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Abstract

We introduce a frequentistic validation framework for assessment — acceptance or rejection — of the con-

sistency of a proposed parametrized partial differential equation model with respect to (noisy) experimental

data from a physical system. Our method builds upon the Hotelling T 2 statistical hypothesis test for bias

first introduced by Balci & Sargent in 1984 and subsequently extended by McFarland & Mahadevan 2008.

Our approach introduces two new elements: a spectral representation of the misfit which reduces the di-

mensionality and variance of the underlying multivariate Gaussian but without introduction of the usual

regression assumptions; a certified (verified) reduced basis approximation — reduced order model — which

greatly accelerates computational performance but without any loss of rigor relative to the full (finite el-

ement) discretization. We illustrate our approach with examples from heat transfer and acoustics, both

based on synthetic data. We demonstrate that we can efficiently identify possibility regions that characterize

parameter uncertainty; furthermore, in the case that the possibility region is empty, we can deduce the

presence of “unmodeled physics” such as cracks or heterogeneities.

Keywords: Validation; uncertainty quantification; hypothesis testing; partial differential equation; reduced

basis method; a posteriori error bound

1. Introduction

Parameterized models play a central role in engineering. Our focus here is parametrized partial differ-

ential equations (PDEs) that arise for example in heat transfer, solid mechanics, acoustics, fluid flow, and

electromagnetics. The parameters appear as coefficients in the partial differential equation and may represent

physical properties, interactions with the environment, or geometry. Often one set of parameters will serve
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to relate the PDE model to the actual Physical System (PS) of interest, while another set of parameters will

then serve to subsequently design or optimize or control the Physical System. Our interest in this paper is

the former.

There are many frameworks by which to relate a proposed PDE model to the Physical System of interest.

Parameter estimation [1, 2] and calibration (or “update”) [3, 4, 5] search for a best choice of parameters

relative to (typically noisy) experimental data. Validation [3] assesses the consistency of any candidate

parameter value, and hence the associated proposed PDE model, with respect to (typically noisy) experi-

mental data. In many cases validation will reduce the uncertainty in parameters through the identification

of a restricted “possibility” region; in other cases, for example in Non-Destructive Testing contexts [6], vali-

dation may signal an inappropriate model — inconsistent with the experimental data for any values of the

parameter. Both activities — calibration and in particular validation — play a central role in Uncertainty

Quantification (“UQ”). Our focus in this paper is on validation.

Validation procedures fall into two broad categories: Bayesian and frequentistic [7]. Bayesian validation

builds directly upon Bayesian parameter estimation [2, 4] — from experimental data to likelihood through

prior to posterior and finally credible regions [7]. The Bayesian approach is quite general and can yield

actionable information on many quantities of interest; however, the prior can be difficult to specify or

interpret [3, 8], and hence absolute conclusions can remain elusive. Frequentistic validation procedures [9, 8]

are typically constructed as statistical tests of appropriate hypotheses on bias which then permit acceptance

or rejection of a particular choice of candidate parameters. The frequentistic approach avoids the Bayesian

prior and can thus provide more rigorous or at least less subjective conclusions; however, Type II errors [10]

can typically not be controlled, and hence the implications are perforce restricted.

In this paper we consider frequentistic validation. The seminal work in frequentistic validation, due

to Balci and Sargent [9], is based on the multivariate Gaussian Hotelling T 2 test [11]. More recently,

McFarland and Mahadevan [8] extend and apply the Balci & Sargent approach to the thermal validation

challenge problem proposed by Sandia National Laboratory [12]. We shall consider in this paper two further

innovations to the methods proposed in [9, 8]: the first, (arguably) an improvement, is introduced to reduce

the dimensionality of multivariate Gaussian; the second, an extension, is introduced to permit more efficient

computation. We discuss each in turn.

As regards the first innovation, we develop the hypothesis test based not on pointwise data but rather on

“spectral” Legendre coefficients [13]. This approach has two advantages: it leads to a significant reduction

in the dimensionality of the multivariate Gaussian and hence permits more rigorous inference in particular
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of the variance (e.g., without further hypotheses); it permits inferences from fewer experimental realizations

(or replications) since the spectral coefficients implicitly average the data and hence reduce the variance, at

least for correlation scales small compared to the full observation window.

We emphasize that our approach differs from standard regression [14] in that we do not assume that

our truncated spectral expansion is unbiased: our inferences derive from a Linear Optimization problem

constrained by the Legendre coefficient joint confidence intervals. Note also that we do not assume uncor-

related noise and in fact we permit any Gaussian process [15]: of course, unlike the standard regression

framework, we can not simultaneously deduce bias and variance from a single realization; nevertheless, as

already indicated, relatively few replications will typically suffice.

