unit capacity, i.e. where

the capacity of each edge is 0 or 1. On graphs with unit capacity, Dinic's algorithm

is essentially the same as Hopcroft-Karp's, except that augmenting paths arc over

a general, nonbipartitc flow network. (The set S in Step 2(c) of Algorithm 37 is

3The trivial upper bound is O(n2), where all pairs of vertices are queried.

92

generally referred to as a blocking flow in this context.) It can be shown that only

O(min{m 112 ,n213 }) iterations of Step 2 arc required [61, 62], where mis the number

of edges of the graph. Thus T = O(n2
), G = O(min{m112 , n 213 }n), and therefore

Theorem 39. The quantum query complexity of the maximum flow problem in graphs

with unit capacity ·is O(min{n312m114,n1116 }), where n and m are the n:umber of

vertices and edges in the graph, respectively.

It is an open question whether a similar result for maximum matching in a general

nonbipartitc graph can be proven, perhaps by applying Theorem 28 to the classical

algorithm of Micali and Vazira.ni [63].

4.6 Projective query complexity

We end this chapter with a brief discussion on another query complexity model,

which we will call the projective q·uery complexity. This model is similar to the bomb

query model in that the only way of accessing xi is through a classical measurement;

however, in the projective query model the algorithm docs not terminate if a 1 is

measured. Our motivation for considering the projective query model is that its

power is intermediate between the classical and quantum query models. To the best

of our knowledge, this model was first considered in 2002 in unpublished results by

S. Aaronson [41].

A circuit in the projective query complexity model is a restricted quantum query

circuit, with the following restrictions on the use of the quantum oracle:

1. We have an extra control register le) used to control whether Dx is applied (we

call the controlled version COx):

CDxlc, r, i) = le, r EB (c ·xi), i). (4.6.1)

where · indicates boolean AND.

93

2. The record register, Ir) in the definition of COx above, must contain IO) before

COx is applied.

3. After CO-c is applied, the record register is immediately measured in the com

putational basis, giving the answer c · x·i· The result, a classical bit, can then be

used to control further quantum unitarics (although only controlling the next

unitary is enough, since the classical bit can be stored).

(4.6.2)

We wish to evaluate a function f (x) with as few calls to this projective oracle as

possible. Let the number of oracle calls required to evaluate f(~i;), with at most 8

error, be Pa(!). By gap amplification, the choice of 8 only affects Pa(!) by a factor

of log(l/8), and thus we will often omit 6.

We can compare the definition in this section with the definition of the bomb

query complexity in Section 4.2: the only difference is that if c · x,i = 1, the algorithm

terminates in the bomb model, while the algorithm can continue in the projective

model. Therefore the following is evident:

Observation 40. Pa(!) :::; BE,a(f), and therefore P(f) = O(Q(f)2
).

Moreover, it is clear that the projective query model has power intermediate be

tween classical and quantum (a controlled query in the usual quantum query model

can be simulated by appending a 0 to the input string), and therefore letting Ra(!)

be the classical randomized query complexity,

Observation 41. Qa(f) :::; Pa(!) :::; Ra(!).

For explicit bounds on P, Regev and Schiff [30) have shown that for computing

the OR function, the projective query complexity loses the Grover speedup:

94

Theorem 42 ([30]). P(OR) = O(N).

Note that this result says nothing about P(AN D), since the definition of P(J) is

asymmetric with respect to 0 and 1 in the input.4

We observe that there could be a separation in both parts of the inequality Q s;

P~B:

Q(OR) = 8(V°N), P(OR) = 8(N), B(OR) = 8(N) (4.6.3)

Q(PARITY) = 8(N), P(PARITY) = f:)(N), B(PARITY) = 8(N2
) (4.6.4)

In the latter equation we used the fact that Q(PARITY) = 8(N) [17]. It therefore

seems difficult to adapt our lower bound method in Section 4.3.2 to P(J).

It would be interesting to find a general lower bound for P(J), or to establish

more clearly the relationship between Q(f), P(J), and R(f).

4.7 Proofs

4.7.1 Proof of the adversary lower bound for B(f) (Theorem

23)

Before we give the proof of the general result that B(f) = O(Q(f) 2
) (Theorem 23)),

we will illustrate the proof by means of an example, the special case where f is the

AND function.

