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Abstract

In the first part, we study pattern avoidance and permutation statistics. For a set of
patterns n and a permutation statistic st, let Ft (1; q) be the polynomial that counts
st on the permutations avoiding all patterns in 171. Suppose 171 contains the pattern
312. For a class of permutation statistics (including inversion and descent statistics),
we give a formula that expresses Fjt(H; q) in terms of these st-polynomials for some
subblocks of the patterns in 11. Using this recursive formula, we construct examples
of nontrivial st-Wilf equivalences. In particular, this disproves a conjecture by Dokos,
Dwyer, Johnson, Sagan, and Selsor that all inv-Wilf equivalences are trivial.

The second part is motivated by the problem of giving a bijective proof of the fact
that the birational RSK correspondence satisfies the octahedron recurrence. We de-
fine interlacing networks to be certain planar directed networks with a rigid structure
of sources and sinks. We describe an involution that swaps paths in these networks
and leads to a three-term relations among path weights, which immediately implies
the octahedron recurrences. Furthermore, this involution gives some interesting iden-
tities of Schur functions generalizing identities by Fulmek-Kleber. Then we study the
balanced swap graphs, which encode a class of Schur function identities obtained this
way.

Thesis Supervisor: Alexander Postnikov
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Notation

In this thesis, we will use the following list of basic notations.

" C denotes the set of complex numbers.

" R denotes the set of real numbers.

* Z denotes the set of integers.

" N denotes the set of nonnegative integers {0, 1, 2, ... }.

* P denotes the set of positive integers {1, 2, 3, ...

" [n] denotes the set {1, 2, ... , n}.

* [a, b] denoted the set {a, a + 1, ... , b}.

* (') denotes the set of k element subsets of X.

* 2x denotes the power set of X.

S denotes the complement of the set S with respect to its superset X.

* [x']f(x) denotes the coefficient of the x' term of f(x).

11
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Chapter 1

Permutation patterns and statistics

This chapter is based on [35].

1.1 Introduction

Let E5, be the set of permutations of [n] := {1, 2, ..., n} and let 5 = Un>O G2, where
G0 contains only one element c - the empty permutation. For 7r E e, and o E 6
we say that the permutation o- contains 7r if there is a subsequence il < ... < i,
such that (o-(ii), ..., u(i,)) is order isomorphic to r, i.e. J-(ik) < o-(ii) if and only if
7r(k) < 7r(l) for all k, l E [p]. In particular, every permutation contains c, and every
permutation except 6 contains 1 E 61. For consistency, we will use the letter o to
represent a permutation and 7r to represent a pattern. We say that o avoids 7r (or - is
7r-avoiding) if a does not contain 7r. For example, the permutation 46127538 contains
3142 (see Figure 1-1) while the permutation 46123578 avoids 3142. We denote by
&,(7r), where 7r E 6, the set of permutations o- E E5, avoiding 7. More generally we
denote by Gn(Y), where 1 C E, the set of permutations avoiding each pattern 7r E 1
simultaneously, i.e. e,(H) = frEn (1(7r). Two sets of patterns H and 17' are called
Wilf equivalent, written H 1 ', if GE,(H)J = G6(f')j for all integers n > 0.

Now we define q-analogues of pattern avoidance using permutation statistics. A
permutation statistic (or sometimes just statistic) is a function st : -* N, where
N is the set of nonnegative integers. Given a permutation statistic st, we define the
st-polynomial of 11-avoiding permutations to be

F t (H) = F t (H; q) := qst(a).
OEE5,(r)

We may drop the q if it is clear from the context. The set of patterns TI and ' are

said to be st- Wilf equivalent, written H s W', if Fnt(11; q) = F t(11'; q) for all n > 0.
The study of pattern avoidance dates back to the beginning of the twentieth cen-

tury. In 1915, MacMahon [25] proved that the number of 123-avoiding permutations
in &n is the nth Catalan number C, = 1 (2). This marks the first study of pattern
avoidance. Decades later, Knuth [22] proved that the number of 132-avoiding permu-

13



Figure 1-1: The permutation matrix of 46127538 (left) with an occurrence of 3142

colored (right)

tations in 5, is also C,. The systematical study of pattern avoidance eventually was

begun in 1985 by Simion and Schmidt [30].

The study of q-analogues of pattern avoidance using permutation statistics and the

st-Wilf equivalences began in 2002, initiated by Robertson, Saracino, and Zeilberger

[28], with emphasis on the number of fixed points. Elizalde subsequently refined

results of Robertson et al. by considering the excedance statistic [8] and later extended

the study to cases of multiple patterns [9]. A bijective proof was later given by Elizalde

and Pak [11]. Dokos et al. [4] studied pattern avoidance on the inversion and major

statistics, as remarked by Savage and Sagan in their study of Mahonian pairs [29].

In [4], Dokos et al. conjectured that there are only essentially trivial inv-Wilf

equivalences, obtained by rotations and reflections of permutation matrices. Let us

describe these more precisely. The notations used below are mostly taken from [4].

Given a permutation a E 6,, we represent it geometrically using the squares

(1, o(1)), (2, o(2)), ... , (n, o(r(n)) of the n-by-n grid, which is coordinatized according

to the xy-plane. This will be referred as the permutation matrix of 0 (despite not

using matrix coordinates). The diagram to the left in Figure 1 is the permutation

matrix of 46127538. In the diagram to the right, the red squares correspond to the

subsequence 4173, which is an occurrence of the pattern 3142.

By representing each or E 6 as a permutation matrix, we have an action of the

dihedral group of square D4 on 6 by the corresponding action on the permutation

matrices. We denote the elements of D4 by

D4= {Ro, Rgo, Riso, R 27 0, r_ 1 , ro, r1 , roo},

where RO is the counterclockwise rotation by 0 degrees and rm is the reflection in a

line of slope m. We will sometimes write Il for r- 1(I). Note that Ro, R180 , r._ 1, and

r1 each preserves the inversion statistic while the others reverse it, i.e.

inv(f (a)) = inv(u) if f G {Ro, R180, r- 1, ri},

--) _ inv(or) if f E {Ro, R270, ro, rco}.

14



Figure 1-2: The permutation 213[123,1,21]

It follows that H and f(H) are inv-Wilf equivalent for all H E E and f E {RO, R18 0, r_ 1 , ri}
We call these equivalences trivial. With these notations, the conjecture by Dokos et
al. can be stated as follows.

Conjecture 1.1.1 ([4], Conjecture 2.4). 1-1 and H' are inv-Wilf equivalent iff H =

f(H') for some f E {Ro, R180i, r- 1 , ri1}.

Given permutations 7r = ala2...ak E E and o-, ... , 3 E 6, the inflation 7r[O-, ..., o]
of 7r by the o- is the permutation whose permutation matrix is obtained by putting the
permutation matrices of oi in the relative order of 7r; for instance, 213[123,1,21]=234165,
as illustrated in Figure 2.

For convenience, we write
7r, := 21[7r, 11.

In other words, 7r* is the permutation whose permutation matrix is obtained by adding
a box to the lower right corner of the permutation matrix of 7r.

The next proposition is one of the main results of this paper, which disproves the
conjecture above. This is a special case of the corollary of Theorem 1.2.4 in the next
section.

Proposition 1.1.2. Let t, be the permutation 12...r E 6,. Let 7ri, ..., 7rr, 7, .,7r.

be permutations such that {312,7ri} = {312, 7r'} for all i. Set 7r = tr[7ri., ... 7r.
and wr' = t[ri,, ... ,wr]. Then {312, 7r} and {312, 7r'} are inv- Wilf equivalent, i.e.
F."v(312,r) = Fnv(312,1r') for all n.

In particular, if we set each 7r' to be either 7ri or 7r , then the conditions {312, 7ri} n
{312, 7r'} are satisfied. By this construction {312, ir'} is generally not of the form
f({312,r}) for any f E {RoR 180 ,r- 1,r1 }. The pair H = {312,32415} and H' =
{312, 24315} is a minimal example of nontrivial inv-Wilf equivalences constructed
this way. To clarify this, we note that 32415 = 12[213*,) c] and 24315 = 12[132*,) c]
and that 213' = 132.

1.2 Avoiding two patterns

In this section, we study the st-polynomials in the case when H consists of 312 and
another permutation 7r. For this set of patterns H, Mansour and Vainshtein [26]
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gave a recursive formula for G64(LI) . Here, we give a recursive formula for the st-
polynomials Ft (LI), which generalizes the result of Mansour and Vainshtein. Then
we present its corollary, which gives a construction of nontrivial st-Wilf equivalences.
We note that Proposition 1.2.1 and Lemma 1.2.2 appear in [26] as small observations.

Suppose a E 6+1(312) with a-(k + 1) = 1. Then, for every pair of indices (i, j)
with i < k + 1 < j, we must have o-(i) < o-(j); otherwise o-(i)-(k + 1)u(j) is an
occurrence of the pattern 312 in -. So o- can be written as o- = 213[0i, 1, -2] with
9-1 E 6 k and a 2 E 6 n-k. For the rest of the paper, we will always consider o- in this
inflation form.

We also assume that the permutation statistic st : 6n -+ N satisfies

st(u) = f(k, n - k) + st(-1) + st(- 2 ) (t)

for some function f : N 2 -+ N which does not depend on a.
such statistics are the inversion number, the descent number,
occurrences of the consecutive pattern 213:

213(o) = #{i E [n - 2] : o-(i + 1) < -(i) < a(i + 2)}.

For these statistics, we have

inv(-) = k + inv(o-1) + inv(U 2 ),
des(-) = 1 - 6 0,k + des(o-1 ) + des(u-2 ),

213(0-) = (1 - So,k)(1 - Jk,n) + 213(u1) + 213(' 2 ),

where J is the Kronecker delta function.
It will be more beneficial to consider the permutation patterns in

composition form as in the following proposition.

Proposition 1.2.1. Every 312-avoiding permutation 7r E C5(312)
uniquely as

IT = t[7ri, ... , ?r

Some examples of

and the number of

their block de-

can be written

where r > 0 and7ri E 6(312).

Proof. The uniqueness part is trivial. The proof of existence of 7r,, ..., 7r, is by in-
duction on n. If n = 0, there is nothing to prove. Suppose the result holds for n.
Suppose that wr(k + 1) = 1. Then 7 = 213[7r,, 1, 7T'] = 12[7ri,, r'] where 7r1 E 6 k(312)
and gr' E ,_-k(31 2 ). Applying the inductive hypothesis on r', we are done. D

Suppose that 7r E 6n(312) has the block decomposition 7r = tr[7ri*, ... , ir*]. For
1 < i < r, we define 7r(i) and W(i) to be

M(i) =
(1ti [7r , .. , ri*]

if i = 1,
otherwise,

16



Figure 1-3: The poset L5

and
W(i) = rt,_i[7ri,, ... ,I 7rr*].

Let H be a set of patterns containing 312. If 7r E H \ {312} contains the pattern
312, then every permutation avoiding 312 will automatically avoid 7r, which means
Fst (H) = F.t (H \ {7r}). So we may assume that each pattern besides 312 in H
avoids 312. The following lemma gives a recursive condition for a permutation a =
213[a1 , 1, -2] E 6(312) to avoid 7r, in terms of -1, -2, and the blocks 7ri, of 7r.

Lemma 1.2.2. Let a = 213[a1, ,o2, 7r = t[r, ... ,r*] E 6(312). Then - avoids 7r
if and only if the condition

(Ci) : -1 avoids 7r(i) and 0-2 avoids T(i).

holds for some i E [r].

Proof. First, suppose that u contains 7r. Let j be the largest number for which -1
contains 7r(j). Then 0-2 must contain T(j + 1). So or contains 7r(i) for all i < j, and
-2 contains T(i) for all i > j. Thus none of the Ci holds.

On the other hand, suppose that there is a permutation o E 6(312) that avoids
7r but does not satisfy any C. This means, for every i, either -1 contains 7(i) or Oa 2
contains T(i). Let j be the smallest number such that ol does not contain 7t(j). Note
that j exists and j > 1 since j = 1 implies -2 contains T(1) = 7r, a contradiction.
Since or does not contain w(i), -2 must contain T(j) (by Cs). But since or contains
Z(j - 1) by minimality of j, we have found a copy of 7r in a with 7r(j - 1) from a,
and T(j) from -2 , a contradiction. (For j = 2, the number 1 in - together with 7i in
a1 give 7ril.)

Before presenting the main result, we state a technical lemma regarding the
M6bius function of certain posets. See, for example, Chapter 3 of [32] for defini-
tions and terminology about posets and the general treatment of the subject.

Let r be the chain of r elements 0 < 1 < ... < r - 1. Let L, be the poset obtained
by taking the elements of r x r of rank 0 to r - 1, i.e. the elements of L, are the
lattice points (a, b) where a, b > 0 and a + b < r. For instance, L5 is the poset shown
in Figure 3. We denote its unique minimal element (0, 0) by 0. Let Lr be the poset
L, with the unique maximum element 1 adjoined.

For a poset P, we denote the M6bius function of P by tUp. Note that for every
element a E Lr the up-set U(a) := {x E Lr : x > a} of a is isomorphic to Lr(a)

17



where l(a) is the rank of a in L,. Therefore, the problem of computing pL,(X, 1)
for every r is equivalent to computing pi,(0, i) for every r, which is given by the
following lemma. The proof is omitted since it is by a straightforward calculation.

Lemma 1.2.3. We have

(- 1))
0,

if r = 1, 2,
otherwise.

We now present the main theorem of this section.

Theorem 1.2.4. Let H = {312, w}, where i = tr[1i, ... ,irrl Suppose
st: 6 - N satisfies the condition (f). Then F|s(rl; q) satisfies

Fnt8 1 (1; q) =

that the statistic

k=O

q f(k'"--k) Fk8(312,1r_(i)) - Fn'tk (3 12, T(i))

r -1

- ZFf(312, 1r(i)) - Fj~a(312,

for all n > 0, where Fot(U; q) = 0 if r = E, and 1 otherwise.

Proof. For k E {0,1, ... , n} and E C E, we write +() tok
permutations o- C Gn+ 1 (E) such that u(k + 1) = 1. In particular,

denote the set of

n0+ 1(312) = {- = 213[- 1 , 1, 02] : 0-1 E Gk(312) and U2 E 3n._k(312)}.

Fix k, and let Ai(i E [r]) be the set of permutations in 6+1(312) satisfying the
condition Ci. So Gk+ 1 (H) = A 1 U A 2 U ... U Ar =: A by Lemma 1.2.2. Observe that
if i1 < ... < ik then

Ail nAi 2 n ... nAik = Ai n Aik =: Ai,,A

since satisfying the conditions Ci1, ... , Ci, is equivalent to satisfying the conditions Cil
and Ci .

Let P be the intersection poset of A1,..., Ar, where the order is given by A < B
if A C B. The elements of P are A, Ai (1 < i < r), and Aij (1 < i < j 5 r). We
see that P is isomorphic to the set Lr, so the M6bius function pp(T, A) for T E P is
given by

pp(T, A) = 1

if T = A or Ai,i+ 1 for some i,
if T = Ai for some i,
otherwise.

For T c P, we define g: P - C(x: x C A) by

g(T)=Ex.
xeT

18
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The M6bius inversion formula ([32], Section 3.7) implies that

g(A) = - E pp(T, A)g(T)
T<A

r r-1

= [g(A ) - Zg(A n Aj+ 1).
i=1 i=1

By mapping a 4 qst() for all u E A, g(A) is sent to F,k c) e + qs (a)
Hence,

r r-1

F~sl , k(11; q) qst(O.)
= E S q-=t (E) - E S

i=1 crEAi i=1 OEAinlA~l

r -
=f(k,n-k) [ 7 qSt(U1)+St(02) _

i=1 cEAi i=1 oEAifAi+1

where the second equality is obtained from the condition (t).

st(Ui)+st(0'2)

Note that a E Ai iff a, avoids ir(i) and U2 avoids T(i), and a E Ai fAi+ iff 1 avoids
7r(i) and O 2 avoids T(i + 1). Thus

qst(O)+st(U2) = Fks (312, z(i)) - F k(32, (i))
OEAj

OEAinAi+l

qSt(U1)+t(r2) = Ft (312, z(i)) ' Fnk (312, i(i + 1)).

Therefore

Fst+,k(11; q) = q (knk)

- Fst (312, L(i)) - Fnsk(2(+ 1)).