Validation perforce requires the consideration of many candidate parameter values. In the PDE context,

the evaluation of the model by classical (in our case) finite element [16] methods can be very expensive. Our

second innovation is thus to replace the “truth” finite element discretization with a less costly surrogate: a

certified reduced basis approximation [17, 18, 19, 20, 21, 22, 23, 24] which provides not just an inexpensive

output prediction but also — in the sense of “verification” — an inexpensive but rigorous output error

bound. The reduced basis (RB) approach is efficient in the many–query and real–time contexts, both of

which are relevant in (calibration and) validation procedures. In order to incorporate the certified reduced

basis method into the frequentistic validation framework we consider a composite hypothesis [10, 9]. The

RB error bound is crucial in ensuring proper distinction between experimental noise, bias in the model

prediction, and numerical (reduced basis) error: without the RB error bound, we might conflate numerical

error with bias and hence reject parameter values which in fact are consistent with experimental data. (We

note that metamodels and reduced models are gainfully invoked [25, 8, 5, 26] in several calibration and

validation approaches, but only in a few studies [27] are rigorous error bounds considered.)

The rest of this paper is arranged as follows. In Section 2 we introduce the statistical framework —

a hypothesis test for bias — for our approach independent of any specific mathematical model or physical

system. In Section 3 we specialize the framework to the case in which our model is given by a proposed

parametrized PDE; in particular, we incorporate the reduced basis output and reduced basis output error

bound into our hypothesis test. In Section 4, we present numerical results for a transient thermal conduction

problem and a Helmholtz acoustics problem. In both cases we demonstrate the ability of our approach to

identify “possibility regions” based on many-query parameter sweeps over the parameter domain, and also

to deduce the presence of “unmodeled physics” (defects) in a Physical System.
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2. A Statistical Result

We introduce a compact domain Dν ∈ RPν ; in this paper we shall exclusively consider Pν = 1, and hence

we may write Dν ≡ [νmin, νmax]. We then define a (centered) Gaussian random process [15] G(ν, ω) such

that the mean is zero, ∫
dP(ω)G(ν, ω) = 0, ∀ ν ∈ Dν , (1)

and the average variance is unity,

1

νmax − νmin

∫
dP(ω)

∫
Dν
G2(ν, ω) dν = 1 . (2)

Finally, for given positive definite covariance kernel C, G satisfies

∫
dP(ω)G(ν, ω)G(ν′, ω) = C(ν, ν′), ∀ ν, ν′ ∈ Dν . (3)

Here dP(ω) indicates integration with respect to the probability measure. Note that the variance condition

on G, (2), represents a scaling constraint on the covariance C.

In actual practice and under suitable assumptions of C such a Gaussian process can be represented by a

Karhunen-Loève expansion [28]. We first find χ : Dν → R and λ ∈ R solutions of the eigenproblem

∫
Dν

C(ν, ν′) χ(ν′)dν′ = λχ(ν) (4)

with normalization
∫
Dν χ

2(ν)dν/(νmax − νmin) = 1.2 We may then express our random process as

G(ν, ω) =

∞∑
l=1

√
λlWl(ω) χl(ν) , (5)

where the Wl are independent normally distributed random variables with zero mean and unity variance.

Note we order the (positive) eigenvalues in decreasing magnitude (λ1 ≥ λ2 · · · ). The sum of the eigenvalues

is the integrated variance, and thus from (2) we conclude that

1

νmax − νmin

∞∑
l=1

λl = 1 .

2Note in actual practice it suffices to define (4) relative to a finite sum since in any event we shall sample the random process
only at a finite number of measurement points in ν.
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In practice we truncate the expansion (5) at L terms such that sum of the remaining eigenvalues λL+1, λL+2, . . .

is small compared to unity.

In our procedure we shall assume that the underlying noise or stochastic element is a Gaussian process.

However — and unlike kriging [29] — we will not need to know the details of the process in order to

construct our approximation or provide our statistical inferences. Nevertheless, for purposes of generating

representative synthetic data, we shall consider the convenient correlation function

C(ν, ν′) = Const exp(−|ν − ν′|/Λν) , (6)

where Λν is a specified correlation scale in ν. Here Const is chosen to ensure unity average variance over

Dν , (2). With increasing correlation scale the spectrum of (4) decreases more rapidly and we may choose

L correspondingly smaller — we may include fewer and fewer terms in the truncated Karhunen-Loève

expansion.

We shall also permit white noise. White noise may be informally viewed as a limit of the correlated

noise (6) as the correlation length Λν tends to zero. However, white noise does not admit the mathematical

representation (3)–(5) and rather must be treated as a special case. In particular, to specify (and generate)

the white-noise case we retain (1), we replace (2) with

1

νmax − νmin

∫
Dν

σ2(ν) dν = 1 , (7)

and finally we replace (3) by the condition

∫
dP(ω)G(ν, ω)G(ν′, ω) = 0, ∀ ν, ν′ ∈ Dν . (8)

Here σ2(ν) is the variance of the zero-mean Gaussian random variable G(ν, ω). Note in the homoscedastic

case (7) implies that σ2(ν) = 1. Unless otherwise stated, the white noise shall be presumed homoscedastic.

We now introduce a function δ : Dν → R. We then define, for “given” integrated variance ε, the random

process

Y (ν, ω) ≡ δ(ν) + εG(ν, ω) . (9)

Note that the expectation of Y (ν, ·) is δ(ν) from our assumption (1) on G. We emphasize that in our inference

procedure we will not need to know the magnitude of the average (over Dν) variance, ε.