Theorem 43. For o < 1/10, B£,8(AN D) = n(~).

Proof. Let l'lf~) be the unnormalized state of the algorithm with x = Ft, and l'l/1;) be

the unnormalized state with x = 1···101···1, Xk = 0, right before the (t + 1)-th call

to Nfx. Then

(4.7.1)

4We could have defined a symmetric version of P, say P, by allowing an extra guess on the
measurement result, similar to our construction of B in Section 4A. l. Unfortunately, Regev and
Schiff's result, Theorem 42, do not apply to this case, and we see no obvious equivalence between P
and P.

95

for some unitary Ut+l· For case of notation, we'll write 1\tf0 = A11n and Ah =

Afi, .. 101 ... 1 , where the k-th bit is 0 in the latter case. When acting on the control

and index bits,

N

Mo= LIO, i)(O, ii
i=l

N

A1k = L IO,i)(O,il + 11,k)(l,kl. (4.7.2)
i=l

Since the A1i 's arc projectors, A1'f = A.Ji. Define

(4.7.3)

Note that (l/J;+1 l4';+i) = (7/';IJ\Ill'l/'D = (7/1;1.MilWD = (41:17/'D - EL for all i = 0, · · · , N

(including O!), and hence

T-l

LE~ = (7/'bl·7"~) - ('~1HIP~) s E. (4.7.4)
t=O

We now define the progress function. Let

(4.7.5)

and let the progress function be a sum over H7 k's:

N N

wt= Livt = L(4,~lwf). (4.7.6)
k=l k=l

We can lower bound the total change in the progress function by (sec [18) for a

proof; their proof equally applies to unnormalized states)

ivo - Wr 2:: (1 - 2y16(l - 6))N. (4.7.7)

96

We now proceed to upper bound vV0 - illr. Note that

vVtk - w/~1 = (¢?Iv':~) - (41?IA1ol\Ikl11':)

= (1P?IU - l\llo)1Vhl'¢;) + (?/J?INio(I - .Mk),'¢;)

+ (l/i?IU - Mo)(! - l\1k)j41
:)

and since lVfo(I - lvh) = 0, (I - Mo)l\Ik = 11, k)(l, kl, we have

vVtk - wt~1 :::; (1/1?11, k) (1, kl?/J;) + II (I - Alo)!·¢?,) 1111 (I - Mk) 1·¢;) II

(4.7.8)

:::; 11 (1, kl1/1?) 11 + #1t. (4. 1.9)

where we used 4.7.3. Summing over k and t, we obtain

T-1 N T-1 N o k

:::; rrN L L(7f1?11, k)(l, kl·¢?)+ LL Et-; Et'
t=O k=l t=O k=l

T-1

:::; VTN L (1/1?l(J - Mo)l1t>f) +NE
t=O

T-1

:::; . TNLt:?+NE
t=O

(4.7.10)

where in the second line we used Cauchy-Schwarz and the AM-GM inequality. Com

bined with \!V0 - lVr ~ (1 - 2yl8(1 - 8))N (Eq. 4.7.7), this immediately gives us

(1- 2J8(1- o) - c)2N
T> .

- E
(4.7.11)

D

We now proceed to prove the general result. This proof follows the presentation

97

given in A. Childs's onlinc lecture notes [64), which we found quite illuminating.

Theorem 23. For all functions f with boolean inp,ut alphabet, and numbers E, 5

satisfying 0 < E ~ 8 ~ 1/10,

(4.7.12)

Proof. We prove the lower bound on BE,fi by showing that it is lower bounded by

n(Adv±(/)2 /E), where Adv±(!) is the generalized (i.e. allowing negative weights)

adversary bound [19) for f. We can then derive our theorem from the result [22) that

Q(f) = O(Adv±(f)).