We get the stated result by summing the preceding equation from k = 0 to n. 0

Example 1.2.5. (q-analogues of odd Fibonacci numbers) It is well known that the
permutations in G,. avoiding 312 and 1432 are counted by the Fibonacci numbers
f2n-1, assuming fi = f2 = 1 (see [36], for example). Let an = f2n-1. It can be shown
that the an satisfy

n-1

an+ an +E2n k-1 ak.

k=O

Theorem 1.2.4 gives q-analogues of this relation. Here, we consider the inversion
statistic.

19
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Let 7r = 1432 = 12[e*, 21*1 and H = {312, r}. Since 7r(i) = e and F 1nv(312, c) = 0
for all n, Theorem 1.2.4 implies

n

Fn"+1(H) = qk n "v(H)Fi"V(312, 321)
k=O

n-1
= qnFi"v(1) + qk( + q"~k nv (n),

k=O

where the last equality is by [4], Proposition 4.2.

Corollary 1.2.6. Let st be a statistic satisfying (t). Let 7ri, ..., f, irr .1, r, be per-

mutations such that {312,7ri} = {312,w7} for all i. Set 7r = tri*,...,gr*] and
Tr = trl,, ... ,17 r.]. Then {312,}7r and {312,ir'} are also st-Wilf equivalent, i.e.
Fnst(312, ir) = Ft(312, 7r') for all n.

Proof. The proof is by induction on n. If n = 0, then the statement trivially holds.
Now suppose the statement holds up to n. Then for 0 < k < n and 1 < i < r, we
have Fkt(312,w7(i)) = Fks(312, '(i)) and Fsk(312, T(i)) = Ftk (312,F(i)). Hence
Fs+1(312, r) = F+1 (312, r') by comparing the terms on the right-hand side of (*). D

In particular, if we set each 7r' to be either 7i or 7rf, then the conditions {312, 7ri} 
{312, 7r'} are satisfied. By this construction H' is generally not of the form f(H) for
any f E {Ro, R18o r- 1, ri}. For example, the pair H = {312, 32415} and H' =

{312, 24315} is an example of smallest size of nontrivial inv-Wilf equivalences con-
structed this way.

Of course, this construction works for every statistic st satisfying (t) and that
st(-) = st(u') for all a - E5(312). Besides the inversion statistic, the descent
statistic for example also possesses this property. To justify this fact, we write
- = 213[1, 1, C7 2] E 6(312) where -1, o-2 E . Observe that a' = 132[a', or, 1]

and

des(ut) = des(ou) + des(or') + (1 - 60,k)

where k = lu-l = lO1. The proof then proceeds by induction on n = ul-. It is, how-
ever, not true in general that the matrix transposition preserves the descent number.
For instance, if a = 2413, then des(-) = 1 while des(ut) = 2.

1.3 Avoiding multiple patterns

In this section, we generalize the results from Section 2 to the case when H consists of
312 and other patterns. We again begin with a lemma regarding the M6bius function.

Lemma 1.3.1. Let L be the poset Lri x -- x Lr and L the poset LU{i}. Let p = pL
be the Mdbius function on L. Then p(0, 1) = 0 unless each ri G {1, 2}, in which case

p(6, i) = (-1)IsI+1, where S = {i : ri = 2}.
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Proof. Let a = (ai, ... , am) E L. Then p(6, a) = J~[ pi (6, ai), where pi is the M6bius
function on Lri. So

(, i) = -(p(6, a) = - pi(6, ai).
aEL i=1 a ELes

Note that if r > 3, the M6bius function pL,(6, a) vanishes unless a E {(0, 0), (1,0), (0, 1), (1, 1)}
in which cases the value of AL (6, a) is 1,-1,-1,1, respectively. So EaEL, PLr(61 a) = 0
unless r = 1, 2. For r = 1, 2, it can easily be checked that EaEL PLr(O, a) = 1 if
r = 1 and -1 if r = 2. So if ri > 3 for some i, then p(6, 11) = 0. If each ri E {1, 2},
then each index i for which ri = 2 contributes a -1 to the product on the right-hand
side of the previous equation. Thus p(6, 1) = (-1)Isl+1. E-

For convenience, we introduce the following notations. Let H = {312, 7r(', ..., r(M)

where 7r(j) = t,[(r), ... , (7r$),]. For I = (i1 , ..., m), we define

11 = {312, r(), ., 7r(m)(im)}

and

El = {312, r( 1)(ii), ... ,7r(m)(im)

A generalization of Theorem 1.2.4 can be stated as the following.

Theorem 1.3.2. Suppose that the statistic st : -+ N satisfies the condition (I).
Let 11 = {312, r51), ... ,7(m)} where 7r(') = t,,[(7r1),,..., (7r(),]. Then Fot(H) = 0 if
7ri = E for some i and 1 otherwise, and for n > 1 the st-polynomial Fn't (rH; q) satisfies

Fs 1 (11; q) = (qIk) [Z -1)s Z FkV(ll1 ) . Fk(FI+6 ],

k=O LSC[m] =(ii.im):
1<ij r -6,

where 6 =(6,...,6m) with 6j = 1 if j e S and 0 if j 0 S.

Proof. Recall that by Lemma 1.2.2 a permutation o- = 213[1, 1, o-2 E 6(312) avoids
7r(j) iff o- satisfies the condition

(Cl): a avoids 7r(j).(i) and O-2 avoids ir(i)(i)
for some i E [rj]. So or E ((312) belongs to 6(11) iff, for every j, there is an i E [rj]
for which o- satisfies (Cij). Fix k and let n0+1(312) be as in the proof of Theorem
1.2.4. Let Aj be the set of 7r(j)-avoiding permutations in Ge+1(312) satisfying the
condition (Cl). For I = (ii, ... , im) E [r11 x [r2] x ... x [rm], we define the set A, to be

A..=.A..... ...m := A' nA 2n AT.

So 6+1() is the union

n+1 (1)= U Ai ,im
i1, ... ,im

21



where the union is taken over all m-tuples I = (i1 , ..., im) in [ri] x [r 2] x ... x [r,].
Let P be the intersection poset of Al,..., A3., and let P be the poset P \ {Ai},
where Ai = Ai U ... U Aj, is the unique maximum element of Pj. Recall that P is
isomorphic to Lr.. Let P be the intersection poset of the A1 . The elements of P are
the unique maximal element A = 6+ 1 (HI) and

T =T' nT2n -. n T,

where each T is an element of P. Thus P is isomorphic to Lri x ... x Lr U {1}.
For S C [n], we say that an element T E P has type S if T = A3 for some i when
j S and T' = Ai n Aj+1 for some i when j E S. Using Lemma 1.3.1, we know that
the value of pp(T, A) where T = T' n T2 n ... n Trn # A is

Mp(TIA) - )s1
0,)

if T has type S,
otherwise.

For T E P, we define g: P -+ C(x: x E A) by g(T) = EZT X, so that

g(A) = (-1)IS
SC[n]

by the M6bius inversion formula.
Now, by the definition of type S, we have

g(T)= g nA
ill,...,imr : jgS

1<ij <,j -Si

n n(A n Aj +1)
jES

where 6j = 1 if j E S and 0 if j S. Recall that a E A? iff a1 avoids

0'2 avoids 7(.W)(ij), and a E A. nA A+1 iff o 1 avoids 7rWj)(ij) and a 2 avoids

Therefore, by mapping o- , qst(or), we have

i)(ij) and

70j)(ij +1).

g 0 Aj, n
(js

F k(312, 7r(1)(i1 + 61), ... , (m) (im + 6m)).

Therefore,

qf (k~n-k) [ (1)ISI

1<i rr -3,

and we are done.
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Example 1.3.3. Let 11 = {312,7r-),7r(2 )} where 7rl) = 2314 = 12[12*,cE] and
7r2) = 2143 = 12[1*, 1*]. We want to compute an = Ffv(H) by using Theorem
1.3.2. There are four possibilities of S C { 1, 2}, and for each possibility the following
table shows the appearing terms, where J is again the Kronecker delta function.

S = 0: Fknv(312, 12, 1) - F"vjk(f) = 6 0,k an-k

Fnv(312, 2314, 1) - Fn"k(3 1 2, 1, 2143) = SO,k -O,n-k
Finv(312, 12, 2143) - Fn~vk( 3 12, 2314, 21) = 1
Fi"v(FJ) - F"vk (312, 1, 21) = JO,n-_ -a

S = {1}: F "v(312, 12, 1) - Fn"k_( 3 1 2 , 1, 2143) = JO,k ' 6O,n-k
Fi"v(312, 12, 2143) - Fnnvk( 3 12, 1, 21) = On_

S = {2}: F nv(312, 12, 1) - F_vk(3 12 , 2314, 21) = 6o,k
Finv(312, 2314, 1) - Finvk( 3 1 2 , 1, 21) = JO,k -O,n-k

S = {1, 2}: Fknv(312, 21, 1) - F"vjk(312, 1, 21) = 60,k - O,n-k

Hence the a, satisfy

n
an+1 qk [6O,kan-k + O,n-k - ak + 1 - JO,k - 6O,n-k]

q=O

1 - q+
= 1+ qn )a, + (1 + qn)1- q

= (1 + q")an + q .qfl
1- q

In particular, by setting q = 1 we get an+1 = 2an + n - 1 with ao = a, = 1. Thus

G6 (312, 2314, 2143)1 = 2" - n.

The following construction of st-Wilf equivalences can be extracted from Theorem
1.3.2. A proof of this corollary uses a similar argument to that of Corollary 1.2.6 and
is omitted here.

Corollary 1.3.4. Let st be a statistic satisfying (t).
i < rm, be permutations such that

Let 7rPr$ ,1( j < ml <

{312, 7r' , m ..,r" 1 312, Iril .. 7r" }

for all m-tuples I = (ii, ... ,im) E [ri] x ... x [rm]. Set 7r = tr[7 , ...,ir$] and
7r'() = tr [7r',0, ... , 7r/?]. Then 11 = {312, 7r('), ... ,(")} and I' = {312, 7r')), . T(m}

are st- Wilf equivalent.
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1.4 Consecutive patterns

In this section we redirect our attention to study the number of occurrences of some
consecutive patterns in 312-avoiding permutations. Benabei et al. [2] show that the
distributions of the consecutive patterns 132 and 231 in 312-avoiding permutations
are identical. Here we give a generalization to this result, where we consider certain
inflations of 132 and 231.

For permutations T and u we define (r)- to be the number of occurrences of the
consecutive pattern r in o-. More precisely, if r E Gk and a- E5 , then

(7)o- := #{i E [n - k + 1] : (o(i), ... , a (i + k - 1)) is order isomorphic to T}.

We define [r)o- to be 1 if (-(1), ... , -(k)) is order isomorphic to r and 0 otherwise.
Similarly, we define (T]u to be 1 if (u(n - k + 1), ... , u(n)) is order isomorphic to T
and 0 otherwise. In other words, the "[" and "]" indicate that the occurrence of the
consecutive pattern must be the leftmost and the rightmost position, respectively.
Finally, we define [T]- = 6,,. For example, let T = 213 and o = 562831749. We have
(r)- = 3 since the consecutive subsequences 628, 317, 749 are order isomorphic to r.
Furthermore, we have (T]O- = 1 since 749 is order isomorphic to T and [T)o = 0 since
572 is not order isomorphic to r.

For a permutation T, we set

F (q) = Z q(r)"

aE6,(312)

and
FT (q, x) =3 Fn(q)x" = a a nxq,

n>O n,r>O

where a7,r is the number of permutations o E C5(312) containing r occurrences of
the consecutive patterns r.

The following theorem is the main result of this section.

Theorem 1.4.1. For permutations 7r E 6 and 1 G N, define the permutations a r)
and i(7r) by

al (7r) = 132[tj, 7r, 1], 01 (7r) = 231[1, 7r, 61].

Then for any two permutations r, 7r' G 6p of the same size, we have

Fa (7r) = Ft(7r') = F(7r) = F '').

Proof. For 7r E Sn and 0 < k < 1, we define the functions f(k, 1, 7r), g(k, 1, 7r) : 6 -+ N
by

f (k, 1, -x)(o-) = (ae (r))C- + [al- 1 (7))o + ... + [al-k (wr))u-

and

g (k, 1, -r)(o-) = (fl(7r))o- + (1 -31(7r)]- + ... + (01-k (7r)Io.
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We will show that
Ff(k,,7) = F tk'1'")

and are independent of 7r. In particular for k = 0 we have F - F(0 P(7r), which
proves the theorem.

Lemma 1.4.2. Let o = 213[91, 1, 0 2 ] E En+i with a, E 6r, Then

(az(7r)) -=

and

(#1(7r))O- =

((a(7r))o9 +

(aj(7r))oi +

({ (7r)) 91 +
(0 (7r))oi +

(al(7r))o2 + [al_ 1(7r))u-2

(al(7r))U2 + (7r]o-1

(,31(7r))o-2 + (,3-1(w)1oi
(/1(7r))U2 + [7r)C-2

Proof. We will only prove the assertion for a, (7r). The statement about 01(7r) can be
proved similarly. First suppose I > 0. The terms (a(7r))oa and (al(7r))u-2 are from
the case when the pattern a,(7r) appears inside a, or -2 . The other case can a,(7)
occur in o is when 1 = a-(r + 1) involves. This can only happen when a,(7r) starts
at the position r + 1. That is precisely when (- 2 (1), ..., 92 (k)) is order isomorphic to
ai_1(7r), where k is the size of a,- 1(7r), hence the term [ao- 1(7r))u 2. Suppose 1 = 0.
Other than the occurrences of al(7r) in either a, or U2 , u(r + 1) must be the end of
the pattern. This means (a,(r - k + 1), ... , ui(r)) is order isomorphic to 7r, hence the
term (7r] a, 0

We also need to compute [a,(7r))o- in terms of or,
to the lemma above.

[I,(7r)) a,

[ao(7r))o01 + [7r]G-1
[(7r))[ (0))2

0

With these tools, we can compute f (k, 1, 7r)(o-)

four cases to be considered.

and -2 . It can be proved similarly

if

if

if

if

r > 0,l > 0,
r > 0,l = 0,
r = 0,l > 0,
r = 0,l = 0.

in terms of a, and U 2 . There are

(i) r > 0,k < l:

k

f (k, l, 7r)(a) = ((ai(7r))o + (j(7r))o 2 + [al_1(7r))o2  + [aj-(7r))uj

= f(k, 1, 7r)(o-1) + f (1, 1, 7r)(o-2 ).
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(ii)r > 0, k = 1:

f (k, l, )() = (aj(7r))c-1 + (a (7))-2 + [a1((7r))O2 )

k

+ Z[aj-(7))u1 + [7Tju1l

i=1

= f (k, 1, 7r) (o 1 ) + f (1, l, 7r) (- 2 ) + [7r]cU1.

(iii) r = 0, k < 1:

( (OZI(7))-2 + [ael_1(7r) )-2 )

k

+ Z[aCei_1(7))U2

i=1

= f (k + 1, l,7Tr)(C72 ).

(iv) r = 0, k = l:

f (k, l, 7r)(-) = ( l(7r))0-2 +
1-1

+ Zo[aj-i_1(7r))U 2
i=1

= f (1, 1, 7r)(o-2).-

Recall that every o- E G+1(312) can be written as 213[o-1, 1, O-2] with a- E 6r and
U 2 C en-r for some r. Therefore

qf(kl,7r)(a) =

r=O -1G6r,a2GEn-r

q f (k,,r)(a) + I: E

O2E6n r=1 OaiEr,a2E6n-r

So if k < I we have

F ' '= qf( k+1,1,-r)(0-2 ) +
02E6, r=1 aiE6 rO2EEn-r

= F (k+1,l,7r) + F - F
r=1

If k = 1 we have

F '1) = qf(I,7r)(a2) +
02 E En r=1 a1EEr,a2EE-r

= F (1 '7) + 5 F/(")+[1 ] - F (r.
r= 1
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Note that [Lr]w = 1 only when a = 7r and 0 otherwise, and in the case a = 7r,

f (l, l, r)(a) = 0. So

{F '''' +1- (q - 1)
n

if n = p,

otherwise.

Thus in this case F 1,'1") satisfies

Ff "'7) =F F1,','r) + Z (F/(1'"') +
r=1

(q - 1)6r,p) - Fi,1,r)

= F 1'1'') + (q - 1)Ff1,7')

r=1

To summarize, we have

F / k(~r _ f F (k+ 1,,7r) + E n" 1 f (k,'1'') . f (1,1'7)

n+1 /G' ') +(q - 1)Ff(1'') +r"1F U'')

if k <

if k =
l
l.