We next introduce a set of “quadrature points” (ultimately measurement points) νm ∈ Dν , 1 ≤ m ≤M ,
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and associated positive quadrature weights ρm, 1 ≤ m ≤M . We then provide a “projection matrix”

w[i]
m =

ρm
νmax − νmin

Li

(
−1 + 2

(
νm − νmin

νmax − νmin

))
, 1 ≤ m ≤M, 0 ≤ i ≤ I , (10)

where Li : [−1, 1]→ R is the Legendre polynomial of order i [30]. The “Legendre coefficients” of δ are then

given by

δ[i] =

M∑
m=1

w[i]
m δ(νm), 0 ≤ i ≤ I . (11)

We note that if δ is a smooth function then we expect rapid decrease in the Legendre coefficients.

There is much freedom in the choice of quadrature (points and hence weights). In this paper we employ

the trapezoidal rule:

νm = νmin + (m− 1)∆ν, ρm = cm∆ν, 1 ≤ m ≤M , (12)

where ∆ν = (νmax − νmin)/(M − 1), and c1 = cM = 1/2, cm = 1 for 2 ≤ m ≤M − 1. Clearly there may be

some advantage to a Gauss-Legendre (or Gauss-Lobatto) quadrature [13], however the associated clustered

point distribution could be unnatural in an experimental implementation and we thus restrict attention to

low-order schemes.

Now let

Y exp
m (ω) ≡ Y (νm, ω), 1 ≤ m ≤M , (13)

be a realization ω of our random process (9): a particular set of experimental measurements of Y (ν, ω) at

the points νm, 1 ≤ m ≤M .3 We may then introduce

Z [i](ω) =

M∑
m=1

w[i]
m Y exp

m (ω), 0 ≤ i ≤ I ; (14)

we may view Z [i](ω) as a (noisy) approximation to the Legendre coefficient δ[i] of (11). It is instructive to

rewrite (14) in terms of our Karhunen-Loève expansion (now truncated at L terms): from (5), (9), (11), and

(14) we obtain

Z [i](ω) = δ[i] + ε

L∑
l=1

Wl(ω)

[√
λl

M∑
m=1

w[i]
m χl(νm)

]
, 0 ≤ i ≤ I . (15)

It then follows that the Legendre coefficient random vector, (Z [0], Z [1], . . . , Z [I])(ω), is (I+1)-variate normally

3Note we do not explicitly distinguish between a random variable and a (non-random) instance of the random variable as in
all cases the context should make the intent clear.
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distributed with mean (δ[0], δ[1], . . . , δ[I]) (see Theorem 3.3.3 in [31]). Note this conclusion also applies in the

white-noise case since each of the Z [i](ω), 0 ≤ i ≤ I, is a weighted sum of the same (no longer L, but rather)

M independent Gaussian random variables.

We next introduce an ensemble ofK realizations (presumed of course independent) ω1, . . . , ωK : in practice

this ensemble will take the form of K sets of M measurements each. We may then introduce the sample

mean of the Legendre coefficients over this ensemble as

Z
[i]

K =
1

K

K∑
k=1

Z [i](ωk), 0 ≤ i ≤ I , (16)

for Z [i](ω) given by (14). Similarly, the sample variance over the ensemble is given by

S [i]
K =

1

K − 1

K∑
k=1

(
Z [i](ωk)− Z [i]

K

)2

, 0 ≤ i ≤ I . (17)

(We shall not need the full sample covariance for reasons described below.)

It then follows from [11] that the intervals

I [i]
K ≡

Z [i]

K − Tγ

√
S [i]
K

K
,Z

[i]

K + Tγ

√
S [i]
K

K

 , 0 ≤ i ≤ I , (18)

represent joint 100γ% confidence intervals for the δ[i], 0 ≤ i ≤ I:

Pr
{
δ[i] ∈ I [i]

K , 0 ≤ i ≤ I
}
≥ γ . (19)

Here

Tγ ≡
√

(K − 1)(I + 1)

K − I − 1
F (γ, I + 1,K − I − 1) , (20)

where F (γ, ·, ·) denotes the γ quantile of the F distribution.

We make four points concerning this inference. First, we note that

I [0]
K × I

[1]
K × · · · I

[I]
K

represents a rectangular confidence region which encloses the strict elliptical confidence region [11] — the

ith dimension of this rectangular region is derived by maximizing the ith component of y ∈ RI+1, for
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i = 1, . . . , I + 1, with y constrained to reside on the elliptical confidence region from [11]. We prefer the

rectangular region in anticipation of the Linear Program introduced below; ultimately, however, the elliptical

region (or an oriented rectangular region) could be incorporated and would of course sharpen our results.