We generalize the bound on the f = AND case to an adversary bound for BE,8

on arbitrary f. Define the projectors

N

Ilo =LIO, i)(O, ii
·i=l

ni = 11,i)(l,il, i = 1,··· ,n. (4.7.13)

It is clear that

N

IIo+ Lni=I. (4.7.14)
i=l

Note that Mx = CPx,o is

Mx = Ilo + L IIi· (4.7.15)
i:xi=O

Define 1¢[) as the state of the algorithm right before the (t + 1)-th query with

input x; then

(4.7.16)

98

for some unitary Ut+I· Now if we let

(4.7.17)

T-1

L t~ = ('ljl~ I~~) - ('iPHiP~) ~ t. (4.7.18)
t=O

We proceed to define the progress function. Let S be the set of allowable input

strings x. Let r be an adversary matrix, i.e. an S x S matrix such that

2. r xy = 0 if J(x) = J(y).

Let a be the normalized eigenvector of r with eigenvalue ±llfll, where ±llfll is the

largest (by absolute value) eigenvalue of r. Define the progress function

H7t = L r xya;ay('~)f.l~n. (4.7.19)
x,yES

For t ~ 5 < 1/10 we have that5 (sec [19] for a proof; their proof applies equally well

to unnormalized states)

lvVo - vllrl 2 (1 - 2-)8(1 - 5) - 28)llfll (4.7.20)

5 As described in 1191, the 28 term can be removed if the output is boolean (0 or 1).

99

We now proceed to upper bound lvVo - Wrl ~ 'l:t Ii-Vt - Wt-11- Note that

x,yES

x,yES

= L r xya:ay ((1f':l(J - Mx)Myl'~)n + (~1fl~fx(J - Nly)l'l/Ji)
x,yES

(4.7.21)

We bound the three terms separately. For the first two terms, use

(4.7.22)

Define the S x S matrix ri as

(4.7.23)

The first term of 4. 7.21 is

N

L L r xya;ay(?t1f l(J - Mx)Ild'l/JY) = L L (ri)xy a;ay(~'f l(J - 1Yfx)Ildr¢f)
x,yES i:x;=f.Yi x,yES i=l

N

= Ltr(QSiQ!) (4.7.24)
·i=l

where

(4.7.25)
xES

Q.i = L axlli(I - MxH~1f)(xl. (4.7.26)
xES

100

Although both Qi and Qi depend on t, we suppress the t dependence in the notation.

Similarly, the second term of 4. 7.21 is equal to "L::[:1 tr(Q.SiQl). We can also rewrite

the third term of 4. 7.21 as

L I'xya;ay(1Pfl(1- Aix)(J - My)l-l/in = tr(Q'rQ't) (4.7.27)
x,yES

where

Q' = L ax(I - Mx)l1Pn (xi. (4.7.28)
xES

Therefore, adding absolute values,

N

IVVi - vl't+il ~ L [jtr(QSiQ!)I + jtr(QSiQl))IJ + ltr(Q'rQ't)I (4.7.29)
i=l

To continue, we need the following lemma:

Lemma 44. For any m, n > 0 and matrices X E cmxn, Y E cnxn, Z E cnxm, we

have ltr(XYZ)I ~ llXllFllYllllZllF· Here 11 ·II and 11 · llF denote the spectral norm

and Frobeni'us norm, respectively.

This lemma can be proved by using that I tr(XYZ)I ~ llYllllZXlltr and llZXlltr ~
llXllFllZllF, which follows from [65, Exercise IV.2.12 and Corollary IV.2.6). A more

accessible proof is found online at [64).

Then by Lemma 44,

N N

L jtr(QS.iQDI ~ L 11rillllQ.dlFllQ.dlF (4.7.30)
i=l i=l

101

Since

N N

L II Qi II~= LL laxl2 llIIil·l/Jf.)ll 2

i=l i=l xES

N

= L laxl2 ('l/Jf.I L Hd·l/Jf.)
xES i=I

=1 (4.7.31)

and

N N

L !IQ.di~= LL laxl 2 llIIi(I - Afx)l-l/Jf.)11
2

i=l i=l xES

= ~ laxl2 (7/lfl(I - Mx) (t, II;) (I - MxMfl

s; L laxl 2 (~1fl(J - A{r.)l'l/Jf)
xES

= L laxl2Et (4.7.32)
xES

we have, by Cauchy-Schwarz,

N

L llQillFllQillF s; L la:i!l 2
Et (4.7.33)

·i=l xES

Therefore by 4.7.30 and 4.7.33,

N

L ltr(QsiQ!)j s;
i=l

L lax l2Et ~~] llf i 11-
xES

(4.7.34)