(1.1)

Next we perform a similar computation for g(k, 1, ir). Here, instead, we let r = 1921-

First we start with (0i(7r)]a:

(0(ar)]o =

(#1 (7r)] 2

(01(7r)]k-2 + [7r]o2

(01 (7r)] 0
o

if r > 0,l > 0,
if r > 0,l = 0,

if r = 0, l > 0,
if r = 0,l = 0.

So g(k, l,7r)(a) can be expressed as

g(1, 1, 7r)(or) + g(k, 1, 7r)(O 2 )

g(1, l,7r)(a) + g(k, l, 7r)( 2 ) + [7r]o2

g(k + 1, l, 7r)(ui)

g (1, 1, 7r) (c,1)

if r > 0,k < l,
if r > 0,k = 1,
if r = 0, k < 1,
if r = 0,k = 1.

Therefore the polynomials Fn(klr) satisfy

F ) - F (k+ 1,,r) + E n F 9(l''7r) F (kl,r)

n+1 Fg''"7) + (q - + E"_1 ;
if k < l
if k = 1.

(1.2)

Comparing the equations 1.1 and 1.2, we see that both Ff(k,','r) and Fg(k,7r) satisfy the
same recurrence relations. They also satisfy the same initial conditions: F{('0'7) _

F"''''T) = Cn for all n < p since f(k, 1, 7r)(g-) = g(k, 1, 7r)(u) = 0. Therefore Ff(kI,7r) -

Fg(kl,) for all 0 < k < l and 7r E 6, and is independent of 7r.
1.4.1 is proved.

Thus the Theorem
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For the rest of this Section, we show how to calculate F", where T is either
132[1, ir, 1] or 132[12, 7r, 1].

Proposition 1.4.3. Let 7F E 6, be any permutation and 7 = 132[1, 7, 1]. Then

FT (q, x) = 2 1 + (q - 1)xP - 4x ]

Proof. Let F, = Ff0' 1 '7)(q) = and Gn = Ff '1 '7)(q). Then we have

Fn+1 = Gn + Fr - Gnr
r=1

n

= Fr -Gn_,
r=O

n

Gn+1 = (q - 1)Gnp+ ZGr, Gn-r.
r=O

From the second equation, we get

0 = xG(x) 2 + ((q - 1)xP - 1) G(x) + 1.

Since, if q = 1, G(x) = Zn>O Cnx" = fracl2x(1 - v1 - 4x),

1 - (q - I)xP - - 1)x 2 P - 2(q - 1)xP - 4x + 1

and by the first equation, F(x) has the closed form

1
F(x)

1-xG(x)
=2 [1 + (q - 1)xP+ (q-1)2 2 -2(q- 1)XP - 43; +

Proposition 1.4.4. Let 7r E E5 , be any permutation and T = 132[12,7r, 1].
satisfies

(q - 1)xP+1F3 + (x - (q - 1)x+) F2 - F + 1 = 0.

Proof. Set Fnk) = F,(k,2,x) Then we have

F+1 = F) - F(1
r=O

n

r=1
n

n-r

(2 F( 2 ) F (2 2 ,7r) +[7] - (1F -Frn+$1 =n + Fn,,3i|-r
r=1

From these relations, respectively, we get

F-) = (1 -
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G(x) = I

I-1

Then FT

xF(1)) -



F() - 1 = xF(2 ) - xF() + x(F())2'

F() - 1 = xF ) + xF() - F() - xF() + (q - 1)xPF(1).

Manipulating the second and third equations, we get

xF2) = F() - 1 + xF() - x(F())2

(1 - x - -F)F() = 1 - xF1) + (q - 1)xPF1)..

So we obtain

x (1 - xF(1) + (q - 1)xPF(l)) = (1 - x - xF(1 )) ((1 + x)F() - x(F 1)2

or, equivalently,

x2 (F()) - 2x(F(')) 2 + (1 + x - (q - 1)xP+1) F(1) - 1 = 0.

Substituting xF(1 ) = 1 - F-1, where F = F(O), we get

(1- -F2 ( - + (1 + x - (q - l)xP+l) (I - -1 = 0,

or
(q - 1)xP+1F 3 + (x - (q - 1)xp+') F2 - F +1 = 0.

0
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Chapter 2

Interlacing networks

The chapter is based on joint works with Miriam Farber and Sam Hopkins [13] [14].

2.1 Introduction

Let A = (A 1 , A2 , ... , A,) be a partition of n. A Young diagram of shape A is an array of
boxes with A2 boxes in the ith row, adjusted to the top left. A standard Young tableaux
(SYT) of shape A is a filling of the Young diagram by the numbers 1 to n without
repetition, so that the numbers in each row and column are strictly increasing. A
semistandard Young tableau (or SSYT) is a filling of the Young diagram by positive
integers (repetitions allowed) so that the numbers in each row are weakly increasing
and the numbers in each columns are strictly increasing. An n-semistandard Young
tableau is a SSYT with content from [n].

The Robinson-Schensted correspondence (RS) is a bijective map which sends a
permutation -in the symmetric group Gr, to a pair (P, Q) of standard Young tableau
of the same shape A I- n, defined via a row-insertion algorithm. The Robinson-
Schensted-Knuth correspondence (RSK) is a generalization of the RS correspondence
which sends an arbitrary n x n N-matrix A to a pair (P, Q) of n-semistandard Young
tableaux of the same shape A. For the precise definition of RSK and its properties see
[33, Chapter 7.11]. Often, we regard RSK as a map which sends an n x n N-matrix A
to an N-matrix of the same size for which the rows and columns are weakly increasing,
as described below.

For an n-SSTY T of shape A, let gij with 1 < i < j < n be the number of entries
in row j - i + 1 of T which are < n + 1 - i. Then the array G = (gij)1<igisn is a

1 3 4 7 1 1 2 4
2 6 8 2 3 3
5 4

Figure 2-1: From left to right: Young diagram of A = (4,3, 1), a standard Young
tableau of shape A, and a semistandard Young diagram of shape A.
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1 0 2 1
0 3 0 1 |1 1 1 11212131 1 1 1 1 21414_
2 1 0 0 2 2 2 4 2 2 2 3
LI 1 1 3 3 4 3 3 4

0 2 3 4 7 4 3 0 7 4 3 0
23457 32 54 2

Z 633 53
4 6 7 7 4 4

Figure 2-2: An example of RSK.

Gelfand-Tsetlin pattern, i.e., G satisfies gij gi+1,j+1 gij,+1 for all 1 < i < j <
n - 1. We denote this resulting array by GT(T). Given an n x n N-matrix A, let
G = (gij) = GT(P) and H = (hij) = GT(Q), where (P, Q). Since P and Q have the
same shape, we see that 91j h1 for all j. We obtain the matrix A by gluing along
the first row of G and H and reflecting along in the anti-diagonal. More precisely,
the matrix A = (aij) is given by

9i-j 1,n 1-j if i > jhj-i+l,n+l-i otherwise.

Since G and H are Gelfand-Tsetlin patterns, the matrix A has weakly increasing rows
and columns. We may also regard the composition A 4 (P, Q) - A as RSK.

The RSK enjoys the symmetry: if A H-4 A, then At H-> A'. This, however, is not
transparent in the original definition of RSK via row-insertions. Another equivalent
definition of RSK via octahedron recurrences makes this symmetry transparent and
allows the entries of A to be any real numbers. Before we explain this construction,
we introduce the Greene-Kleitman invariant, which will play an important role in
verification of this definition of RSK.

Let A be an n x n N-matrix. Suppose the RSK gives A '-> (P, Q) H-> A where
A = (Al, ... A,) is the shape of a P (and Q). Then A1 + ... + Ak is equal to the
maximum sum of the weights of k non-crossing lattice paths from (1, 1), ..., (1, k) to
(n, n - k + 1),..., (n, n). Here the weight of a path is the sum of aij for all points
(i, j) along that path. If A is a permutation matrix corresponding to a permutation
7r (i.e., the Robinson-Schensted case), then this phenomenon says that A1 + . .. + Ak

is the maximum size of k disjoint increasing subsequences of 7T. This is known as
Greene's theorem [18]. The generalization to RSK of this theorem is widely accepted
as "well-known." The best reference of this theorem is probably [23].

Passing this to (P, Q) -> A, we see that A1 + ... + Ak -- E~ anr,nr,. Indeed
the maximum sum of the weights of k non-crossing lattice paths from (1, 1), ... , (1, k)

32



to (i, n - k + 1),..., (i, n) (resp. (n, j - k + 1), ... , (n, j)) to is equal to Z=_ ai-r,n-r

(resp. E_- an_,,r-). Note that this property uniquely determines A from A.
Now we describe the RSK via octahedron recurrences (see [5] and [6]). Given

an n x n N-matrix A, we let rect(i,j) := E <i,<s<j aij. We construct a three-

dimensional array f = ( jk) with indices i, j, k E [0, n] such that k < min(i, j) by
the following recurrence relations, which we refer as octahedron recurrence:

Yi,j,k + Yi-1,j-1,k-1 = max ( i-1,j,k + i,j-1,k-1, i-1,j,k-1 + i,j-1,k) (2.1)

for all i, j, k > 1 with initial conditions:

Yikk = Ykjk = 0 and Yijo = -rect(ij).

Finally, let

(n,n-i+jn-i - Yn,n-i+j,n-i+i if > j

Ljn-j+i,n,n-j - n-j+i,n,n-j+1 if i < J.

Example 2.1.1. In this example, we take the same matrix A from Figure 2-2. We
construct the array Y = (gjk) as follows. The first (k = 0) level (ijo)ije[o,n is given
by Yioo = Yojo = 0 for i, j E [0, n] and, for i, j E [n], Yijo is the negative of the sum of
the elements ars of A where r E [i] and s E [j]. Then for each k E [n] we build ( jk),
i, j E [k, n] successively by Yikk = Ykjk = 0 and for i, j E [k + 1, n] we compute ijk
from the octahedron recurrence. We obtain the following array Y. Here we present
the array Y = ( jk) by the index k as an (n + 1 - k) x (n + 1 - k) matrix for each
k = 0, 1, ..., n.

0 0 0 0 0
0 -1 -1 -3 -4 0 0 0 0
0 -1 -4 -6 -8 0 0 -2 -3 0 0 0
0 -3 -7 -9 -11 0 -2 -4 -6 0 -2 -2 0 0
0 -4 -9 -12 -14 0 -3 -5 -7 0 -2 -3 0 0 0

k=0 k=1 k=2 k=3 k=4

To obtain A = ('aj), we first form an intermediate matrix B = (bij)iJE[o,n1 by

putting together the last row and the last column of each k-level of Y. In this
example, we have

0 0 0 0 01
0 0 -2 -3 -4

B= 0 -2 -3 -6 -8
0 -3 -5 -7 -11
0 -4 -9 -12 -14J

Finally, the elements 'ij of A are obtained by taking aij = bi_ _1 - bij. In this
case, we see that the matrix A is indeed the same as the matrix A from the Figure
2-2.
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To see that, in general, the map A = (aij) " A = (a') is indeed equivalent to
RSK, we let Fijk to be the maximum sum of the weights of k non-crossing lattice
paths from (1, 1), ... , (1, k) to (i, j - k + 1), ... , (i, j). The following theorem is one of
the main results in this chapter.

Theorem 2.1.1. Let Y' = (Y jk) be the array defined by (Yi4jk) (Yijk - rect(i, j)).
Then Y' satisfy the octahedron recurrence 2.1.

Assuming this result, we see that the ('ij) satisfy

k-1

Sai-r,n-r = Yi,n,k - Yi,n,O =i,n,k
r=O

and
k-1

an-r,j-r = n,j,k - yn,j,o =n,j,k'

r=O

So this A = (aij) is the same as the result of RSK:A -* A.

The main motivation of this chapter is to give a combinatorial prove a birational
version of this theorem, where maximums and sums are replaced by sums and prod-
ucts, respectively (Theorem 2.2.22). In Section 2.2, we introduce the notion of an
interlacing network, a planar directed network with a rigid sources and sinks struc-
ture, and an n-bottlenecked network, which is a less restricted version of interlacing
networks. We construct an involution that swaps pairs of tuples of noncrossing paths
connecting sources and sinks. This involution on interlacing networks leads to three-
term relations, which imply the octahedron recurrences. In Section 2.3, we give exam-
ples of Schur function identities obtained from the involution on the n-bottlenecked
networks. Then we explain how these identities prove some special cases of a con-
jectured by Lam-Postnikov-Pylyavskyy. In Section 2.4, we define the balanced swap
graphs, which the graphs defined by the end-patterns and the changes under the
involution. These graphs encode a class of Schur function identities. In the case
m - n = 1, we classify the connected components of these graphs and characterize
the components which are acyclic.

2.2 Interlacing networks

2.2.1 Terminology

Let G = (V, E, w) be a graph with vertex set V, edge set E C V x V, and edge-weight
function w : E - R>O. Unless noted otherwise, we assume that all the graphs are
finite, directed, acyclic, and planar. A path in G is a sequence 7r = (vi)_O of distinct
elements of V with (vi_ 1, vi) E E for all i E [n]. We say that such a path 7 connects vo
and vn, and that vo is the start point of i and vn is its end point. We use Vert(ir)
to denote the set of vertices in r. The weight of 7r is wt(i) := H> w(vi_1, vi). A

34



subpath of 7r is a subsequence of consecutive vertices. Sometimes we view paths as
simple curves embedded in the plane in the obvious way. Two paths 7 and U are
noncrossing if Vert(7r) n Vert(-) = 0. Let H = (7ri... , 7r,) be a tuple of paths. We
say 1I is noncrossing if 7ri and 7rj are noncrossing for all 1 < i # j < n. Suppose
that X = (X 1 , ..., Xn) and Y = (yi, ... , yn) are two n-tuples of vertices in V of the same
length n. We say that an n-tuple (7i, ..., Ir.) of paths in G connects X and Y if 7ri

connects xi and y, for each i E [n]. We denote the set of all n-tuples of noncrossing
paths connecting X and Y by NCPathG(X, Y). We omit the subscript G when the
network is clear from context. We define the weight of the tuple 11 to be wt(l) :=

]" wt(7r). For a pair (H, E) of tuples of paths we define wt(H, E) := wt(l) -wt(E).

Remark 2.2.1. Given a vertex-weighted graph G = (V, E, w') where w' : V -* R>O,
we can convert w into an edge-weight w : E -+ R>o of G by defining

W (u, V) = V/w'1(u) -W '(V) V(u, v) E- E.

Let us define the vertex-weight wt'(P) of a path P in G to be product of the vertex-
weights w(v) of all vertices that P visits. If P is a path connecting vertices u and v,
then

wt'(P) = wt(P) U/w'(u) - W'(v).

So we can interchange between vertex-weighted graphs and edge-weighted graphs.

Let m > n > 1. A network is a triple (G, S, T), where

" G = (V, E, w) is a graph;

" S = (Si, ... , sm+n) E Vm+n is a tuple of source vertices;

" T = (ti, ... , tm+n) E Vm+" is a tuple of sink vertices,

such that G is embedded inside a planar disc with Si,..., sm+n, tm+n, ... , ti arranged
in clockwise order on the boundary of this disc. Note that both S and T are allowed
to have repeated vertices. Needless to say, such networks are considered up to home-
omorphism. We assume the edges of G intersect the boundary of the disc into which
G is embedded only at vertices. In this section and the next we will work with a fixed
network (G, S, T); we will refer to this network from now on as simply G with the
sources and sinks implicit. A pattern on G is just a pair (I, J) with I, J E ([m+nl)
where we think of si and t3 being colored red for all i E I and j E J, and the other
source and sink vertices being colored blue. We call I the source pattern of (I, J),
and J its sink pattern. We will use Pat(G) to denote the set of patterns on G.

Let I, J E ([m n]) where the elements of I are ii < ... < ik and the elements of
J are ji < - < A. Define the set of tuples of noncrossing paths of type (I, J) to be
NCPathG(I, J) := NCPathG((si,)k= 1, (tj 1) 1 ). Fix a pattern (I, J) E Pat(G). Define
the set of pairs of tuples of noncrossing paths of type (I, J) to be

PNCPathG(I, J):= NCPathG(I, J) x NCPathG(I, J)
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where for a subset K C [m+ n] we set K := [m+rn] \K. Again, we omit the subscripts
of NCPathG(I, J) and PNCPathG(I, J) when the network is clear from context. We
then define the weight of a pattern (I, J) E Pat(G) to be

wt(I, J):= wt(R, B).
(R,B)EPNCPath(I,J)

Finally, set
PNCPath(G) U PNCPath(I, J).