Second, we emphasize that our inference related to the I + 1 Legendre coefficients does not assume — in

contrast to a corresponding (I + 1)-term regression model [14] — that the bias is zero: our inference (19)

does not suppose that δ(ν) is exactly represented by the first (I + 1) terms of a Legendre expansion. Third,

we observe that typically the number of measurements M might be quite large compared to the requisite

number of Legendre coefficients I + 1; this will, in view of the denominator in (20), permit inference with

fewer replications than in pointwise approaches (e.g., McFarland & Mahadevan [8]). Finally, we implicitly

obtain variance reduction since the Z [i] are in some sense “moments” constructed as averages over the M

measurements; this further reduces the number of replications required.

We elaborate further on the variance reduction. We recall that the procedure defined above requires an

ensemble of K realizations (which we may also view as repetitions or replications) each of which comprises M

measurements. In general, given that we allow correlated errors — often the case, for example if ν represents

time or space — a single realization can not suffice. As a simple counterexample we might consider the case

in which G has infinite correlation scale: a single realization can not possibly distinguish signal from noise.

However, our procedure does nevertheless benefit from the M data points associated with each realization:

if G has relatively short correlation scale Λν — in the limit Λν → 0 we recover the standard regression

assumption [14] of white Gaussian noise — then the variance of the pseudo sample means Z [i](ω), 0 ≤ i ≤ I,

will be small and only very few realizations will be required in order to obtain an acceptably tight confidence

interval.

We now define

δmax ≡ max
m∈{1,...,M}

|δ(νm)| . (21)

We shall then wish to test the hypothesis

H ≡ {δmax ≤ B} (22)

for some positive constant B. We may view (22) as a hypothesis on bias; we introduce in the next section

the particular interpretation of bias relevant in our context.
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We now describe the rejection criterion. We shall reject hypothesis H if and only if

δ̂max > B , (23)

where

δ̂max = min
v∈R

max
m∈{1,...,M}

|vm| , (24)

and the constraint set R is given by

R =

{
v ∈ RM

∣∣∣∣ M∑
m=1

w[i]
m vm ∈ I [i]

K , 0 ≤ i ≤ I
}
. (25)

We shall denote by 1− γ (where γ here determines Tγ in (20)) the size of the test.

In particular, we now derive a bound for the Type I [10] error in

Proposition 2.1. The probability of rejection of hypothesis H when hypothesis H is in fact true is less than

or equal to 1− γ.

Proof. We take as given from the Proposition statement that we reject H but that H is true. In particular,

note that we presume we are in the situation in which the hypothesis H is true.

We first suppose that the condition E ≡ {δ[i] ∈ I [i]
K , 0 ≤ i ≤ I} is satisfied, which implies that δ(νm),

1 ≤ m ≤ M, is in the admissible set R. Since δ̂max is defined in (24), (25), as the minimum over v ∈ R of

maxm∈{1,...,M} |vm|, it follows that δmax ≥ δ̂max. But rejection of the the hypothesis H implies δ̂max > B,

and hence under the above conditions, that δmax > B. This implies that the hypothesis H is false, which

is a contradiction. Therefore, we conclude that E must be false — in other words “reject H but H is true”

implies E false.

Thus E false is a necessary condition for incorrect rejection of hypothesis H (Type I error). We conclude

from (19) that the probability of a Type I error is less than or equal to 1− γ.

Remark 2.1. We can not control the Type II error [10] — in which we accept hypothesis H when hypothesis

H is in fact false — though we do anticipate that for larger K (tighter confidence intervals) and larger I

(better estimates for δmax) the probability of Type II errors shall decrease. Similarly, we are not able to

quantify the power of our test.

Finally, we note that our test (23)–(25) can be efficiently computed. It is a standard procedure to

reformulate (24), (25), as a simple Linear Program (LP) in M + 1 variables and 2(M + I + 1) constraints as
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follows: δ̂max ≡ min c over (c, v1, . . . , vM ) ∈ RM+1, where (c, v1, . . . , vM ) ∈ RM+1 satisfies

−c ≤ vm ≤ c, m = 1, . . . ,M ,

I [i]
K,min ≤

M∑
m=1

w
[i]
m vm ≤ I [i]

K,max, i = 0, . . . , I .

Note each two-sided inequality represents two constraints.

3. PDE-Based Statistical Inference

We now proceed to the parametrized partial differential equation context. In addition to ν ∈ Dν which

is a control parameter (or set of parameters) we also introduce a parameter κ ∈ Dκ ⊂ RPκ (ultimately, we

shall wish to determine κ from data). We are given a proposed parametrized partial differential equation

model Mν,κ; this partial differential equation yields an exact (model-prediction) output s : Dν × Dκ → R.

In actual practice s may not be obtained analytically, and instead we resort to a high-fidelity finite element

[16] “truth” approximation Mν,κ
h (here h denotes the mesh size); this approximation yields a truth output

sh : Dν × Dκ → R. We presume that the truth approximation is sufficiently rich — sufficiently many and

judiciously chosen degrees of freedom (h sufficiently small) — such that the difference between s and sh is

negligible. Unfortunately, this truth approximation will also often be prohibitively costly: each evaluation

(ν, κ)→ sh(ν, κ) will be very expensive.