102

Similartly for tr(Q'f Q't), we have

llQ'll~ = L laxl 2 ll(J - Afx)l~l'f)ll 2

xES

= L laxl 2 (7/1fl(J - A1x)l'l/lf)
xES

= L laxl 2 E~
:rES

and using Lemma 44,

tr(Q'rQ't) :::; llQ'll}llrll

= L laxl 2E:llrll
xES

Thus continuing from 4.7.29, we have that

Finally, if we sum the above over t we obtain

T-1

lvF0 - Wrl :::; 2 max !If.di L
iE[N)

t=O

T-l

L laxl 2
Ef. +LL laxl 2E~llfll

xES t=O xES

The first term can be bounded using Cauchy-Schwarz:

T-I T-1

L. L1axl2Ef:::;, rLL1axl2
Ef.

t=O xES

103

(4.7.35)

(4.7.36)

(4.7.37)

(4.7.38)

(4.7.39)

(4.7.40)

where we used Lt t:f :::; E and Lx laxl2 = 1. The second term can be summed easily:

T-1

LL laxl 2t:~ llfll :::; L laxl2t:llf II
t=O xES xES

= t:llfll· (4.7.41)

Therefore

(4.7.42)

Combined with our lower bound IWo - Wrl 2: (1- 2y'5(1 - 5) - 25)jjfjj, this imme

diately gives

(1 - 2y' <5(1 - 5) - 25 - t:) 2 llf11 2

T 2: r II 11 2 • 4t: maxiE [NJ f.i
(4. 7.43)

Recalling that [19]

(4.7.44)

we obtain6

(4.7.45)

We now use the tight characterization of the quantum query complexity by the

general weight adversary bound:

Theorem 45 ([22, Theorem 1.1)). Let f D --t E, where D C {O, 1 }N. Then

Qo.01(!) = O(Adv±(f)).

Combined with our result above, we obtain

(4.7.46)

6 For boolean output (0 or 1) the 28 term can be dropped, as we previously noted (Footnote 5).

104

D

4. 7 .2 Proof of Theorem 27

We restate and prove Theorem 27:

Theorem 27. Let f : D -+ E, where D ~ {O, 1 }N. Suppose there is a classical

randomized query algorithm A, that makes at most T queries, and evaluates f with

bounded error. Let the queqJ results of A on random seed s A be Xp1 , Xp2 , • • • , xPr<x>,

T(x) :::; T, where x is the hidden query string.

Suppose there is another {not necessarily time-efficient} randomized algorithm Q,

with random seed sg., which takes a,s input Xp1 , • • • , :rPt-i ands.A, and outputs a guess

for the next query result xPt of A. Assume that g makes no more than an expected

total of G mistakes {for all inp·uts x }. In other words,

Vx. (4.7.47)

Note that g is given the random seed S.A of A, so it can predict the next query index

of A.

Then B~(f) = O(TG/E), and thus (by Theorem 20} Q(f) = 0(vfrG).

Proof. For the purposes of this proof, we use the characterization of B by the modified

bomb construction given in section 4.4.1. This proof is substantially similar to that

of theorem 22.

The following circuit finds xi with zero probability of explosion if Xi =a, and with

an 0(1/ L) probability of explosion if x,i i' a (in both cases the value of xi found by

the circuit is always correct):

105

r.------------------,
IO) R(e) R(e) !xi)

I

Ii) --'-----1 AJ.'C -----1 Afx i...:...:--'--- l'i)

I a) --'----4 1-1------ I a)
L------------------~

L times in tot al (4.7.48)

where e = Jr/ (2L) for some large number L to be picked later, and

(

cos e - sine)
R(O) =

sinO cosO

(4.7.49)

The boxed part of the circuit is then simply [Alx (R(0) 0 I 0 J)]L, applied to the state

IO, i, a). We can analyze this circuit by breaking into cases:

• If xi = a, then Alxl'!/i)i'i, a) = 17/-1) Ii, a) for any state I'~') in the control register.

Thus the Af::c 's act as identities, and the circuit simply applies the rotation

R(O)L = R(Jr /2) to the control register, rotating it from 0 to 1. We thus obtain

the state ll, i, a.); the final CNOT and X gates add a EB 1 = xi EB 1 to the first

register, giving !xi, 'i, a).