(I,J)EPat(G)

We now define what it means for a network to be interlacing, the key property that
will allow us to find three-term relations among the pattern weights. This condition
may at first appear ad-hoc, but the later algebraic treatment of these networks will
show that this definition suffices for the corresponding matrix to have a certain easily-
stated rank property. Let us call U C V non-returning if for all u1 , u2 E U and paths -r
connecting ul and U 2 , we have Vert(ir) 9 U (this is a technical condition required for
our sink-swapping algorithm to work). Then we say G is k-bottlenecked if there exists
a non-returning subset N C V with INI < k so that for all i, j E [m + n] and paths 7r
connecting si to tj, there is v E Vert(i) for some v E N.

For the most part of this section, we will only require our graph to be m-bottlenecked.
However, to get the three-term relations, we will need our graph to be interlacing. We
assume now, for the sake of define the interlacing property, that m = n + 1. Let us
call U C V sink-branching if for all u E U, i E [2, 2n], j E {1, 2n+1} and paths 7r' con-
necting u and tj and r" connecting u and tj, we have that Vert (') n Vert(7") = { }
(this is another technical condition). Then we say G is k-sink-bottlenecked if there
exists a non-returning and sink-branching NT C V with INTI < k so that for
all i E [2n + 1], j C [2, 2n] and paths i connecting si to tj, there is v E Vert(7r)
for some v E NT. We say G is interlacing if it is both (n + 1)-bottlenecked and
n-sink-bottlenecked.

Example 2.2.2. The following interlacing network, the rectangular grid Fr,, will
serve as our running example and will also be key for the motivating problem con-
cerning birational RSK. Let r, s > 3 and 1 < n < min(r, s). The graph Frs has vertex
set V := {(i,j) E Z2: i E [r],j E [s]} and edge set E := Ei U E2 where

El :{((ij), (i + 1, j)): i E [r - 1], j c [s]};
E2 {((ij), (ij + 1)): i E [r],j E [s - 1]}.

We allow the weight function w of the graph Fr,, to be arbitrary. The network Fn
has underlying graph F,,s with sources and sinks

S := ((n + 1, 1), (n, 1), (n, 2), (n - 1, 2), ... , (1, n), (1, n + 1))
T :=((r, s - n), (r - 1, s - n), (r - 1, s - n + 1), * * , (r - n, s - 1), (r - n, s)).

Our term "interlacing network" derives from the fact that these sinks and sources
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Figure 2-3: F,10 and an element of PNCPath({2, 4, 6}, {2, 4, 6}).

are arranged in a zig-zag. Strictly speaking, in order to satisfy the network condition
requiring our graph to lie inside a disc with the source and sink vertices on the
boundary, we should restrict the vertex set of I", to V' C V where V' {v E
V: si < v < tj for some i, j E [2n + 1]}. However, vertices in V \ V' will never be
used in a path connecting a source to a sink, so this technicality will not concern us
from now on.

Observe that F, is interlacing: we may take N = {si, s 3 ,.... , 82n+1} to sat-
isfy the (n + 1)-bottlenecked condition, and NT = {t2 , t4 , ... , t2n} to satisfy the
n-sink-bottlenecked condition. Figure 2-3 depicts F3,10 along with an element of
PNCPath({2, 4, 6}, {2, 4, 6}). Note that vertex (1, 1) is the top-leftmost vertex in this
picture, (8, 1) is the bottom-leftmost vertex, and (1, 10) is the top-rightmost: we use
"matrix coordinates" with edges directed downwards and rightwards in IFn,. We warn
the reader that there are various conventions for orientation of such a grid, and we
will at different times use several of them.

2.2.2 The sink-swapping involution

In this section we obtain three-term Plucker-like relations between pattern weights of
an interlacing network G via an algorithmically-defined involution on PNCPath(G)
that swaps sink patterns. As previously mentioned, we only need the m-bottlenecked
property for the algorithm to make sense. The interlacing property will ensure that
we get three-term relation.

Definition 2.2.3. Let m and n be positive integers with m > n. For J, J' E ([m+n])
we say that J' is a swap of J if J n = 0. Clearly the relation of being a swap
is symmetric. If J and J' are swaps of one another, we call the set P(J, J') :=
[m + n] \ (J U J') their pivot set. We say J' is a balanced swap of J if it is a swap of
J and that J [j]l = J' n [j]l for all p E P(J, J').

This condition is equivalent to that IJn [j, j']I = IJ'n [j, j']I for all j, j' E P(J, J') U
{0, m+n+1}. This means, for two consecutive pivots p, p' in P(J, J') U{0, m+n -1},
the interval [p + 1, p' - 1] is balanced in the sense that there are equally numbers of
elements from J and elements from J'. For instance, if m = 6 and n = 3, J = {1, 2, 8}
is a balanced swap of J' = {3, 4, 7} with the pivot set P(J, J') = {5, 6, 9}.
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bswap(J) :=J' E
( [n : J' is a balanced swap of J}

If m = n + 1, we say that J' is a end swap of J if it is a swap of J and their pivot j'*
is either 1 or 2n + 1. Observe that J' being an end swap of J implies it is a balanced
swap of J. Define

eswap(J) := J' E
[2n n+i J' is an end swap of J

n

Our goal in this section is to prove the following theorem and corollaries:

Theorem 2.2.4. Suppose G is n-bottlenecked.
involution r: PNCPath(G) -+ PNCPath(G) with

T(PNCPath(I, J)) C U
J'Ebswap(J)

Then there is a weight-preserving

PNCPath(I, J'),

for all (I, J) E Pat(G).
Suppose further that m = n + 1 and G is interlacing. Then for all (I, J) G Pat(G)

we have
r(PNCPath(I, J)) C U PNCPath(I, J').

J'Eeswap(J)

Corollary 2.2.5. Suppose m = n + 1 and G is n-bottlenecked. Fix a source pattern
I ([2n+11) . Fix some K C [2n + ijeven and set K' := [2n + 1]een \ K. Then

PNCPath(I, J))r vUK
\(I, J) E Pat (G)

Jevlen=K

z
(I,J)EPat(G)

Jeven-=K

wt(I, J) =

U
(I,J') EPat(G)

Jeven =K'

(I,J')EPat(G)
J' ee=K'

PNCPath(I, J'),

wt(I, J').

Corollary 2.2.6. Suppose G is interlacing. Fix a source pattern I E ([2n 1) Suppose

that the sink pattern J E ([ 2 nI) is such that {1,2n + 1} n J = 0. Define J'
[2, 2n + 1] \ J and J" := [1, 2n] \ J. Then

T(PNCPath(I, J)) = PNCPath(I, J') U PNCPath(I, J")

and thus
wt(I, J) = wt(J, J') + wt(I, J").

Remark 2.2.7. If J E ([2n l1) with {1, 2n + 1} 9 J, then eswap(J) = 0. So
if G is interlacing, Theorem 2.2.4 implies PNCPath(I, J) = 0 for any I E ([2n+1])
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But we can see without Theorem 2.2.4 as well. Let NT C V be the set of vertices
guaranteed by the n-sink-interlacing property of G. Suppose that i' < ... < i'
are all the elements of [2n + 1] \ I and j' < ... < j'+, are those of [2n + 1] \ J.
Then let B = (bi,..., bn+1) E PNCPath(y, Z) be a tuple of noncrossing paths,
whereY := (sg)n' and Z := (tj) 1 . Note that [2n+1]\ J C [2, 2n] and thus by the
sink-interlacing property of G, for each 1 E [n + 1] we must have that v E Vert(bi) for
some v E NT. But since INTI 5 n, by the pigeonhole principle we get 1 < k # 1 < n+1
and v E NT such that v E Vert(bk)nVert(bl). This contradicts that B was noncrossing,
so there can be no such B. Therefore PNCPath(I, J) = 0.

Before we can describe the bijection T we need a technical result about posets.
First we recall some poset terminology. Let (P, ) be a finite poset. For x, y E P, we
write x < y to denote x < y and x # y, as is standard. At some point we will require
the notion of a downset; for a subset P' C P the downset of P' is the set of all x E P
with x < y for some y C P'. Recall that a chain in P is a subset C C P such that
any two elements of C are related, and an antichain in P is a subset A C P such that
no two elements of A are related. If JAI = k, then we say A is a k-antichain. Suppose
that m is the maximal size of an antichain in P. In this case, we can find a partition

{,.. . , Cm} of P into chains: that is, each Ci is a chain and we have UgiCj = P and
C, n C. = 0 for i # j. (This result is known as Dilworth's theorem; see for example
Freese [12], who proves not only that the poset of maximal size antichains has a
minimum, as we show below, but also that this poset is in fact a lattice.) Let Am(P)
denote the set of m-antichains of P. Note that for any A E Am(P), we must have
that IA n CiI = 1 for all i E [m]. Thus we can define the following partial order on
Am(P): for two m-antichains X = {xj} T1 and Y = {y }I1 such that X n Ci = {xi}
and Y n Ci = {yj} for all i E [m], we say that X < Y if and only if xi 5 yj for all
i E [m].

Proposition 2.2.8. The poset Am(P) has a minimum.

Proof. Given any X, Y E Am(P) which are incomparable, we claim that there is Z E
Am(P) so that Z < X and Z < Y. Define zi := min(xi, yi) for all i E [m] and set
Z := {zi, ... , zm}. Note that Z is still an antichain: if zi < zj, then min(xi, yi) <
min(xj, yj), which means min(xi, yi) < xj and min(xi, yz) < yj, which forces a relation
in X or in Y. Because Am(P) is evidently finite, and by definition nonempty, it has
a minimum. E

The order we defined on Am (P) above in principle depended on the choice of
chains { C1, . . . , Cm }; but in fact we can give a description of this order which does
not depend on such a choice. Namely, for X, Y E Am(P), let us say X <' Y if for
each x C X there exists y E Y such that x < y. Then X K' Y if and only if X < Y.
The implication X K Y => X <' Y is trivial. To see X K' Y => X K Y, write
X = {xi}I and Y = {y<}ji with X n Ci = {xi} and Y n Ci = {yj} for all i E [M].
Then for i E [m], we have that there is some yj such that xi yj. If i = j, then
we are okay. So suppose i # j. It cannot be that yj < xi as then yj 5 yj and Y
would fail to be an antichain. But Ci is a chain, so this means xi < yi. Therefore we
have X < Y.
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We now define the poset of intersections of a tuple of paths in G, which will
be key in defining the bijection 7 of Theorem 2.2.4. Let 1I = (1,.. . , im) be a
tuple of paths in G. Then define IntH := UigjVert(ri) n Vert(wy) to be the set of
all intersections between paths in H. First of all, we give Intn a labeling function
Pn: Intn -+ P({i1,... ,w}), whereby Cn(u) := {7ri: u E Vert(ri)}. Secondly, we
give IntH a partial order < as follows. For a path 7ri = {v3 }>=, if vi, vj E Intn for
0 < i < j < n we declare v. -< v,. We then define < to be the transitive closure of -<.

It is routine to verify that < indeed defines a partial order on Intl (but note that
here we use the acyclicity of G in an essential way).

We need just a little more terminology related to paths in order to define r. For
a tuple H = (7...... r,) of paths, let us say a vertex v E V is a 2-crossing of 1 if
I{i: v E Vert(7i)}| = 2. Let v be a 2-crossing of H and suppose that v E 7ri l rj for
i # j. Say 7ri = {ui, . .. Ua, VUa+1, ... ,Ub} and 7rj = {wi,. . . , we, v, c+l1,- .. -d}.
Then define the flip of H at v to be flip,(H) := (7r',....,7r') where

{U, ... , Ua, V, Wc+1,. -. ,W d} if k = i;

rk : {Wi, ... ., Wc, V, Ua+, .. - -Ub} if k = j;
k , otherwise.

For any two 2-crossings u, v of H, we have flipu(flip,(H)) = flip,(flipu(H)). Thus for
a set U = {ul,...,u,} C V of 2-crossings of H, let us define the flip of H at U to
be flipu(H) = flipu,(flip -(... flip (H) .. . )), where the composition may be taken in
any order. Finally, for two tuples of paths H = (7r 1 , . .. , rm) and E = (, . . . ,),

set H +E := (ri, . . . , 7m, -, . .. , Un).
We proceed to define the involution r. So we assume from now on that G is m-

bottlenecked. Let N C V be the subset guaranteed by the m-bottlenecked property
of G. If INI < m, then PNCPath(G) = 0; so we may assume IN = m. Let (I, J) E
Pat(G) and let (R, B) E PNCPath(I, J). Here we use R for "red" and B for "blue"
as the example below will make clear. Say R = (ri,... , rn) and B = (bi, . . . , b,)
and set H := R + B. Because N is non-returning there is a subset of N of size n
consisting of 2-crossings of H which in fact is a n-antichain of Intr. It is also clear
that there is no antichain of size greater than n: indeed, given an antichain U of Intr
and any two elements u, v E U, for each r EE R we have that r G P'(u) => r V P (v);
but on the other hand, for any u E U, there must be some r E R with r E 0(u). So
by Proposition 2.2.8, we conclude that An(Intr) has a minimum. Starting with this
minimum antichain, we define T-(R, B) by the following algorithm.

Algorithm defining r

Let U C Intr be the minimum of A,(Intr).
Let FLIP := U.
Let A = {a G [m] : b0  01 (u) for all u E U}.
FOR EACH a E A: DO
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Example 2.2.9. Before we prove the correctness of this algorithm, we give an ex-
ample run of it. Let our network be I9,9 and consider the pair of tuples of non-
crossing paths (R, B) E PNCPath({2, 4, 6}, {2, 4, 6}) depicted in Figure 2-4. Suppose
R = (ri, r2 , r3 ) and B = (bi, b2, b3, b4 ) so the paths are labeled in left-to-right order in
the figure. To apply T to (R, B), first we find the minimum 3-antichain U in Intn where
II := R + B. This vertices in this antichain are circled by small olive-colored circles
in Figure 2-4, and the poset Intr is depicted to the right in the figure. In this case it
turns out that U = {(7, 3), (2, 3), (1, 4)}. We initialize FLIPo := {(7, 3), (2, 3), (1, 4)}
and find that no = 2. There is some w in the downset of U with 02 E "(w), so we
set w, := (5, 5) and enter the loop.

1. We find m, = 2 and v, = (3,4), and we set

FLIP1 := {(7, 3), (2,3), (1,4), (5, 5), (3, 4)}.

We find n1 = 3 and there is w with 03 E 0 '(w) and w < v, so we set w 2 := (5,6)
and enter the loop again.

2. We find m 2 = 2 and v 2 = (5, 5), and we set

FLIP 2 := {(7, 3), (2,3), (1,4), (3,4), (5, 6)}.

We find n2 = 2 and there is w with 02 E P"(w) and w < v 2 , so we set W 3 := (7,5)
and enter the loop again.

41

Initialize the counter c to 0 and nc to a.
IF there is no w in the downset of U with b, E I(w):

Continue to DO for the next a E A.
Let wc+1 be maximal in the downset of U with b, e fr(wc+1)-
Increment the counter c by 1.
LOOP:

Let rmc be the unique ri with rmc E e1 (wc).
Let vc be minimal in Int" with we < vc and rmc E 0 (VC).
Let FLIP := FLIP Af{ve, wc} (with A = "symmetric difference").
Let be, be the unique bi with bc E in (vC).
If there is w with be E P(w) and w < v,:

Let w,+, be maximal in Intn with w,+1 < v, and b,, E 0(w.+1).
Increment the counter c by 1.
Return to loop.

Else:
Exit the loop.

OUTPUT:

Define r(R, B) := (R', B') where R' + B' := flipFLIP '



Int R+B

Figure 2-4: Example 2.2.9: the interlacing network is F 9 ; above we de-

pict (R, B) E PNCPath({2, 4, 6}, {2, 4, 6}) and below we depict T(R, B) c
PNCPath({2, 4, 6}, {3, 5, 7}). The intersection poset IntR+B is depicted to the right.
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3. We find m3 = 1 and v 3 = (7, 3), and we set

FLIP 3 := {(2, 3), (1, 4), (3, 4), (5, 6), (7, 5)}.

We find n3 = 1 and there is no w with 61 E fr1 (w) and w < v 3 , so we exit the
loop.

Finally, we define r(R, B) (R', B') where R' + B' flipFLIP3 (II). The elements of
FLIP3 are circled by large light green circles in Figure 2-4 and T(R, B) is shown below
(R, B). Note that T(R, B) E PNCPath({2, 4, 6}, {3, 5, 7}) and this is consistent with
Theorem 2.2.4 because {3, 5, 7} E eswap({2, 4, 6}).