We thus introduce a certified reduced basis approximation [21, 32, 33, 34] which takes advantage of the

parametric definition and parametric structure of the problem to greatly reduce the computational cost in the

many-query and real-time contexts. We shall denote the N degree-of-freedom reduced basis approximation

by Mν,κ
N ; this reduced basis approximation yields a reduced basis output sN : Dν ×Dκ → R and a reduced

basis output error bound ∆N : Dν ×Dκ → R such that |sh(ν, κ)− sN (ν, κ)| ≤ ∆N (ν, κ), ∀ (ν, κ) ∈ Dν ×Dκ.

The reduced basis method accommodates an Offline-Online computational strategy which accepts “many-

truth” cost in the Offline stage in exchange for very rapid evaluation (ν, κ) → sN (ν, κ),∆N (ν, κ) in the

Online (many-query, real-time) stage. Note that in actual practice we consider a hierarchy of reduced basis

approximations Mν,κ
N , 1 ≤ N ≤ Nmax. In the context of our first application of the next section we shall

describe the key ingredients of reduced basis approximation and a posteriori error estimation.

We assume that our experimental output is given by the random Gaussian process

V (ν, ω) ≡ sPS(ν) + εG(ν, ω) , (26)
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where sPS(ν) represents the response of our Physical System. Note that ε and G are unknown to us: we

presume only that the random process G is Gaussian as described in Section 2.

We now wish to compare the output of our proposed parametrized PDE model Mν,κ
h to the measured

data V (ν, ω). We thus form the new random variable D(ν, κ, ω) ≡ V (ν, ω)− sN (ν, κ) or

D(ν, κ, ω) ≡ sPS(ν)− sN (ν, κ) + εG(ν, ω) . (27)

We then presume that we are given some candidate value κ = κ̂ in Dκ and define Y κ̂(ν, ω) ≡ D(ν, κ̂, ω) or

Y κ̂(ν, ω) ≡
[
sPS(ν)− sN (ν, κ̂)

]
+ εG(ν, ω) . (28)

We note that (28) has the same form as (9) but now δ(ν) ≡ δκ̂(ν) ≡ sPS(ν) − sN (ν, κ̂) has the particular

interpretation of the deviation or misfit between experiment and (reduced basis) prediction.

We now proceed to choose the number of measurements per realization, M , the associated measurement

and quadrature points νm, ρm, 1 ≤ m ≤ M , the order of the Legendre approximation I, and finally the

sample size K. We then perform the necessary experiments in order to evaluate the Z [i](ωk), 1 ≤ k ≤ K,

0 ≤ i ≤ I, of (14), and subsequently the Z
[i]

K , 0 ≤ i ≤ I, of (16). Note that in this context (13) should be

interpreted (for given κ̂) as Y exp
m (ω) ≡ V exp(νm, ω)− sN (νm, κ̂): for 1 ≤ m ≤M , we measure V exp(νm, ω) =

sPS(νm) + εG(νm, ω) and then subtract the reduced basis prediction sN (νm, κ̂).

Finally, we now set

Bκ̂ = max
m∈{1,...,M}

∆N (νm, κ̂) (29)

and we consider the hypothesis (22) with B ≡ Bκ̂: the bound in our test is now related to the maximum

reduced basis error bound over the measurements points νm, m = 1, . . . ,M . Note in this context our

hypothesis reads

Hκ̂ ≡
{
|δκ̂(νm)| ≤ Bκ̂, 1 ≤ m ≤M

}
. (30)

We then perform the statistical test of Section 2 for the selected confidence level γ.

If we accept the hypothesis we know that we can explain the difference between the experimental mea-

surements and the reduced basis prediction in terms of the reduced basis approximation error: the proposal

κ̂ should thus be included as a viable (or consistent) candidate for κ∗. We recall that we can not conclude

that the truth model is indeed valid simply because we do not reject a value κ̂: we do not control the Type

II error. On the other hand, if we reject the hypothesis then we know with confidence greater than γ that
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the proposed truth modelMν,κ̂
h is not consistent with the experimental data. In particular, the discrepancy

between experiment and model is larger than can be attributed to the error incurred in the reduced basis

approximation of the truth (or to statistical effects except with very low probability 1 − γ). The cause for

the discrepancy must thus be either a proposed value κ̂ which differs from the actual physical value κ∗ or

some physical effects that are simply not included in our proposed PDE model. Note that our hypothesis

can not distinguish between these two possibilities.

We now state this result more precisely in

Corollary 3.1. If we reject the hypotheses Hκ̂ of (30) then with confidence level greater than γ the proposed

truth model Mν,κ̂
h is not consistent with the experimental data.

Proof. To begin we note that with confidence level greater than γ

max
νm
|sPS(νm)− sh(νm, κ̂)|+ max

νm
|sh(νm, κ̂)− sN (νm, κ̂)|

≥ max
νm
|sPS(νm)− sN (νm, κ̂)|

> max
νm

∆N (νm, κ̂) , (31)

by the triangle inequality, (29), (30), and Proposition 2.1. Hence, since maxνm |sh(νm, κ̂) − sN (νm, κ̂)| ≤

maxνm ∆N (νm, κ̂), it is not possible that sPS(ν) = sh(ν, κ̂) for all ν ∈ Dν .