• If xi # a, then

_l\,fxlO, i, a) = IO, i, a), _l\,fxl 1, i, a) = 0 (for Xi #a) (4.7.50)

Therefore after each rotation R(B), the projection Afx projects the control qubit

back to 0:

Afx(R(B)®l®I)IO,i,a) = Alx(cosBIO)+sinBll))li,a) = cosOIO,i,a) (for Xi# a.)

(4.7.51)

In this case the effect of Al:i:(R(B) 0 I 0 I) is to shrink the amplitude by cos(B);

106

L applications results in the state cosL(B)IO, i, a). The final CNOT and X gates

add a EB 1 = x,i to the first register, giving lxi, i, a).

The probability of explosion is 0 if xi =a. If xi -:::/=a, the probability of explosion is

2L (Jr) 7r
2

1-cos - <-.
2£ - 4L

(4.7.52)

Pick

L = r n~~l · (4.7.53)

Then the probability of explosion is 0 if xi = a, and no more than E/G if xi -:::/= a. If

the bomb does not explode, then the circuit always finds the correct value of xi·

We now construct the bomb query algorithm based on A and g. The bomb query

algorithm follows A, with each classical query replaced by the above construction.

There are no more than TL ~ Jr
2TG / (4t:) bomb queries. At each classical query,

we pick the guess a to be the guess provided by g. The bomb only has a chance of

exploding if the guess is incorrect; hence for all x, the total probability of explosion

is no more than

(4.7.54)

Thus replacing the classical queries of A with our construction gives a bomb query

algorithm with probability of explosion no more than c; aside from the probability of

explosion, this bomb algorithm makes no extra error over the classical algorithm A.

The number of queries this algorithm uses is

(4.7.55)

where 8 is the error rate of the classical algorithm. Therefore by Lemma 24 and

Lemma 21,

(4.7.56)

107

D

4.7.3 Proof of Theorem 29

We restate and prove Theorem 29:

Theorem 29 (Finding the first marked element in a list). Suppose there is an ordered

list of N elements, and each element is either marked or unmarked. Then there is a

bounded-error quant'Um algorithm for finding the first marked element in the hst, or

determines that no marked elements exist, such that:

• If the first marked element is the d-th element of the list, then the algorithm

uses an expected 0(Vd) time and queries.

• If there are no marked elements, then the algorithm uses 0(VFf) time and

queries.

Proof. We give an algorithm that has the stated properties. We first recall a quantum

algorithm for finding the minimum in a list of items:

Theorem 46 ([53]). Given a function g on a domain of N elements, there is a quan

t'Um algorithm that finds the minimum of g with expected 0(VFi) time and evaluations

of g, making 5 < 1/10 error.

We now give our algorithm for finding the first marked clement in a list. For

simplicity, assume that N is a power of 2 (i.e. log2 N is an integer).

Algorithm 4 7.

1. Fore= 2° 21 22 • • • 2Iog2N = N· ' ' ' ' .

• Find the first marked element within the first f clements, or determine no

marked clement exists. This can be done by defining

g(i) j 00

l1

if i is unmarked
(4.7.57)

if i is marked,

108

and using Theorem 46 to find the minimum of g. This takes 0(v'C) =

0(Vd) queries and makes 6 < 1/10 error for each£. If a marked element

i* is found, the algorithm outputs i* and stops.

2. If no marked clement was found in Step 1, the algorithm decides that no marked

clement exists.

We now claim that Algorithm 47 has the desired properties. Let us break into

cases:

• If no marked items exist, then no marked item can possibly be found in Step

1, so the algorithm correctly determines that no marked items exist in Step 2.

The number of queries used is

log2 N

L V2i = O(VN) (4.7.58)
i=O

as desired.

• Suppose the first marked item is the d-th item in the list. Then in Step l(a),

if I! ~ d, there is at least a 1 - 8 probability that the algorithm will detect

that a marked item exists in the first I! clements and stop the loop. Letting

a = flog2 dl , the total expected number of queries is thus

a-1 log2N . ?a/2 _ 1 1 L V2i + L 5i-o:JZi + O(Vd) ~ .. + # + O(Vd)
i=O ·i=a J2 - 1 1 - y12J

= 0(#) + O(Vd)

= 0(Vd).