We proceed to verify the correctness of the algorithm defining T. In the following
series of claims we refer to the variables defined above in the description of the algo-
rithm. First, we note that the algorithm is independent of the choice of the ordering
of A since we loop for each a E A independently. Let k = m - n = JAI. For the sake
of the argument, we fix the order of elements of A by A = {ai < a 2 < ... < ak}.
For i E [k], let ci be the the value of the counter c at the end of the zth loop. We let
vij, wi,, and rm, to be the vj, wj, and rm,, respectively, in the loop corresponding
to the element ac E A. Also, say R' = (r', ... , r') and B' = (b',..., b') and set
nI := R' + B'. Some of the analysis that follows is tedious but it is all necessary.

Claim 2.2.10. For i E [k] and j e [ci], there exists a unique ui,j with wij < ujj
and rmij E e 1(ui,j) such that uij E U.

Proof. This claim is required for the algorithm to make sense because it shows that
vij is always well-defined. This claim also shows that vij always belongs to the
downset of U. Observe that the uniqueness is trivial because for any r E R there
is a unique u E U with r E 0(u). So existence is what is an issue. Fix i E [k],
we prove this claim by induction on j. For j = 1 it is clear because wi,1 < ui,1 by
definition, where ui,1 is the unique element of U with rm,1 E P'(u ,1 ), and wi,1 # ui,1

because bni0 e E (w ,1) but bni0 V er(uji). So suppose j > 1 and the claim holds for
smaller j. Then assume wij ;> ujj where uij is the unique element of U with rm , E
P(uj,). Note that wLj < v~i _ and vi,j1 < u jj_ by our inductive assumption. Thus
we conclude ui,j < ui,j_1. But this contradicts the fact that U is an antichain. So in
fact wij < ui,. The claim follows by induction. El

Claim 2.2.11. The algorithm terminates.

Proof. We claim it is impossible that wij = wi,jl for i E [k] and j < j'. If j > 1,
then wij = wij implies wjj_ = wi,jl_. So suppose j = 1. Then wi,1 = wi,j
for some j' > 1 implies that vij1_ > wi, with bni~ e Eil(Vili1). But vij1_1 is
in the downset of U and wi,1 was chosen to be maximal in the downset of U such
that b, 20 e E (w ,1), which is a contradiction. So indeed wij # wjy for all j $ j'.
Therefore, the algorithm terminates for each i E [k] since Int is finite. E

Lemma 2.2.12. Let (R, B) E PNCPath(I, J) be a pair of tuples of noncrossing paths.
For any p, q E [m + n], and a (directed) path P connecting s, and tq such that every
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step of P is a step in (R, B). Then the parity of |Vert(P) nFLIP| only depends on q.
Furthermore, |Vert(P) n FLIP| is even if tq is the end point of bn for some i E [k]
and is odd otherwise

Proof. We think of FLIP as a multiset with the line FLIP := FLIPA{vi, wi} in the
algorithm replaced by FLIP := FLIP U {v, wi}. This operation does not change the
parity of IVert(P) n FLIP1. Let V = {vi,: i E [k], j E [0, ci]} and W = {w : i E
[k],j E [0,ci]}. So FLIP = ULJVLJW.

Let P be a path connecting a source sp and a sink tq, considered as a path from
the sink tq to the source sp. We consider the sequence of points in FLIP that P visits
(from sink to source). If P visits a vertex v which is both vij and wlj (resp. u E U)
at the same time, we say that P visits vij first then w2',3i (resp. u). Consider the
following observations.

1. The last point in FLIP that P visits must be either u E U or wi,1 for some i.

2. If P visits any point in U, then P cannot visit other points in FLIP.

3. If P visits wij, then this is either that this is the last point in FLIP that P
visits (only if j = 0) or the next point P visits must be vij-1 or vij.

4. Unless j = ci, if P visits vij, then the previous point P visits must be wij or
wi,j+1 -

So once P visits a point vi C V, the rest of the sequence (including this v1) must be
of the form (vi, w1 , v 2 , W 2 , ..., v1, wi), where vi E V (i E [l]), wi E W (i E [I - 1]), and
w E W U U. If tq is the end point of b, , then the first point P visits is vi,,,. Thus
|Vert(P) n FLIPj is even in this case. If tq is not the end point of any b, , then the
first point P visits cannot be a point in V. If the first point comes from U, this is
also the last point. Thus IVert(P) n FLIP| is odd in this case. If the first point comes
from W, this is either the last point or the next point must be from V. In either case,
IVert(P) n FLIPI is odd. E

Claim 2.2.13. The tuples of paths R' and B' are noncrossing.

Proof. Suppose otherwise that (R', B') is not noncrossing, and a bad crossing occurs
at a vertex v. Without losing of generality, assume that two blue lines cross at v, say
e'(v) = {bi, bj} for some i, j E [m]. Let v' (resp. v") be the minimal vertex such that
V' > v and bi E f"'(v') (resp. v" > v and bj E 0n'(v")). Since H is noncrossing, one of
the paths (v', v) and (v", v) is red in IH, and the other is blue in H. WLOG, assume
that (v', v) is red in 1I and (v", v) is blue in II. This means (v', v) has been flipped
odd number of times in flipFLIP. So there is a path P' from a source si' to v' such that
IVert(P') n FLIPI is odd. (In fact, this is true for any path from any source si2 to v'.)
Similarly, there is a path P" from a source sil to v' such that IVert(P")fnFLIPI is even.
However, by extending these paths P' and P" by (v', v) and (v", v), respectively, and
then extend both paths by any path from v to a sink tq, we have found two paths P'
and P" to the same end point tq for which the intersection with FLIP have different
parity. This contradicts the previous lemma that the parity of their intersections with
FLIP is independent of the path. Therefore, the pair (R', B') is noncrossing. El
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Claim 2.2.14. The map T is an involution.

Proof. Suppose we run the algorithm again on (R', B'). Let us use primes to denote
the variables for this run of the algorithm; so we have A', FLIP'j, n', , W1, V v, c'
and so on. Observe that A = A' since the intersection poset Intr is unchanged. So
IA'J = IAI = k. To prove r(R', B') = (R, B) it suffices to show FLIP',/ = FLIPk,ck.
We claim that in fact ci = c' for all i E [k] and FLIP',J = FLIPij for all j E [0, ci].
Note that FLIP, = FLIP0 ,0 because both of these equal the minimum n-antichain
of Intr and we gave a characterization earlier of this antichain just in terms of Intr
as an abstract poset, independent of how it is labeled. Fix an i E [k]. It is clear
that n', = ni,o. If ci = 0, then no vertex on bnie ever flips, so no vertex in this
path belongs to the downset of U and thus we get c' = 0 as well. If ci > 0 we get
Wi,1 = wi as these are both equal to the first place where bno intersects the downset
of U. But then if wjj = w,, we get v4,j = vij. This is because each element of Intr'
has two paths in II' coming into it, and since R' and B' are noncrossing these paths
must be colored differently (where by the color of the path we mean in the sense of

Figure 2-4). We followed one of these paths in to arrive at we and thus we must
follow the other out to arrive at v,. And if v' = vij and j <c2 , then similarly we
have w',i+ 1 = wi,j+1. If j = ci then both algorithms terminate on this step and so
ci = c'. The result follows by induction. 0

Claim 2.2.15. There exists J' E ([m+n) which is a swap of J so that for all paths 7r' G

LI' there is some j' E J' with ty an end point of 7r'.

Proof. This is an immediate consequence of 2.2.12. E

Let D denote the disc into which G is embedded, and let OD denote its boundary.
Let b E B with start point s and end point t. Denote by rt(b) (respectively, lt(b)) the
compact subset of the plane whose boundary is the closed curve obtained by adjoining
b with the arc on 0D that connects s to t clockwise (respectively, counter-clockwise).
It is easy to see rt(b), It(b) C D and rt(b) n lt(b) = b. Also, we have bj E rt(bi) if and
only if j > i, and similarly b3 E lt(bi) if and only if j < i. For r E R we define rt(r)
and lt(r) analogously, and have the similar result that rj E rt(ri) if and only if j ;> i,

and rj E lt(ri) if and only if j < i.

Lemma 2.2.16. For Xi, x 2 E nt H which are not related, if 1 (xi) = {ri1 ,bj 1}
and f 1 (x 2 ) = {ri2, bj,} then ii < i2 if and only if j, < j2.

Proof. We may assume the inequalities of the indices are strict because otherwise x1

and x 2 would certainly be related. So let Xi, x 2 E Int1 be such that P"(x1) = {ril, bjl}
and P (x 2 ) = {ri2, b, 2 } where 4i < i2 but ji > J2. Let sp, be the start point of rei
and tql its end point, and let sP 2 be the start point of bjl and tq2 its end point.
Assume by symmetry that pi P2, so qi q2. Let Y (respectively, Y2) denote
the compact subset of the plane that is bounded by the closed curve obtained by
adjoining the subpath of ril connecting s,, to x1 (resp., the subpath of the reverse of
ril connecting tql to XI), the subpath of the reverse of bjl connecting x 1 to sP2 (resp,
the subpath of bjl connecting x1 to tq2 ), and the arc on 9D connecting sP2 to sP
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counter-clockwise (resp., the arc on OD connecting tq2 to tqj clockwise). Because X 2
lies in rt(ril) nl t(bj,), it must lie in one of Y or Y2. Assume by symmetry that it lies
in Y1. We claim that the subpath of ri2 below x 2 cannot lie inside Y: if it did, its end
point would lie clockwise between spi and s, 2 on OD, contradicting our assumption
about how sources and sinks of G are arranged on this boundary. So it must exit Y1 .
When it does so, it crosses bj1 above xi. Thus x 2 > x 1. l

Lemma 2.2.17. For r E R, if x1 < - < x, are the elements of Int" n Vert(r)
and bp, c 0n(xi) for all i E [1], then |pi - pi-1I < 1 for all i > 1.

Proof. This is an immediate consequence of the facts that G is planar and B is
noncrossing. 0

Lemma 2.2.18. For a E A, let L, be the (undirected) path (voo,wa,,va,,...,va,c.,wacj
Then for a < 3 E A, the line L, lies to the left of the line L8. That is the inter-
section of the interior of lt(L,) and the interior of rt(L8) is empty. In particular, if
a < 0 E A, then nCr < n,c.

Proof. Since we only flip at the points in the downset of U, we may assume that R and
B intersect only at U or below U. Let a < 0 E A, but suppose that Lo crosses into
lt(L.). Let u E Vert(L3) be the first vertex inside the interior of lt(L,). First suppose
that u = v,3, then wpj must be a vertex in Vert(L,) since otherwise there is another
vertex in between voj and wj, which contradicts the way we choose vij and wij.
If wa,j = w,,y for any j', then by tracing back the points on L, and Lf3 we arrive
at the same starting points of L, and L3. In particular, the segments (vQ,o, we,1)
and (v,3,o, w,3,1) are identical, violating the noncrossing assumption. If w,8 = vc,,
and that we,, # v,,ju, for any j", then we see that vo,j-l is also in the interior of
lt(La), contradicting our choice of u. Now suppose that u = wgj for some j. Then
v,8,_1 E Vert(L.). If vo,ji = vc,y for some j', then w, = wc,j+1 which is not in
the interior of lt(La). So v3,j_1 = wa,j, for some j'. In this case wg,8, 1 is also in the
interior of lt(L,), which contradicts our choice of u. From these cases, we see that
the point u does not exists, i.e. Lg does not cross L,. l

Claim 2.2.19. The sink pattern J' is a balanced swap of J.

Proof. Claim 2.2.15 tells us that J' and J are swaps of one another and their pivot
set {p, ... ,p *} is such that t,* is the endpoint of b Define wi,c,+1 to be tp*.
Define vi,o to be first element that comes strictly before wi,1 in bn,0 and belongs to Intr,
or to be the start point of bas0 if there is no such element. Then for i E [k], j E [0, ci],
let bij be the subpath of bnj connecting vi, to wi,j+1. Also, for i E [n+1] define closed
subsets Xi of D by X1 := lt(ri), Xi := rt(ri_1)n lt(ri) if i E [2, n], and X+1, rt(rn).
Again, we assume that R and B intersect only at U or below U.

Our key subclaim is that for i C [k] and j E [0, ci], the curve bij lies in Xnij.
Fix i C [k]. We prove this by induction on j. First of all, for any i it is clear that
each bij must lie in one of the X, because if it did not it would have to intersect too
many paths in R (only the start point and end point of bi can belong to Int'). SO
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each b, 9 intersects the interior of at most one of the X1 . The case j = 0 is clear since
no intersections are allowed in vi,o and wi,1 . Note that there are i - 1 blue sources
inside lt(b).

Now assume j > 0 and the key subclaim holds for smaller values of j. We know
that byj_1 lies in Xni_(i1), so either rn _-_i or rnj_(i-1) is in fr(wi); let us
assume by symmetry that it is rn,__(i-1). Lemma 2.2.17 gives nij = nij-1 + 6
for 6 E {-1, 0, 1}. First suppose that 6 = 0. Then we claim that bij cannot enter the
interior of Xnj-i+2; in particular, the subpath of bij connecting vij to wij cannot
enter the interior of Xni,-i+2. Suppose that it did. This subpath must eventually
enter the interior of Xn ,(i-) by our inductive supposition and so it would have to
cross rnii(i-1) at some point to do so. However, if it crossed rii_(i_1) above vij this
would cause a cycle in G, and if it crossed below wij this would also cause a cycle.
So it would have to cross between vij and wij; but this is also impossible because
there are no elements of Intn that lie on rn,-(i-1) between vij and wij. So indeed
bij lies in Xn i).

Now suppose that 6 $ 0. Let s1 be the start point of rns,-1-(i-1) and s12 be
the start point of bni,4. Assume 11 < 12 for simplicity of the following exposition;
the other case is symmetric. Let Y denote the compact subset of the plane that is
bounded by the closed curve obtained by adjoining the subpath of bn ,1 connecting
s to wi,, the subpath of the reverse of rni-1-(i-1) connecting wij to si, and the
arc on oD connecting s1 to si, counter-clockwise. We claim that the subpath of bn
below vij cannot enter the interior of Y. Suppose it did. Then it could not exit Y
because it cannot intersect b _, at all, and it cannot intersect rn,,_._(i_1) above w ,
without creating a cycle. Thus the end point of bij lies on OD clockwise between
sil and s12. But because 11 < 12, this contradicts our assumption of how the sources
and sinks of G are arranged on this boundary. (Note 11 = 12 is impossible in this case
because that would force the end point of bij to be s1 as well, creating a cycle.) So
bij does not enter the interior of Y. Thus bij lies in X, _,-i+2.

To finish the proof of the key subclaim, we need to show that 6 -1. First
consider the case J = 1. Let u be the unique element of U such that rni 0 (iE1) E ()
Note that bno+l E fn(u) by Lemma 2.2.16. Also note that wi,1 is the maximal element
below u with f11(wi,1 ) = {rni-(i_1), bno}. So by Lemma 2.2.17, as we look at the bp
intersecting the vertices rTnO(i_1) we encounter below u but above wi,1 we can never
see bns 0 _1. Thus 6 = 1 as claimed. Now consider the case j > 1. Then either
'rnii or rn _ (i_1) is in fr(Vi'j_1). Suppose first that rni,_1_i E fr(viy_ 1 ). Then
vij_1 and vij are unrelated and so by Lemma 2.2.16 we get that 6 = -1. Suppose
next that rn _i) E fr(Vi'j-1). Then note that wij is the maximal element below
vij_1 with r1 (w ,j) = {rni _(i1), bn }. Also, the element of Intr below vi,_1 on
rn,i_-(1) is w ,_1 and has bn _2 E P(wi,-1), so again by Lemma 2.2.17 we get
bni,_2 E P(vi,). So nij = ni,j-2 and by induction we obtain 6 = 1 again. The key
subclaim is thus proved by induction.

To conclude, note that ixc is in X,-(i-1) which means tp; is clockwise between
the end point of rn, _-i and rfl _(;_) on OD. This means there are ni,c,- i red end
points inside lt(bnis.). On the other hand, by 2.2.18, there are ni,c, - 1 - (i - 1) =
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ni,ci - i blue end points inside lt(bni,.) which are not fixed by flipFLIP Together with
Claim 2.2.15, this means exactly that IJ n [p*] = nJ' [p] 1. Thus J' is a balanced
swap of J. E

Claim 2.2.20. If G is interlacing then J' is an end swap of J.