We may now consider many values of κ̂. (In actual practice, we would presumably only search in some

neighborhood of the (or a) nonlinear least-squares “misfit” minimizer provided by (in our implementations)

the Levenberg-Marquardt algorithm [35].) The set

Pκ ≡
{
κ̂ ∈ Dκ |Hκ̂ accepted

}
constitutes a parameter uncertainty region, or more optimistically a parameter “possibility” region: Pκ

includes all values of κ̂ for which the discrepancy between data and model prediction is consistent with the

reduced basis accuracy; note that our confidence level γ is associated with the test for a particular κ̂ and

hence is not joint over all κ̂ in Pκ. The possibility region Pκ will depend on the accuracy of the reduced basis

approximation, the values of γ, K, M and I, and of course also the sensitivity of the output to the parameters.

The test of hypothesis Hκ̂ for each κ̂ requires evaluation of sN (νm, κ̂), ∆N (νm, κ̂), 1 ≤ m ≤ M : these

calculations can be readily effected thanks to the extremely low cost of the Online reduced basis evaluation.

In essence, the reduced basis output approximation permits us to address the parameter uncertainty issue

12



— direct calculation of the truth output sh(νm, κ̂), 1 ≤ m ≤ M, for many κ̂ in Dκ would be prohibitive

(certainly in real-time); the reduced basis error bound , in conjunction with our hypothesis test, permits us

to nevertheless provide rigorous conclusions with respect to the truth approximation — we will not reject a

good parameter simply because the RB is not sufficiently accurate.

In the case in which Pκ is non-empty but relatively small (compared to the full admissible parameter

domain) the validation process has served to reduce the uncertainty in the model parameters. We should

again emphasize that acceptance of the hypothesis does not imply that the hypothesis is indeed true as we

do not control Type II errors. Furthermore, even if the hypothesis is true the proposed PDE model Mν,κ̂

may still not be generally correct since our validation test considers only a single scalar output or “Quantity

of Interest.” Nevertheless, successful validation is certainly a necessary condition for model fidelity.

Also of notable interest is the “Non-Destructive Testing” case in which the parameter possibility region

is empty: for all κ̂ ∈ Dκ, we reject our hypothesis. (Recall that we can no longer attribute a confidence level

to this “joint” outcome since our Type I error analysis considers only a single value of κ̂.) In this case we

would conclude that the misfit can not be attributed to reduced basis error (and most likely not to noise)

and hence that the physical system of interest must not be adequately represented by the proposed truth

PDE model.4 This situation is most instructive if we can interpret the unmodeled physics as changes to a

system such as the quasi-static appearance of defects or geometric variations relative to an initial baseline,

or perhaps manufacturing departures from nominal specifications; if our hypothesis is rejected for all κ̂ then

we can conclude that the system is indeed appreciably different from our reference or desired configuration.

This “detection” capability can be very effective as it permits us to exploit a relatively low-dimensional

reduced basis parametrization — Dν ×Dκ — to deduce potentially very high-dimensional (and important)

deviations — for example, the appearance of defects (e.g., voids or cracks or tumors) in a physical system.

Finally, we could also include a perturbative term on the right-hand side of our proposed partial differ-

ential equation to account for unmodeled physics. We may not know the specific details of the perturbation

(for example, spatial fluctuations in the thermal conductivity on a fine scale), but based on plausible as-

sumptions and our reduced basis stability factors we may be able to bound the effect of the perturbation

on the output. We can then include this additional “allowable deviation” in our choice of B in (22): now

B will be the sum of the reduced basis error and unmodeled physics contributions. We do not consider this

extension in the numerical results section here, but it is a possible direction for more robust treatment of

4We suppose here that Dκ is sufficiently large, or in any event includes all plausible parameter values, such that we can
safely attribute the rejections to unmodeled physics.
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(inevitable) unmodeled physics in future work.

4. Numerical Results

We illustrate the frequentistic uncertainty framework developed above for two example problems. The

first example is a transient thermal conduction problem with uncertain thermal conductivity parameters;

the second example is a Helmholtz acoustics problem. A libMesh-based implementation of the certified

Reduced Basis method [36, 37] is employed to generate our finite element and RB numerical results.

4.1. Transient Thermal Conduction

Proposed PDE Model

We consider transient thermal conduction in the domain depicted in Figure 1. We consider two layers of

material Ω1 and Ω2 with respective parametrized conductivities κ1 and κ2; these two layers are affixed to a

substrate Ω0 with specified (normalized) conductivity κ0 ≡ 1. We impose a heat flux on the surface and we

take as our output the average temperature over an adjacent “measurement region,” Ωme, as a function of

time. We now present the mathematical statement of the proposed parametrized PDE model. Note that the

proposed parametrized PDE model shall include both the equation for the field as well as the prescription

for the output.