(4.7.59)

(4.7.60)

(4.7.61)

The probability of not finding the marked item at the first R ~ d is at most 5 ,

and thus the total error of the algorithm is bounded by 5.

D

109

110

Bibliography

[1) D. G. Edward Farhi, A. Hassidim, A. Lutomirski, and P. Shor, "Quantum
money from knots," arXiv:1004.5127 [quant-ph].

[2] P. Shor, "Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer," SIAM journal on computing 26 no. 5,
(1997) 1484-1509, arXiv:quant-ph/9508027.

[3) L. K. Grover, "A fast quantum mechanical algorithm for database search," in
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
{STOC). May, 1996. arXiv:quant-ph/9605043.

[4) E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, "Quantum computation by
adiabatic evolution," arXiv:quant-ph/0001106.

[5] S. Wiesner, "Conjugate coding," ACM SIGACT News 15 no. 1, (1983) .

[6] A. Brodutch, D. Nagaj, 0. Sattath, and D. Unruh, "An adaptive attack on
Wiesner's quantum money," arXiv:1404.1507 (quant-ph).

[7] A. Lutomirski, "An online attack against wiesner's quantum money,"
arXiv:lOl0.0256 [quant-ph].

[8) A. Lutomirski, "Component mixers and a hardness result for counterfeiting
quantum money," 2011. arXiv:l107.0321 [quant-ph).

[9) S. Aaronson and P. Christiano, "Quantum money from hidden subspaces,"
arXiv:1203.4740 [quant-ph].

[10) A. Lutomirski, S. Aaronson, E. Farhi, D. Gosset, A. Hassidim, J. Kclner, and
P. Shor, "Breaking and making quantum money: toward a new quantum
cryptographic protocol," 2009. arXiv:0912.3825 [quant-ph].

[11] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, "Strengths and
weaknesses of quantum computing," SIAM Journal on Computing 26 no. 5,
(1997) 1510-1523, arXiv:quant-ph/9701001.

[12] A. Ambainis, "Quantum walk algorithm for clement distinctness," SIAM
Jounwl on Computing 37 no. 1, (2007) 210-239, arXiv:quant-ph/0311001.

111

[13] M. Szegedy, "Quantum speed-up of Markov chain based algorithms," in
Proceedings of the 45th Annual IEEE Symposium on Foundations of Comp'Uter
Science (FOGS). 2004.

[14] F. Magniez, A. Nayak, J. Roland, and M. Santha, "Search via quantum walk,"
SIAM Journal on Computing 40 no. 1, (2011) 142-164,
arXiv:quant-ph/0608026.

[15] S. Jeffery, R. Kothari, and F. Magnicz, "Nested quantum walks with quantum
data structures," in Proceedings of the 24th A CM-SIAM Symposium on Discrete
Algorithms (SODA}, pp. 1474-1485. 2013. arXiv:1210.1199 [quant-ph].

(16] A. Belovs, "Span programs for functions with constant-sized I-certificates," in
Proceedings of the 44th Annual ACM Symposium on Theory of Computing
{STOC), pp. 77-84. 2012. arXiv:l105.4024 (quant-ph].

[17] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, "Quantum lower
bounds by polynomials," in Proceedings of the 39th Ann:ual Symposium on
Foundations of Computer Science {FOGS), p. 352. 1998.
arXiv:quant-ph/9802049.

[18] A. Ambainis, "Quantum lower bounds by quantum arguments," in Proceedings
of the 32nd Ann'ual ACM Symposium on Theory of Computing {STOC),
pp. 636-643. 2000. arXiv:quant-ph/0002066.

[19) P. H0yer, T. Lee, and R. Spalek, "Negative weights make adversaries stronger,"
in Proceedings of the 39th Annual ACM SympoS'ium on Theory of Computing
(STOC), pp. 526-535. 2007. arXiv:quant-ph/0611054.

[20] B. W. Reichardt, "Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function," in Proceedings of
the 50th IEEE Symposium on Foundations of Computer Science (FOGS),
pp. 544-551. 2009. arXiv:0904.2759 [quant-ph].