Proof. Let rIT be the subtuple of LI consisting of paths whose end points are among
tj for j E [2, 2n]. Let NT be the subset of V guaranteed by the n-sink-bottlenecked
property of G. There is a subset of NT of size n - 1 consisting of 2-crossings of HT.
This subset is a (n - 1) antichain of Int IT because NT is non-returning. There are
no antichains of IntrlT of greater cardinality. So A_ 1 (IntrfT) has a minimum; call
that minimum UT. We claim that UT belongs to the downset of U. To see this, let
UT C U be the set of those u E U for which 0"(u) C IIr. Note that because NT

is sink-branching, it also must be that UT is sink-branching. So no element of UT is
greater than an element of U \ UT; but also, every element of UT is comparable to
some element of U. Thus if we let Umin be the set of minimal elements of U U UT,
there is a subset of Umin that belongs to An_1(IntIT) and is in the downset of U.
But UT is minimal among all such antichains; so indeed UT must be in the downset
of U.

Let j* be the pivot of J and J'. We want to show that j* [2, 2n]. Suppose to the
contrary. Recall the paths be and regions Xi defined in the proof of Claim 2.2.19. Let
7r* be the unique element of IT not among the labels of elements of UT. If j* E [2, 2n],
it must be that there is i such that b% = 7r* and either w+11 is in he downset of UT or
wj+1 = tj,. This is because if bi passes through some u E UT, that u must either be vi
or wi+1. If that u is a wi+1, then vqi+ will not belong to the downset of UT so we will
have to pass through UT again at some later step. On the other hand, if that u is a vi,
then we must have i > 0 and wi_ 1 already belongs to the downset of UT and is strictly
below an element of UT. Thus indeed there exists i such that be = 7r* and with wj+1

as described above. But then by the same logic as the second paragraph of the proof
of Claim 2.2.19, we conclude that either by lies in Xni+ (if 1 E J) or bi lies in Xn_ 1

(if 1 J). At any rate, we get that b2 does not lie in Xn, which is a contradiction
with the key subclaim in the proof of Claim 2.2.19. So indeed j* [2, 2n]. D

Having established the above facts about the behavior of the algorithm defining
r, the proofs of Theorem 2.2.4 and its corollaries are easy.

Proof of Theorem 2.2.4. Claims 2.2.10 and 2.2.11 establish that r is well-defined,
and Claim 2.2.13 shows that T maps into PNCPath(G). The map r is weight-
preserving because the multisets of edges visited by paths in LI and in LI' are iden-
tical. Claim 2.2.14 shows T is an involution. Claim 2.2.19 gives us an estimate
of the image T(PNCPath(I, J)), and Claim 2.2.20 gives a more refined estimate
on r(PNCPath(I, J)) when G is interlacing. r

Proof of Corollary 2.2.5. For any J, J' E cn+]) with J' a balanced swap of J, their
pivot j* cannot be even, so we have Jeen = [2n + l]even \ Jeven. Thus with K as in
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the statement of the corollary, by Theorem 2.2.4 we have

T ( U PNCPath(I, J) C U PNCPath(I, J').
\(I, J)EPat(G) / (I,J')EPat(G)

Jeven=K Jeven=K'

But the reverse inclusion follows for the same reason.

Proof of Corollary 2.2.6. For J, J', J" E ([n 'I) as in the statement of the corollary,
we have eswap(J) C J' U J", but we also have eswap(J') C J and eswap(J") C J.
Then Theorem 2.2.4 tells us that

r(PNCPath(I, J)) 9 PNCPath(I, J') U PNCPath(I, J")

and also the reverse inclusion.

Remark 2.2.21. The definition of k-bottlenecked is symmetric with respect to sources
and sinks, so we can easily obtain from r a source-swapping involution as well. We
define (GOP, SOP, TOP), the opposite network of G, as follows: GOP is the same graph as
G but with edge directions reversed, SOP := (t2k-1, ... , ti), and ToP := (s2k-1, . . ., Si).
For I C [2k -1] let us set 1 := {2k -i: i E I}. There is a weight-preserving bijection

T: PNCPath(G) -+ PNCPath(G P)

with I(PNCPath(I, J)) = PNCPath(1 0 , JO) for (I, J) E Pat(G) whereby ' just
reverses all paths. Suppose G is k-bottlenecked. Then so is GOP. So we may define the
source-swapping involution -: PNCPath(G) -+ PNCPath(G) by o := T- o TGOP o 4
and it will satisfy

a(PNCPath(I, J)) C U PNCPath(I', J),
I'Ebswap(I)

for all (I, J) E Pat(G). Here TGOP denotes the involution r defined above in this section
but applied to the opposite network. The involution o leads to a source-swapping
analogue of Corollary 2.2.5. However, G being interlacing does not in general imply
that GOP is interlacing, so we do not in general get a source-swapping analogue of
Corollary 2.2.6.

2.2.3 Proof of octahedron recurrence

Instead of proving Theorem 2.1.1, we will give a proof of the birational version of this
octahedron recurrence. Roughly speaking, birationalization is a process in turning a
piecewise linear function to a subtraction-free expression by the process of replacing
a + b- a - b, a - b - a/b, and max{a, b} -+ a + b. For example, max{x + y, y - z}
becomes xy + y/z. The reverse of this process is called tropicalization.

Let us define this process more formally. We follow the notations used in [27]. Let
x = {xi}iEI be a set of formal variables. In our purpose, we assume that x is finite.
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We express a subtraction-free rational function f as a quotient f(x) = a(x)/b(x),
where a(x) = EaIA aaxo and b(x) = EZIB bx0 are polynomials with coefficients in
R>O. We define the tropicalization of f to be the piecewise linear function M(f) on
x given by

M(f) := max{(a, x) : a c A} - max{(, x) : 3 E B}.

Note that M(f) is independent of the choice of the expression f = a/b. Also it is
easy to see that, under this map, we have

M(fg) = M(f) + M(g), M(-) = M(f) - M(g),
9

M(f + g) = max{M(f) + M(g)},

for all subtraction-free rational functions f and g.
With this tool, we can restate Theorem 2.1.1 in the birational setting, which

implies Theorem 2.1.1 by tropicalization.
Let X = (Xi'j)1<ijsn be a positive real matrix. Define the rectangular product

rect(ij) = rectx(i,j) at (ij) by

rect(i, j) = rectx (i, j) : J xij.
1<k<i,11<j

Now we define a three-dimensional array F = (V)i,j,k with i, j, k G N, k < min(i, j) by

Yi,j,k := Z wt(L),
nERSKPath(ij,k)

where RSKPath(i, j, k) := NCPathr,,(S, T) with sources and sinks: S = {(1, 1), ... , (1, k)}

and T = {(i, j - k +1), ... , (i, j)}. Then we define a normalized array Y = (y)i,j,k with
the same set of indices of Y by ij,k = y9,j,k/rect(i, j).

Theorem 2.2.22. The three-dimensional array Y = ( ,j,k) can be computed as fol-
lows: the boundary conditions are jj,o = 1/rect(i, j) and i,j,min(ij) = 1, and for
1 < k < min(i, j) - 1 we have the recursive formula

i,j,k i-1,j-1,k-1 = i-1,j,kfi,j-1,k-1 + i-1,j,k-li,j-1,k

In other words, Y satisfies the (bounded) octahedron recurrence.

Proof. Of course VijO = 1 and pi,j,min(ij) = rect(i, j) are equivalent boundary condi-
tions. We have Vi,j,o = 1 by definition. We have Yi,j,min(ij) = rect(i, j) because there is
a single tuple of paths in RSKPath(i, j, , min(i, j)) and it covers exactly those vertices
in 1mn that are less than or equal to (i, j).

Now let 1 < k < min(i, j) - 1. The key to proving the recursive condition is to
show that

Vijki-1,j-1,k-1 = i-,j,kFij-1,k-1 + (i-,j,k-1*ij-1,k)ijM
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For k = 1, we have _i-1,j-1,k-1 = YiJ-1,k-1 = Yi-1,J,k-1 = 1 and (*) follows from the
fact that every path connecting (1, 1) to (i, j) goes through exactly one of (i - 1, j)
or (i, j - 1), and conversely any path to either (i - 1, j) or (i, j - 1) can be uniquely
extended to a path to (i, j). Assume k > 2. For (i, j) E Pm,n, define the increasing
and decreasing triangular products of length I at (i, j) as

i+I-1 j+i+1-r-1 i j
tri+(ij,l) := ]7J Xr9 and tri-(i, j, l) : ]= JJ Xrs.

r=i s=j r=i-l+1 s=j+i-I-r+1

The first equation makes sense for 1 < I < min(m - i + 1, n - j + 1), and the second
equation makes sense for 1 < 1 < min(i, j). Consider the vertex-weighted network (see
2.2.1) F = rf T with weight function w : (i, j) - ij . Set I, J :={2, 4, ... ,2k - 2}
and n: tri+(1, 1, k - 2) - tri+(1, 1, k - 1). Then there is a bijection

p: PNCPathr (I, J) -+ RSKPath(i - 1, j - 1, k - 1) x RSKPath(i, j, k)

such that

wt(R, B) - , - tri-(i - 1,j - 1, k - 2) - tri-(ij, k - 1) = wt(p(R, B)).

Specifically, if (R, B) = ((ri, . . . , rk-1), (b, .... , bk)) E PNCPathr(I, J) then we define
p(R, B) := ((7r,. . ., _rk-), (Oi,. .., ok)) where

7rs :={(t,s)}_-- -rs - f{(i - s + tj - k + s)}18~1

as := {( I s)_- - bs - {(i - s + t, j - k + s)}J=2

(Here - denotes concatenation of sequences.) In other words, y extends the paths
vertically to connect to the appropriate start and end points for paths in RSKPath(i-
1, j - 1, k - 1) and RSKPath(i, j, k); there is a unique way to do this. Similarly, if we
set J' := {1, 3, ... , 2k - 3} then there is a bijection

p': PNCPathr (I, J') -+ RSKPath(i, j - 1, k - 1) x RSKPath(i - 1, j, k)

such that

wt(R, B') tri-(i, j - 1, k - 2). tri-(i - 1, j, k - 1) = wt (jp'(R', B')).
Xi,j-k+1

Here for (R', B') = ((ri, ... , r'_, (b,... b')) E PNCPathr 3 (I, J') we define p'(R', B')
((r,. .. ,7r )( ', . . . , a')) where

T' :=1(t, s)}k-l-s -r' f {(i -s + tI j -k + s) }1-_
',:= {(t,s)} -b' -{(i-s+t,j-k+s)}".

Again, sp' just extends paths vertically. And if we set J" {3, 5,... , 2k - 1} then
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there is a bijection

p": PNCPathr (I, J") -+ RSKPath(i - 1, -, k - 1) x RSKPath(i, j - 1, k)

such that

t (R -B rB - tri~(i - 1, j, k - 2)
Xi-k+1,j

Here for (R", B") = ((r", ...

{ tvt}_O we define p"(R", B")

-tri-(i, j - 1, k - 1) = wt( o"(R", B")).

r_1 ), (b"l, ... , b'1)) E PNCPathr(I, J") such that b" =

((7r",. .. ,7_ 1),/(o",. .. , o)) where

7rS {(ts)}f ~- r. {(i - s + t, j - k + s + 1)} ~-

a{(t, s)}fi - = { (i -
o : {(t, s)}l1k- bs - {(i -s + tj -k+ s -1) -2

if s = 1

otherwise.

Now (p" has to slide the end point of b, to the left, but the other paths it again just
extends vertically. Corollary 2.2.6 tells us that

E
(R,B)EPNCPath(I,J)

Vt(R, B) =

(R',B')EPNCPath(I,J')

wt(R', B') +d zw
(R",B")cPNCPath(I,J")

and together with

Xii =
tri-(i - 1, j - 1, k - 2) - tri-(i,j, k - 1) -Xi,j-k+1

tri-(i - 1,j, k - 2) -tri-(i,j - 1, k - 1)
tri-(i - 1, j - 1, k - 2) -tri-(i,j, k - 1) -Xi-k+1,j

tri~(i,j - 1, k - 2) -tri-(i - 1,j, k - 1)

we conclude that indeed equation (*) holds. To finish, we compute

Yijk (i j)
xij (Vi1,J,k7iJ-1,k-1 + YJ-1,kYi-1,J,k-1)

rect(', A) -yi1,J1,k_1

rect(i - 1, J - 1) (9i-1,J,kphJ-1,k-1 + YVJ-1,kpi-1,J,k-1)

rect(i - 1, j) - rect(i, j - 1) i- I1,J -1,k-_1

Yi-1,j,kOi,j-1,k-1 + ij-1,k0i-1,j,k-1

yi-1,j-1,k-1

Thus, Y satisfies the octahedron recurrence [31] [20]. E

2.3 Schur functions

Given a SSYT T of a fixed shape A, we associate it with a monomial xT defined by the
product 11>0 C , where CT(i) is the numbers of i's in T. Then the Schur function
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1 1 112 244
2 2 313 33
4 4 45~
5 2

1

5 5

4 44 4 4

1 13 3 3

22 2 22

11 1

Figure 2-5: A semistandard Young tableau of shape A = (7, 5, 4, 1) and its corre-

sponding paths.

sA is defined by
SA(X1, X2,.)= Z XT

TESSYT(A)

Furthermore, we define s , where X C Z>o by SA(X1, x2 , ...) with specialization xi = 0

for i $ X.

The set {SA} forms a linear basis of the ring of symmetric functions A over Z. So

the product sAs, can be written as SASJ = cs,. We call the c' the Littlewood-

Richardson coefficients (or LR-coefficients). It follows form representation theory of

symmetric groups that the LR-coefficients cA are always nonnegative.

We now recall an equivalent definition of Schur functions in terms of nonintersect-

ing paths. Already Gessel and Viennot [17] were aware of the connection between

tableaux and nonintersecting lattice paths in Z2. Let us make Z2 into a graph with

horizontal edges ((i, j), (i - 1, j)) and vertical edges ((i, j), (i, j - 1)). We now use

Cartesian coordinates for Z2 So (-oo, -oo) will be in the bottom-left corner. Al-

though Z2 is infinite, this is no problem for us as we will only ever use a finite portion

of it. We set the edge-weight function w of Z2 to be w((i, j), (i - 1, j)) := xj for

horizontal edges and w((i, j), (i, j - 1)) := 1 for vertical edges. Let A = (A 1,.. ,Ak)

be a partition. For n > 1 let

SPath(A, n) := NCPathz2({(Ak+ 1 -i + n)}$1 , {(i, 91)-l~)

Then s) = [n] e Path(A,n) wt(II), which follows from a simple bijection between n-

tableaux of shape A and paths in SPath(A, n) (see [33, Theorem 7.16.1]). In fact, we

obtain the following by translation:

Proposition 2.3.1. For a, b, c c Z with 1< a Kb let

SPath(A, a, b) := NCPathz2({(Ak+1-i + i + c, b)} 1 , {(i + c, ) 0)

Then sa,b] wt(l).A = ErIESath (A,a,b) t)
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Figure 2-6: For A = (3,2,2, 1), t = 1, and

of PNCPathG({2, 4, 6}, {2, 4, 6}).
n = 5: the network G and an element

2.3.1 Schur function identities

First we show two examples of Schur function identities obtained from the theory of

interlacing networks (or rather m-bottlenecked networks). In the first example, we

think of the network that flows from top to bottom while in the second example, the

network flows from bottom to top. That is, in the second example we consider the

opposite graph GOP of what we introduced earlier.

Theorem 2.3.2. Let A = (Al, A2 , ... , Ak) and t c [0, k - 1]. Then

[2,oo) [2,oo)
A --- ,AtAt+ 2-1.,Ak-1) SA (A 1 ,AtAt2-.Ak-)

[2,oo)
+ XIS(A 1 1 ,...,Ak-I)s(Al+l,...,At+1,At+ 2 ,. ,Ak)*

Proof. In order to prove this identity we use an interlacing network G. Fix some n > k.

For i E [k] define vi := (Ak+1-i + i, n) E Z2. Define G to be the network whose un-

derlying graph is the subgraph of Z2 with vertices in the rectangle between (1, 1)

and (A, + k, n) and with sources

S = (si, . .. , S2k-1) := (v 1 , v1 , v 2 , V2, .. . , Vk-tk-t, .. ., 4k, Vk)

(where the overline denotes omission) and sinks

T = (t1, . .. , t2k-1) := ((1, k), (2, k), (2, k - 1), (3, k - 1),j. .. , (k, 2), (k, 1)

To witness that G is interlacing we may take N = {si, s3 , ...
and NT = {t2 , t4 , .. . , t2k-2} as a (k - 1)-sink bottleneck.

together with an element of PNCPath(G) for some specific

To simplify notation, set

S2k-1} as a k-bottleneck
Figure 2-6 illustrates G
parameters A, t and n.

p := (Al... IAt, At+2 - 1... iAk -1)

p:= (A - 1, ... , Ak - 1).