We consider the computational domain Ω ≡ Ω0 ∪ Ω1 ∪ Ω2, where Ω0 ≡ (1, 10) × (0, 10), Ω1 ≡ (0, 0.5) ×

(0, 10), and Ω2 ≡ (0.5, 1) × (0, 10). We define Γin ≡ {x ∈ ∂Ω: x1 = 0 and x2 ∈ (4.5, 5.5)}, Γ∞ ≡ {x ∈

∂Ω: x2 = 0 or x2 = 10 or x1 = 10}, and the Sobolev space X ≡ {v ∈ H1(Ω): v = 0 on Γ∞}. We consider

the time interval t ∈ [0, tf ], where tf = 5; we divide the time interval into J = 100 subintervals of equal

length ∆t = 0.05 and let tj ≡ j ∆t, 0 ≤ j ≤ J . We consider the two-dimensional parameter domain

κ ≡ (κ1, κ2) ∈ Dκ ≡ [0.2, 5]2. Note for this problem ν from Section 2 corresponds to time (hence νmin = 0

and νmax = tf ) and κ from Section 3 corresponds, in fact, to κ.

We first consider Mν,κ, the (semidiscrete backward Euler) weak form of the governing PDE: For κ ≡

(κ1, κ2) ∈ Dκ and j = 1, . . . , J , find u(tj , κ) ∈ X that satisfies

∫
Ω

u(tj , κ)− u(tj−1, κ)

∆t
v +

∫
Ω0

∇u(tj , κ) · ∇v +

2∑
i=1

∫
Ωi

κi ∇u(tj , κ) · ∇v =

∫
Γin

v, ∀ v ∈ X . (32)

We also introduce the output functional

`(v) =
1

|Ωme|

∫
Ωme

v, ∀ v ∈ X , (33)
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Figure 1: The transient thermal conduction problem. The origin of the x = (x1, x2) coordinate system is
the lower left corner.

where Ωme ≡ (0, 0.2) × (4.5, 5.5); our output is then given by s(tj , κ) = `(u(tj , κ)) for 0 ≤ j ≤ J . Note we

apply zero initial conditions on the temperature.

To obtainMν,κ
h we now replace X in (32) with a truth finite element space Xh ⊂ X with dim(Xh) = 3,009

degrees of freedom: For κ ≡ (κ1, κ2) ∈ Dκ and j = 1, . . . , J , uh(tj , κ) ∈ Xh satisfies

∫
Ω

uh(tj , κ)− uh(tj−1, κ)

∆t
v +

∫
Ω0

∇uh(tj , κ) · ∇v +

2∑
i=1

∫
Ωi

κi∇uh(tj , κ) · ∇v =

∫
Γin

v, ∀ v ∈ Xh . (34)

The truth output is then given by sh(tj , κ) = `(uh(tj , κ)) for 0 ≤ j ≤ J .

The RB approximation uN (tj , κ) also inherits the Galerkin formulation from (32), though now the ap-

proximation space is the RB space XN : For κ ≡ (κ1, κ2) ∈ Dκ and j = 1, . . . , J , uN (tj , κ) ∈ XN satisfies

∫
Ω

uN (tj , κ)− uN (tj−1, κ)

∆t
v +

∫
Ω0

∇uN (tj , κ) · ∇v +

2∑
i=1

∫
Ωi

κi ∇uN (tj , κ) · ∇v =

∫
Γin

v, ∀ v ∈ XN . (35)

The RB output is given by sN (tj , κ) = `(uN (tj , κ)) for 0 ≤ j ≤ J . In general, dim(XN ) = N ; for our

particular problem the RB space XN is of maximum dimension (N ≤ ) Nmax = 40. We note that, for given

κ ∈ Dκ, in the Online stage — relevant to many queries — it will be 109× faster to evaluate the RB (N = 40)
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output and output error bound, κ→ sN (tj , κ),∆N (tj , κ), than to directly evaluate the truth, κ→ sh(tj , κ).

Recall that |sh(tj , κ)− sN (tj , κ)| ≤ ∆N (tj , κ), 0 ≤ j ≤ J , κ ∈ Dκ : ∆N (tj , κ) is a rigorous error bound.

We briefly pause to summarize the key aspects of the reduced basis (RB) methodology. The RB ap-

proximation space is developed by a “POD-Greedy” algorithm [33] which selects an adaptive combination

of solution “snapshots” in time and parameter; then, as indicated in (35), the RB solution is obtained by

Galerkin projection over XN . The dimension of the reduced basis space is small because, first, we choose

a space particularly focused on the temporal and parametric behavior of interest, and second, because the

Galerkin projection chooses an optimal member from this space. As already discussed, in actual practice

the accuracy of the RB approximation is assessed by our a posteriori error bound ∆N (tj , κ), 0 ≤ j ≤ J :

this error bound takes the form of the sum of residuals (over time) divided by a stability constant [32]; the

former reflects the extent to which the RB solution satisfies the truth equations, while the the latter reflects

the amplification (or attenuation) of the error by the partial differential operator.

The essential computational aspect of the RB approximation is the Offline-Online decomposition [21].