(21] B. W. Reichardt, "Reflections for quantum query algorithms," in Proceedings of
the 22nd ACM-SIAM Symposium on Discrete Algorithms {SODA),
pp. 560-569. 2011. arXiv:l005.1601 [quant-ph].

[22] T. Lee, R. Mittal, B. W. Reichardt, R. Spalek, and M. Szegedy, "Quantum
query complexity of state conversion," in Proceedings of the 52nd IEEE
Symposi'Um on Foundations of Comp·uter Science (FOGS}, pp. 344-353. 2011.
arXiv:lOll.3020 [quant-ph).

(23] S. Kimmel, "Quantum adversary (upper) bound," Chicago Journal of
Theoretical Comp'uter SC'ience no. 4, (2013) , arXiv:llOl.0797 [quant-ph].

[24] A. C. Elitzur and L. Vaidman, "Quantum mechanical interaction-free
measurements," Foundations of Physics 23 no. 7, (July, 1993) 987-997,
arXiv:hep-th/9305002.

112

(25) B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory,"
Jo'Urnal of .Mathematical Physics 18 no. 4, (1977) 756.

(26) P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich,
"Interaction-free measurement," Physical Review Letters 74 no. 24, (1995) 4763.

(27) B. Furrow, "A panoply of quantum algorithms," Q'Uantum Information and
Comp'Utation 8 no. 8, (September, 2008) 834-859, arXiv:quant-ph/0606127.

(28] A. Ambainis and R. Spalek, "Quantum algorithms for matching and network
flows," in Lecture Notes in Computer Science, vol. 3884, pp. 172-183. Springer,
2006. arXiv:quant-ph/0508205.

(29) S. Dorn, "Quantum algorithms for matching problems," Theory of Comp'Uting
Systems 45 no. 3, (October, 2009) 613-628.

(30] 0. Rcgev and L. Schiff, "Impossibility of a quantum speed-up with a faulty
oracle," in Lect'Ure Notes in Computer Sdence, vol. 5125, pp. 773-781.
Springer, 2008. arXiv:1202.1027 [quant-ph).

[31) G. Mitchison and R. Jozsa, "Counterfactual computation," Proceedings of the
Royal Society A 457 no. 2009, (2001) 1175-1194, arXiv:quant-ph/9907007.

[32) 0. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat,
"Counterfactual quantum computation through quantum interrogation," Nature
439 (February, 2006) 949-952.

[33) G. Mitchison and R. Jozsa, "The limits of counterfactual computation,"
ar Xiv:quant-ph / 0606092.

[34) 0. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. Kwiat,
"Countcrfactual computation revisited," arXiv:quant-ph/0607101.

[35] L. Vaidman, "The impossibility of the countcrfactual computation for all
possible outcomes," arXiv:quant-ph/0610174.

[36) 0. Hosten and P. G. Kwiat, "Weak measurements and counterfactual
computation," arXiv:quant-ph/0612159.

[37] H. Salih, Z.-H. Li, M. Al-Amri, and M. S. Zubairy, "Protocol for direct
countcrfactual quantum communication," PhyS'ical Review Letters 110 (2013)
170502, arXiv:l206.2042 [quant-ph).

[38] L. Vaidman, "Comment on "protocol for direct countcrfactual quantum
communication" [arxiv:1206.2042)," arXiv:1304.6689 [quant-ph).

[39) T.-G. Noh, "Countcrfactual quantum cryptography," Physical Review Letters
103 (2009) 230501, arXiv:0809.3979 [quant-ph].

113

[40] R. Kothari, "An optimal quantum algorithm for the oracle identification
problem," in Proceedings of the 31st International Symposium on Theoretical
Aspects of Computer Science (STAGS), E. W. Mayr and N. Portier, eds.,
vol. 25 of Leibniz International Proceedings in Informatics (LIPics),
pp. 482-493. Schloss Dagstuhl-Lcibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2014. arXiv:1311.7685 [quant-ph].

(41] S. Aaronson. Personal communication, 2014.

[42] E. Crosson, E. Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor, "Different strategics
for optimization using the quantum adiabatic algorithm,".

[43] D. Nagaj, R. D. Somma, and M. Kiefcrova, "Quantum speedup by quantum
annealing," Phys. Rev. Lett. 109 no. 5, (2012) 050501, arXiv:1202.6257
[quant-ph].