Let I, J := {2, 4, .. . 12k - 2} and J' := [1, 2k - 2] \ J and J" := [2,2k - 1] \ J. Then
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there are bijections

p: PNCPathG(I, J) -+ SPath (p,2,n) x SPath (A, 1,n)

p': PNCPathG(I, J') -+ SPath (v, 2, n) x SPath (p, 1, n)

,of": PNCPathG(I, J") - SPatho(p, 1, n) x SPatho(A, 2, n)

such that

wt(R, B) = wt(o(R, B))

wt(R', B') = x1 - wt(p'(R', B'))

wt(R", B") = wt(p"(R" , B"))

for all appropriate (R, B), (R', B'), (R", B") E PNCPath(G). These bijections have
a very similar description to those in the proof of Theorem 2.2.22: the maps o and

p" merely extend the paths vertically to reach the necessary start and end points; p'
also just extends paths vertically, except for b'2k-1 (the rightmost blue path) which it
moves to the right, thus accounting for the factor of x 1. Corollary 2.2.6 tells us that

S7 wt(R, B) = E wt(R', B') + T wt(R", B")
(R,B)EPNCPath(I,J) (R',B') EPNCPath (I,J') (R"1,B"1)EPNCPath(I,J"')

and together with Proposition 2.3.1 we conclude s[2,n] [n] = X s[2,n] [n] + s[n] [2,n]

Taking the limit n -+ o gives us the result. E-

Because the involution T makes sense not just for interlacing networks, but also
more generally for m-bottlenecked networks, it can actually be applied in a differ-
ent way to obtain another result about Schur positivity. In fact, T leads another

(multi-term) Schur function identity. The following identity appeared earlier in [19]
(Proposition 3.1 and Corollary 3.2). It is also a consequence of Lemma 16 in [16].
Our proof is independent of the above and uses the properties of our involution T.

Theorem 2.3.3. Let A = (A 1, ..., Ak) and p = (ili, ..., ,Uk_1) be partitions that interlace
in the sense that Ai pi Ai+ 1 for i E [k - 1]. For 1 < i < k, define A' = (A', ... , A')
and p = (i, ... ,Pk 1) to be

py-1 if j<i..Aj - I fi < iAj + 1 if j < i
A: Ai ifj=i and p': .1.

Y_1 if j > L3Aj1 ifj i.

Then we have sAs = sA\si where s, is taken to be 0 if v is not a partition.

Proof. In order to prove this identity we use a k-bottlenecked network G. Fix n > k.
For i E [k] define vi := (Ak+l-i+i, n) E Z2 and for i E [k -I] define ui := (Ak-ii+i,n).
Define G to be the network whose underlying graph is the subgraph of Z2 with vertices
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in the rectangle between (1, 1) and (A, + k, n) and with sources and sinks

S= (sI,...,S2k-1) :=(viuli,v2,U2,...,k-,uklvk)

T = (ti, ... ., t2k-1) : ((1,1 1),1 (1,1 1),1 (2, 1),1(2, 1),l ... ., (k - 1, 1), (k -- 1, 1), (k - I)).

To witness that G is k-bottlenecked we may take N = {t1 , t3 ,... , t2k-1.
Let I, J := {2,4 ... , 2k - 2} and define I := [2k - 1] \({2i-1} U I) for all i e [k].

Then we have

PNCPathG(I, J) = SPath([t, n) x SPath(A, n)

PNCPathG(PI, J) = SPath(pt, n) x SPath(A', n)

for all i E [k]. Also, Remark 2.2.21 tells us that wt(I, J) = EZ 1 wt(I, J). So we

conclude s[n] s[ = Eks []s[). Taking n -> oc gives us the result. 3

Setting A = (Vi,... , Vk, 0) and 1t = (v2 ,..., k+), we obtain the following identity.

Corollary 2.3.4 (Fulmek and Kleber). Let il = (VI, v2 , ... , Vk+) be a partition
with k > 1. Then

S(vi,..-'k)
S

(V2,.,Vk+1) = S(v2)..., )'
5

(V1,...Vk+1) + s(V2-1,...,Vk+1-1)S(vl1+1,..,V+1)-

Fulmek and Kleber [16] give a bijective proof of this identity. Their proof also
goes through a certain algorithm that swaps pairs of tuples of nonintersecting paths.
In fact, their notion of changing tail is quite similar to the path visiting the vertices
vo, w 1, v1, ... , vC, wc we build as part of the algorithm defining T in 2.2.2. However,
there are significant differences: for one, their networks are not interlacing (and so
they never use bottlenecks); also, their procedure changes the size of each tuple,
whereas ours does not. The result is that our identities oddly involve Schur functions
in different sets of variables.

2.3.2 Schur positivity

We now explain how those Schur function identities from previous section lead to
some results about Schur positivity. Recall that we say that a symmetric function
is Schur positive if it has all nonnegative coefficients in the basis of Schur functions.
For two symmetric functions f and g, we write f , g if the difference f - g is
Schur positive. There has been some interest in understanding when we have sesp >,
SASg for partitions v, p, A, p. If we let c', be the Littlewood-Richardson coefficients
given by sAsj = s caSQ,,, this question is equivalent to the question of when we
have c' > ca,, for all a. Research on this problem has focused on the case where
the partitions v and p are thought of as "functions" of A and A as in [15] [24] [1] [34].
We will now state a Schur positivity conjecture of this form. This conjecture was
communicated to us privately by Alex Postnikov, who discovered it in collaboration
with Pavlo Pylyavskyy and Thomas Lam (see also the papers [7] [3] which investigate
this conjecture).
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Conjecture 2.3.5 (Lam-Postnikov-Pylyavskyy). Let v = (v. . . , v") be a partition.
For all - E (5, i E [n], and choices k E {+,-}, define a new sequence v (a, i) =

(V +,,V(-, i)) by

a, .j vyt 1 if o--'(j) E [i]

V{ otherwise.

Let A = (A 1 , ... , An) and p = (11, ... , pn) be two partitions and let their difference
vector be 6 = (61,... ,6n) (A, - p1,... A - A). Let o E (n be the unique
permutation so that 6,(1) > 6u(n) and 6 ,(i) = 6 ,(j) for i < j implies that -(i) <
-(j). Set D := {i E [n]: 6 ,(i) > 0 and (i = n or 6,(i) > 6 ,(i+1))}- Then for all i E D

we have sA-(,i,) s
,+(u,i) >s sA\s,,.

That A-(a, i) and p+(o, i) remain partitions for all i E D in Conjecture 2.3.5 just
requires checking some cases. The Schur function identities we have been studying
in previous section resolve some special cases of this conjecture. For instance, by
applying 5a to both sides and setting x1 = 0 in Theorem 2.3.2, we get the following
identity of Schur functions that all use the same set of variables, albeit involving skew
Schur functions.

Corollary 2.3.6. For A = (A,.., Ak) and 0 < t < k - 1,

,.-,AtAt+2-1,.Ak-) S(A 1 ,...,At,At+2-1 ,...,Ak-1)/1SA

+ S(Al-1,...,Ak-1)s(A1+1,...,At+1,...,Ak)-

Here v/1 denotes the skew shape of v minus its top-leftmost box.

But we can in fact obtain the following Schur positivity result that concerns only
regular Schur functions.

Proposition 2.3.7. Let c, r > 1 and 0 < t < r - 1. Then

s(Cr-1,C-1)s(Ct,(C-1)r-t-1) - s(c-1)rs((c+1)t,cr-t-1)

is Schur positive.

This proposition is a special case of Conjecture 2.3.5. In order to see why, let A =

((c + i)t, crt-1) and p = (c - 1)r. Then 6 = (2t, jr-t-1, -(c - 1)) and so a- is the
identity permutation. Note r - 1 E D, so with i = r - 1 we get A-(o, r - 1) =

(ct, (c - 1)r-t1) and bt+(u, r - 1) = (cr-1, c - 1). The conjecture says we should have

SA-(o,r-1)Sp+(o,r-1) !s ,\S, which is exactly what Proposition 2.3.7 asserts.

Proof of Proposition 2.3.7. : Applying Corollary 2.3.6 to the case in which A is the
rectangular partition cr, and using the skew version of Pieri's rule [33, Corollary
7.5.19] leads us to the following three cases:

1. If 1 < t < r - 2 then s(cr-1,c_1)s(Ct,(C-1)r-t-1) is equal to

[s(Ct-1,(c-1)r-t) + 8(Ct,(C-1)r-t-2,c-2) sCr + s(c-1)rS((c+1)t,cr-t-1).
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2. If t = 0 then s(cr-1,1)S(c1)r-1 = S((C-1)r-2,c-2)Scr + S(C-1)rScr-1.

3. If t = r - 1 then s(cr-1,c-1)scr-1 = s(cr-2,c_1)Scr + S(C_1)r(c+1)r-1.

Thus, because products of Schur functions are Schur positive (in other words, because
Littlewood-Richardson coefficients are nonnegative) we are done. E

Another example of a special case of Conjecture 2.3.5 is obtained from Theorem
2.3.3.

Corollary 2.3.8. Let v = (v1 ,... , Vk) be a partition and let 1 < t < k. Then

sVs(vJi,.,vt-1,Vt+1,...,Vk) - S(v1-1,..,Vt-1-1,Vt,.-.,Vk)s(Vl+1,.vti -1+1,vt+1 ... ,vk)

is Schur positive.

To see why Corollary 2.3.8 is a special case of Conjecture 2.3.5, we can take
A = (v1 +1, - ., Vt 1 + 1, Vt+1, ... , vk) and [ = (v 1 - 1,... , vt_ 1 - 1, Vt, ... Vk). Let o
be as in that conjecture. Note that 6i = 2 for i < t - 1 and 6i < 0 for i > t, so o-(i) = i
for i < t - 1 and t - 1 E D. Then the conjecture predicts sA-(at_1)sp+(,,t-l) >s sAsp.

But A-(u, t - 1) = (vi,..., v 1 , vt+ 1, ... , Vk) and p+(a, t - 1) = v so Corollary 2.3.8
indeed verifies this Schur inequality.

2.4 Balanced swap graphs

Recall the definition of balanced swap.

Definition 2.4.1. Let m and n be positive integers such that m > n. For J, J' E

([m+n]) we say that J' is a swap of J if J n J' = 0. Clearly the relation of being a
swap is symmetric. If J and J' are swaps of one another, we call the set P(J, J')
[m + n] \ (J U J') their pivot set. We say J' is a balanced swap of J if it is a swap of
J and that IJ n [p]I = J' ln [p]I for all p E P(J, J').

Consider the undirected graph Bm,n whose vertex set is (m Z]) and whose edges
are all {J, J'} such that J' is a balanced swap of J. We will refer to Bm,n as balanced
swap graph. In the case m - n = 1, we will sometimes write B, instead of Bn+1,n.

Figure 2-7 and Figure 2-8 show the balanced swap graphs B 4 ,3 and B4 ,2 respec-
tively.

The following theorem shows how the balanced swap graphs represent Schur func-
tion identities.

Let A = {ai > ... > an > 0}. For J = {ji < ... < j,} c [n], we denote by A(J)
the partition (aj, - (r - 1), aj2 - (r - 2), ... , air).

Theorem 2.4.2. Let B be a bipartite connected component of Bm,n with bipartition
B = B 1 LB2 . Then, for any set of nonnegative integers A = {a1 > ... > am+n > 0} E

(~n)' Iwe have

SA(J)SA(i) sA(J)SA(i)-
JEB1 JEB2
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Figure 2-7: The graph B4 ,3
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Proof. Let G be the grid graph Z2 with the source S = {Si, ..., Sm+n}, where S2i-1 =

s2i = (i - 1,0) for i e [n] and si = (i - n,0) for i E [2n + 1,m + n], and the sink
T = {ti, ..., tm+n}, where tj = (am+n+1-i, 0).

Fix I = 2[n]. By a similar argument to the proof of Corollary 2.2.5, we have

Z wt(I, J) = E wt(I, J).
JEB1  JEB2

Then the result follows from Proposition 2.3.1. E

The goal of this section is to understand the structure of Bm,n. It turns out that
the Bm,n behave very differently when m - n = 1 and m - n > 2. First, the graphs

Bn are always bipartite. Indeed ({J E ([2n+): 2 E J}, {J' E ([2n+1): 2 J'}) is a
bipartition of Ba, because if J and J' are balanced swaps of one another then their
pivot po is odd, so po # 2 and thus 2 must belong to exactly one of them. However
Bm,n are generally not; B4 , 2 is already not bipartite. Nevertheless, the following
proposition shows that there is at least one components of B,,n, m - n > 2, that is
bipartite.

We call an element J = {ji < ... < jn} special if Ji+ - ji is even for all i =

1,..., n - 1.

Proposition 2.4.3. The special elements of Bm,n form a connected components. This
component is bipartite.

Proof. Let B be the set of special elements of Bm,n. Let B' (resp. B") be the set
of J = {ji < ... < C C [m + n] such that all ji are odd (resp. even). Suppose J"
is a balanced swap of J' E B' with the pivot set P = {pi < ... < Pm-n}. For each
i E [m - n - 1], the interval I = [pi + 1 , pitl - 1] must have equal number of elements
from J' and J" and that T n I = J" n I. So the number of elements of I is even.
Since J' contains only odd numbers, we have J' n I = 'odd and so i" n I = ieven-
Therefore J" contains only even numbers. This shows that B' U B" is a bipartition
of B.

To show that B is indeed connected, we will show that every element of B is
connected to the element Jo = {1, 3, ... , 2n - 1}. Let J = {jj < ... < jn} # Jo be an
element in B'. Choose an index i such that ji - 2 E [m + nj \ J. (If there is no such i,
then J = J0 .) It is easy to see that J' = {ji + 1, ... ,ji_ + 1,ji - 1, ..., jn - 1} E B" is
a balanced swap of J and that J" = {ji, ... , ji-1,j - 2, ... , j. - 2} E B' is a balanced
swap of J'. So we found that J" is in the same connected component as J and has
the smaller sum than J. We can repeat this process until we get Jo. So the elements
of B' are in same connected component in B. Now for J = {ji < ... < jn} E B", we
have J' = {ji - 1, ... ,j,i - 1} E B' is a balanced swap of J, so J belongs to the same
component as B'. Thus B is a connected component of Bm,n. El

Next we partially give the number of connected components of Bm,n. The graphs
Bn decompose into many connected components, while the graphs Bm,n appear to
have much fewer connected components. The next proposition gives an explanation
of what these connected components are.
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Proposition 2.4.4. Two vertices J, J' E (t2n+'I) are in the same connected compo-
nent of B, iff Jeven = Jven or Jeven = 2[n] \ Jeven

Proof of Proposition 2.4.4: The "only if" direction of this proposition is clear since
the pivot jo = P(J, J') is always odd. So every swap from J changes all Jeven.
What needs to be checked is the "if" direction. Thanks to Darij Grinberg and Alex
Postnikov for showing us the proof of this implication.

Define b: ([2n+ 1) -+ [0, n] by

b(J) := maxfk E: [0, n]: I J n [2i]| i for all I < i < k}.

Fix K C [2n + 1even. Define J(K) := K U {i E [2n - 1]odd: i + 1 K}. Note that
J(K) is the unique vertex in B, which satisfies J(K)een = K and b(J(K)) = n. Set
K' := [2n + 1]even \ K. Then J(K) and J(K') are balanced swaps of one another with
pivot 2n + 1; so {J(K), J(K')} is an edge of Bn.

We claim that any J with Jeven = K is in the same connected component as
J(K) in B,. This proves the proposition because it follows that for any other I with

'even = K is also in this connected component, as in any J' with Jeven = K' by
the observation that J(K) and J(K') are connected. If b(J) = n then J = J(K)
and the claim is clear. So suppose b(J) < n. Then we claim there is some J' with
b(J') > b(J) such that J is in the same connected component as J'. To see this,
observe that either {2b(J) + 1, 2b(J) + 2} n J = 0 or {2b(J) + 1, 2b(J) + 2} J by
the definition (in particular, maximality) of b(J). In the first case, note that we can
define J' to be the swap of J whose pivot is 2b(J) + 1; this swap is balanced precisely
because IJ n [2b(J)] I = b(J). Then b(J') > b(J) because IJ' n [2i]I = IJ n [2i]I = i
for all 1 < i < b(J), and also IJ' n [2b(J) + 2]1 = b(J) + 1. In the second case, we
claim there is some i with i > b(J) and 2i + 1 J such that |J n [2i]I = i. Indeed,
this has to be the case because IJn [2b(J) +2]1= b(J) +2 but IJn [2n+ 1] = n. So
then we may define J' to be the swap of J whose pivot is 2i + 1, and b(J') ;> b(J). If
b(J') = b(J), then we find some J" with b(J") > b(J') by applying the first case to
J', which has {2b(J) + 1, 2b(J) + 2} n J' = 0. El

One immediate corollary of Proposition 2.4.4 is that the number of connected
components of Bn is 2n-1. Another corollary is that the size of the connected com-
ponent of Bn containing J E ) is (jeven)+( " However, the structure of
these connected components is in general quite complicated. For example, already for
the graph B3 has a cycle. In fact, we can exactly classify those connected components
of Bn which are acyclic. We will give a proof in the next section.