[44] T. Caneva, T. Calarco, R. Fazio, G. E. Santoro, and S. Montangero, "Speeding
up critical system dynamics through optimized evolution," Phys. Rev. A 84
no. 1, (2011) 012312, arXiv:lOll.6634 [cond-mat.other].

[45] E. Farhi, J. Goldstone, and S. Gutmann, "Quantum adiabatic evolution
algorithms with different paths," arXiv:quant-ph/0208135.

[46] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal, 'The complexity
of stoquastic local hamiltonian problems," Quant. Inf. Comp. 8 no. 5, (2008)
0361-0385, arXiv:quant-ph/0606140.

[47] S. Bravyi, A. J. Bessen, and B. M. Terhal, "Mcrlin-arthur games and stoquastic
complexity," arXiv:quant-ph/0611021.

[48] A. W. Sandvik, "Computational studies of quantum spin systems," AIP Conj.
Proc. 1297 (2010) 135, arXiv:llOl.3281 [cond-mat.str-cl).

[49] E. Farhi, D. Gosset, I. Hen, A. W. Sandvik, P. Shor, A. P. Young, and
F. Zamponi, "Performance of the quantum adiabatic algorithm on random
instances of two optimization problems on regular hypergraphs," Phys. Rev. A
86 no. 5, (2012) 052334, arXiv:1208.3757 [quant-ph].

(50] M. Zhandry, "How to construct quantum random functions," FOGS (2012)
679-687.

[51] M.A. Neilsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[52] C. Y.-Y. Lin and H.-H. Lin, "Upper bounds on quantum query complexity
inspired by the clitzur-vaidman bomb tester," arXiv:1410.0932v2 [quant-ph].

(53} C. Diirr and P. H0ycr, "A quantum algorithm for finding the minimum,"
arXiv:quant-ph/9607014.

114

[54] C. Durr, M. Heiligman, P. H0yer, and M. Mhalla, "Quantum query complexity
of some graph problems," arXiv:quant-ph/0401091.

[55] T. H. Cormcn, C. E. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press and McGraw-Hill, 3rd ed., 2009.

[56] J. E. Hopcroft and R. M. Karp, "An n 512 algorithm for maximum matchings in
bipartite graphs," SIAM Jomnal on Computing 2 no. 4, (1973) 225-231.

[57] C. Berge, "Two theorems in graph theory," in Proceedings of the National
Academy of Sciences of the United States of America, vol. 43, pp. 842-844.
1957.

[58] A. Bcrzina, A. Dubrovsky, R. Freivalds, L. Lace, and 0. Sccgulnaja, "Quantum
query complexity for some graph problems," in Lecture Notes in Comp,uter
Science, vol. 2932, pp. 140-150. Springer, 2004.

[59] S. Zhang, "On the power of Ambainis's lower bounds," Theoretical Computer
Science 339 no. 2-3, (2005) 241-256, arXiv:quant-ph/0311060.

[60] E. A. Dinic, "Algorithm for solution of a problem of maximum flow in a
network with power estimation," Soviet Math Doklady 11 (1970) 1277-1280.

[61) A. V. Karzanov, '10 nakhozhdenii maksimal'nogo potoka v setyakh
spetsial'nogo vida i nekotorykh prilozheniyakh," in Matemat-icheskie Voprosy
Upravleniya Proizvodstvom, L. Lyusternik, ed., vol. 5, pp. 81-94. Moscow State
University Press, 1973.

[62) S. Even and R. E. Tarjan, "Network flow and testing graph connectivity," SIAM
Journal on Computing 4 no. 4, (1975) 507-518.

[63) S. Micali and V. V. Vazirani, "An 0(/fVT · IEI) algorithm for finding
maximum matching in general graphs," in Proceedings of the 21st Annual
Symposi'Um on Foundations of Computer Science (FOGS), pp. 17-27. 1980.

[64) A. Childs.
http://www.math.uwaterloo.ca/-amchilds/teaching/w13/115.pdf, 2013.

[65] R. Bhatia, Matrix Analysis. Springer-Verlag, 1997.

115

	00000001
	00000001_Redacted
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115