Proposition 2.4.5. Let J E ([2n]) with 2 E J. Then the connected component of
Bn containing J is acyclic iff max(Jeven) < min([2n + 1]even \ Jeven), i.e. Jeven = 2[r]
for some r E [n].

The number of the connected components of Bm,n is, on the other hand, still not
known. From experimental results, we have the following conjecture of the exact
number of connected components of Bm,n.
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Conjecture 2.4.6. Let n > 2 and m > n + 2 be integers. Then Bm,n has Lj + 1
connected components.

We end this section with the following conjecture, which is a stronger version of
2.4.2.

Conjecture 2.4.7. Let A = {ai > ... > am+n 0}. There is a function f
E(Bm,n) -+ S, where S is the semiring of Schur-positive symmetric functions, such
that

sA(J)SA(.) Z (e)
e

where the sum is taken over the edges e E E(Bm,n) of the form (J J'), J E ([mn).

In particular if J is a leaf of Bm,n and (J, J') is the only edge adjacent to J, then

sA(J')sA(i) - SA(J)SA() is Schur positive.

2.4.1 Proof of Proposition 2.4.5

Recall from Proposition 2.4.4 that the connected components of Bn correspond to the
subsets of 2[n] which contain 2. For X C [n] such that 1 G X, we let B,(X) be the
connected component

{J E [2n+ 1]) Jeven = 2X or Jeven = 2X}

of B,. We know that the number of vertices of Bn(X) is

n+1 n+ (n+2)
n X) =(k k +1 k+1I

where k = X. So Bn(X) is acyclic if and only if IE(Bn(X)) = ( 2) - 1, or equiv-

alently ZveV(Bn(x)) deg(v) = 2("n) - 2. We will show that this is the case precisely

when X = [k].

Let P(n) be the set of lattice paths from (0, 0) to (n + 1, n) where each step is
of the form (i, j) -+ (i + 1, j) or (i, j) -* (i, j + 1). We call a step (i, j) -+ (i + 1, j)

(resp. (i, j) -+ (i, j + 1)) an east step (resp. a north step). For P E P(n), we define
the weight of P, written wt(P), to be the number of steps of P from (i, i) to (i + 1, i).
We define the polynomial Pn(x1 , ... , Xn; q) by

Pn(Xi,..., X; q) = q wt(p) x
2 ... E

PEP(n)

where e is 1 if the (2i)th step is an east step and -1 otherwise. For example,
P2 (x, y; q) = q3 x-1 y- 1 + 2q2 (xy- 1 + x 1 y) + q(3xy + xy 1 + x-'y) (see Figure 2-
9).
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Figure 2-10: The paths in C(3) and their corresponding monomials.

Let C(n) be the set of lattice paths from (0, 0) to (n, n) which stays weakly below
the line y = x (i.e. the set of Dyck paths of length 2n). We define Cn(x 1,..., Xn) by

Cn(XI, ..., )Xn) = : 1 2y ny.--x
PEC(n)

where ci is 1 if the (2i - 1)"t step is an east step and -1 otherwise. For example
C3 (x, y, z) = x(yz + 2yz- 1 + y 1 z +-1 y- 1z-1) (see Figure 2-10).

For an n-tuple u = (u1 , u 2 , ..., un), we define uk and ku by

uk := (U 1 , 2 , ... , Uk-1), and ku := (uk+1, Uk+2, ... , un).

Proposition 2.4.8. Letx = (x 1, ... ,xn) be an n-tuple of variables andx-1 = (Xi- 1 ,...,x1).
Then Pn and Cn satisfy the recurrent relations

n

Cn(x) = xlCk l(xk1, ,X2-)Ck (X)
k=1

and

n

Pn(x; q) = qCn(x) + Z [qCk_ 1(xk)x- + Ck1((X-1))xk] - Pn-k( x; q).
k=1
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Proof. We start with the first relation. For any path P E C(n), we look at the first
step of the form (k, k - 1) -+ (k, k), i.e., the first north step which touches the line
y = x. The paths from (k, k) -4 (n, n) give us Cnk(kx). Consider the part of P from
(0, 0) to (k, k). Clearly the first and the last steps must be (0, 0) -+ (1, 0) (hence the
term x 1 ) and (k - 1, k) -4 (k, k), respectively. The part of P from (1, 0) to (k - 1, k)
lies strictly below the line y = x, so by moving it one unit to the left we have a path
P' in C(k - 1). However, by doing this, the even steps of P becomes odd steps of P',
and vise versa. This can be resolved by considering the path backward from (k - 1, k)
to (1, 0). So this part of P gives us Ck_1(e-1 , ., X~). The first identity is obtained
by summing over k from 1 to n.

Now we show the second relation. Let P E P(n) be a lattice path. If the path
does not touch the line y = x again after the first step, we get qCn(x). Suppose that
the first time the path P touches the line y = x is at (k, k). This means the path
from (0, 0) to (k, k) is either strictly below or strictly above the line y = x. In which
cases, we get the factor qCk_ 1 (xk)xk- and Ck_((x-l)k)xk, respectively. The paths
from (k, k) to (n + 1, n) give us P_(kX; q). E

Define h : {1, -1} -+ Z by

h(c) = ([x'] + [x-']) aPn(X; q)aq q=1

Since the set {1, -1} is obviously in a bijection with 2[n], by E 4 X = X(E)
{i : ci = 1}, we will use e and X interchangeably under this bijection. We denote
by c(X) E {1, -1}, where X E 2[n], the preimage of X under this bijection. For
E G {1, -1}n, we say that the length of E is f(E) = n. We let cEJ denote the number of
1's in c, i.e. cl := JX(E)J.

Proposition 2.4.9. h(E) is the sum of the degrees of the vertices of Bn(X).

Proof. For v E V(B,(X)), the degree of v is the weight wt(P) of the corresponding
path P = P(v) in P(n) since the steps which count toward wt(P) are the places we
could perform a balanced swap of v. Thus

h(E) = ([x'] + [x-']) E wt(P)x
PEP(n)

= Z wt(P) + wt(P)
P: e(P)=E P: E(P)=-E

= deg(v) + E deg(v) = deg(v).
v: vven=2X v: Tven=2X vEV(Bn(X))

So Proposition 2.4.5 is equivalent to:
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Proposition 2.4.10. Suppose c, = 1 and jej = r. Then

h(E)>2 n+2 -2,

and the equality holds iff E = (f, (-1)n-r).

By taking the partial derivative 9 on P, we get

= Cn(x) + 1 CkI( xkIPnk(kx; q)
k=1

+ [qCk-1 (Xk)X k + Ck-i ((X1l)k) Xk]

Let f (c) := [x']C,(xi, ... , Xn). Suppose 6l = 1. Then

[x q q= = f() + [1 (x')] ( x; 1)

+ [ [t(x)k Ckl(xk) . [k(X,)] (P-k (kx;
k: (E=- ( 1

=f (E) + ['(x')] ( n( Ix; 1

1) + Pn-k (kx;

+ E f(6k)
k: Ek=-l

[x q]aq q=1
= [1(x-)] aPn( x; 1) + Pn- 1 (

+ S [(x-)k]C_1((x-1
k: Ek=-l

= [(x-)] ( x; 1)+ ( ) +

x; 1))

). [k( -)(P - ( kX; 1aq

f(:k) q -- 1
k: fk= 1

f-k(kX 1

Therefore h(E) satisfies

h(c) = (1)+ h(c) + f (c) +
E f (6k) h(kC) + n 1)]

k: fk=-1 - ~

Every E E {1, -1} with 16l = r corresponds to a lattice path P = P(6) from

(0, 0) to (r, n - r) such that the ith step of P is an east step if qi = 1 and a north
step if ci = -1. This path P, in turn, corresponds to a partition which fits inside
the rectangle (rn-r) by taking the part above P but inside the rectangle with vertices
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(0, 0), (0, n - r), (r, n - r), and (r, 0). We denote this partition by p(e). For example,
if e = (1, -1, 1,1, -1, 1), then p(c) is the partition (3, 1) inside the rectangle (42).

Lemma 2.4.11. Suppose 61 = 1. Then f (c) is the number of partitions A which are
covered by p(1c).

Proof. Let n = 1(e). To prove this lemma, we first note that f(e) is the number of
lattice paths from (0, 0) to (n, n) with odd steps e that stays below the line x = y.
Consider the even steps J = ( 6 1, ... , 6n). Then f (E) is the number of n-tuples 6 =

(oi, ... , 6n_1, -1) E {1, -1}' satisfying

IE1l + ... + ek + 61 + ...-- k-1 2n - 2k + 1 (2.2)

for all k. On the other hand, the number of partitions covered by p(1 e) is the number
of n-tuples a = (1, a2 , ... , an) E {1, -1} satisfying

(k - 1) - 2(n - r) a2 + ... + ak 2+ ... ek (2.3)

for all k, where r = cEf. We claim that the map a 1 6 = (-a 2, ..., -an, -1) gives a
bijection between the set of possible J's and the set of possible a's. To verify this,
first we note that Ei + ... + En = 2r - n, given jel = r. Suppose 6 ( 6 , ... , n_1, -1)
satisfies (2.2). This is equivalent to

0 _ E2 + ... + ek -(a2+ -- ... + a) < 2n - 2k.

So the inequality to the right of (2.3) is satisfied. Furthermore we have

a2 +... + ak ! El+... + Ek - (2 n - 2 k + 1)

>2 61 + .. + En - (n - k + 1)
= 2r - n - (n - k + 1) = (k - 1) - 2(n - r),

which is precisely the inequality to the left of (2.3). On the other hand, suppose
a = (1, a2 , ..., an) satisfies (2.3). We have

(k - 1) - 2(n - r) < -(61 + ... + 4- 1) < 62 -- + -- .

Thus the inequality to the left of (2.2) is satisfied. Also from

(k - 1) - 2(n - r) + (61 + ...+ k 1 ) 0,

we obtain
61 + -.. + 41 el ... + En n - k + 1.

Hence

61 + ... + 4-1 +E + -- ...+ Ek n - k + 1 - (k+1 +-... -- En)

< 2n - 2k + 1.
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Therefore, the number of possible 6's is equal to the number of possible a's, which
finishes the proof. 0

Lemma 2.4.12. Suppose 61 = 1, 1(c) = n, and Ile = r. Then

f () + (,) (n +1-k) (n)
k: fk= - 11 

E

Proof. Let P(m, n) denote the set of lattice paths from (0, 0) to (iM, n). Fix a partition
A = (A 1, ... , Ar) with A, < n - r, represented as a fixed lattice path in P(n - r, r). We
will construct a bijection between the set P(n-r+1, r) and the set A of triples (i, a, /)
where i E [0, r], a is a lattice path from (0, 0) to (Ar+ 1-i, i) which lies weakly above
A, and 3 is a lattice path from (A,_i, i) to (n - r, r). Define ) : A -+ P(n - r + 1, r)
as follows. Given (i, a, /), we construct a lattice path P = 1(i, a, /) from (0, 0) to
(n - r + 1, r) by concatenating a, x, and /, where x is the path from (Ar+i-i, i) to
(Ar-i + 1, i). Here we regard / as a path from (Ar-i + 1, i) to (n - r + 1, r).

For P E P(m, n), we define the height of P to be the sequence ht(P) = a,...am,
where aj is the number of north steps before the jth east step. Now for P E P(n - r +
1, r), suppose that ht(P) = a,...an-r+l and ht(A) = b,...bn-r. Let k be the smallest
index such that ak < bk, or k = n - r + 1 if aj ; bj for all j. Removing the step
corresponding to ak (i.e. the (k + ak)th-step) from P, we get a path P' E P(n - r, r).
Suppose 1 is the largest index such that b, < ak (if b1 = ak, then 1 = 0). Let i = ak,
and let a and 3 be the paths with heights a1 ... a, and ak+1...an-r+1, respectively. Since
ai > bi for i < 1, a lies weakly above A. By this choice of 1, we have b, < b1+1 =
.. = bk_1 = a,+, = ... = ak < bk. So the corresponding path to the subsequence
b1+1l...bk1 is the path from (Ar+ 1-i, i) to (Ari-i+ 1, i), which are the ending point of a
and the starting point of /, respectively. Hence, (i, a, /) E A. We denote this map
by T : P(n - r + 1, r) -+ A. It remains to check that T o 1 and (D o I are the identity
on A and P(n - r + 1, r), respectively. Let P E P(n - r + 1, r) and (i, a, /) = ((P).
It is easy to see that 1(T(P)) = P since we add an east step of height i back when
applying 4D to (i, a, /), where the an east step of height i is removed from P when
applying T. So (J o 4 = idp(n-r+l,r). Suppose (i, a, /) E A and P = 1)(i, a, /). Then
the step that gets removed in the process of applying 4' to P is the step from (Ari, i)
to (Ar-i + 1, i) since it is the first step that lies strictly below A. Hence T o = idA.

Let ko < ... < kn-r-1 be the set {k : Ck = -1}. Let A = (A 1,..., Anr), with
A, < r, be the partition traced by the lattice path 'e. From above, we know that the
number of triples (i, a, /), where i E [0, n - r], a is a partition from which covered by
(An-r-i+1, ... , An-r), and / is a lattice path from (An,_i, i) to (r - 1, n -r), is |P(r, n -
r)| = ("). For i = n - r, the number of such triples is just the number of partitions
covered by A, which is p(1 c) = f(c). For i < n - r, the partition corresponding to the
sequence 1(Eki) is (An-r+1-i, ..., An-r) embedded inside the rectangle (An-r-i)i. Thus
the number of such triples (i, a, /) is f(cki) (n{,Ek). So we obtain the stated identity
by summing over i.
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We can rewrite the recurrence formula for h as:

h(e) = 2(I) + h(1 6) + E
k: Ek=-l

f (ek)h(k )

Lemma 2.4.13. Suppose c, = 1, f(c) = n, and jEl = r. Then

f()+ E f5W)
k:Ek=-1

(r

and the equality holds iff e = (1,, (-1)n-r).

Proof. By induction on n. If n = 0, there is nothing to prove. Suppose the inequality
holds for n. Let E = (C, a) where f(E) = n, IEI = r, and a E {1, -1}. If a = 1, then

f()+ f S (k) =6+
k:Ek=-1

f(,k)<(n)
k:ek=-1

Here the equality holds only when r = n, which means i = (1n+1). Now suppose
a = -1. Then

5 f(=k)
k:Ek=- 1

k f(E)+=f(6)< (n)k:Ek=-1

f() + E f(sk) < f() + rn <
1)

+ (n -- n+1

The equality holds iff E = (1r, (-1)n-r) and f(K)
condition E = (Ir, (_I1)n+1-r).

= (n"1), which is equivalent to

Now we prove our main claim alongside with another inequality.

Lemma 2.4.14. Suppose E 1 = 1 and IcI = r. Then

5 f(c')h( > 2 (
k: Ek=-l

n

and

h(E) > 2 n + 2 -2.
-- r + 1)

Each equality holds iff e = (vr, (-1)n-r).

Proof. By induction on the length of c. Assume both inequalities hold for all c of
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length up to n - 1. Suppose now that c has length n and ej = r. Then

1z f(Ek)h(kE) 2
k: Ek=-l

-2 ( f( 6 k)( k
k: Ek=-1

Using Lemma 2.4.12 on E := (61, ..., e 6, 1), we get

z f (k) n k+ 2) = (n
k: Ek=-1

+2)
-2 Z:

k: Ek=-l

+ 1) -f(C).

So the desired inequality reduces to

f(6)+ E f(k) (
k:ck=-l

which is precisely Lemma 2.4.13.
The other assertion is more transparent:

ES
k: Ek=-l

f (Ek)h(kC)

-2+2 (n+1
r +12 ++2. 2)

=2 (n + 3) - 2.
r + I/
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(6Mk) n k k+2
[( =-6 +I

h(c) = 2 n + I + h(IE) +
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