This decomposition in turn follows from a rather general hypothesis on the parametric form of the partial

differential equation — an “affine” property [21] — which is indeed satisfied by all the examples in this

paper. In the Offline stage, which is expensive and performed only once, we generate the RB space XN ; we

also pre-compute and store in a relatively small Online Dataset various colateral quantities — for example,

parameter-independent “proto-stiffness” matrices. In the Online stage, for any new κ, we invoke the Online

Dataset to evaluate the RB output and the RB error bound — for example, we form the requisite parameter-

dependent stiffness matrix as a parameter-weighted sum of proto-stiffness matrices. The operation count for

this Online stage — thanks to the precomputations of the Offline stage — depends only on N , the very low

dimension of the RB space, and not on dim(Xh), the very high dimension of the finite element space. It is

the Online stage which is invoked when we consider many different parameter values κ̂ in the hypotheses

associated with the possibility region Pκ.

We now apply our statistical framework to this proposed parametrized PDE model. We consider two

cases below. In the first case we assume that the physical system (PS) is fully modeled by the proposed PDE;

we perform validation hypothesis tests to determine which values of the conductivities κ are consistent with

(synthetic) experimental data. In the second case we consider “unmodeled physics”; we introduce a physical

system (PS′) which does not correspond to the proposed parametrized PDE for any choice of parameters.

Note we of course assume that we are unaware of the “unmodeled physics”: the validation procedure should

inform us that the physical system PS′ can not be modeled by the proposed PDE.
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Figure 2: Possibility regions for ε = 0.005, γ = 0.95, K = 10, M = 101, I = 0 and (a) N = 10 and
(b) N = 40; κ∗ ≡ (4, 1) is indicated in each plot with a cross.

Fully Modeled Physics

We must first “construct” our Physical System PS. Throughout this section we set sPS(tj) ≡ sh(tj , κ∗)

for the reference parameter κ∗ ≡ (4, 1); we then generate synthetic realizations of the form V exp(tj , ω) ≡

sPS(tj)+εG(tj , ω), 0 ≤ j ≤ J . Here the Gaussian process G(t, ω) is synthesized either as homoscedastic white

noise according to (7),(8) or for Λν > 0 by the Karhunen-Loève expansion (5); note we shall colloquially

refer to white noise as Λν = 0. We consider the proposed PDE (32) so that the RB output sN is determined

by (35), and our hypothesis tests are based upon Y κ̂(tj , ω) = [sPS(tj)− sN (tj , κ̂)] + εG(tj , ω). We consider

I = 0 — a single Legendre mode — unless otherwise indicated.

We first demonstrate the effect of the choice of N on the possibility region. We set ε = 0.005 and

generate K = 10 realizations of V exp(tj , ω), 0 ≤ j ≤ J , for a homoscedastic white noise Gaussian process

G; we consider M = J = 101 samples in time. We then perform hypothesis tests on a 100 × 100 uniform

grid of parameters in Dκ. Figure 2 shows the (γ = 0.95) possibility region for N = 10 and N = 40. Note

that the reference parameter κ∗ is indeed included in the possibility regions of Figure 2 — we do not reject

a true hypothesis — as we should justifiably expect for our confidence level of γ = 0.95. The reduction in B

which results from an increase in the fidelity of the RB model leads to a much sharper characterization of

the parametric uncertainty in the problem. We shall henceforth employ only the N = 40 RB space.

We next consider the effect of K and M , still with homoscedastic white noise. Figure 3(a) is a repeat

of Figure 2(a) to provide a baseline for K = 10 and M = 101. In Figure 3(b) we consider K = 2 and

M = 101: the reduction in K has relatively little effect here because the noise is uncorrelated — the large

M compensates for the small K. Figure 3(c) presents the possibility region for K = 2 and M = 6 (equi-
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Figure 3: Possibility regions for homoscedastic white noise with ε = 0.005. We set γ = 0.95, I = 0, N = 40
and (a) K = 10, M = 101; (b) K = 2, M = 101; (c) K = 2, M = 6.

distributed in time), and in this case the possibility region expands significantly because we do not have

enough data samples. In short, for white noise, large M leads to variance reduction because our calculation

of the “moment” Z
[0]

K is based upon M independent samples.

We repeat the above study of the effects of K and M but now with correlated noise defined according

to (6) with Λν = 1. We now observe in this correlated noise case — and unlike the white noise case — that

for K = 2, either for M = 6 (Figure 4(c)) or M = 101 (Figure 4(b)), the possibility region is significantly

larger than for K = 10, M = 101 (Figure 4(a)). Here the M temporal samples within a given “experiment”

(or realization) are correlated and therefore, compared to the white noise case of Figure 3, we require more

independent realizations (larger K) to reduce the variance of Z
[0]

K .

Finally, we return to the homoscedastic white noise case and demonstrate the effect of changes in the

choice of I. We observe from Figures 5(a) (I = 0) and 5(b) (I = 4) that for I = 4 we obtain a much
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Figure 4: Possibility regions for correlated noise (Λν = 1) with ε = 0.005. We set γ = 0.95, I = 0, N = 40
and (a) K = 10, M = 101; (b) K = 2, M = 101; (c) K = 2, M = 6.
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Figure 5: Possibility regions for homoscedastic white noise with ε = 0.005. We set γ = 0.95, K = 10,
M = 101, N = 40 and (a) I = 0; (b) I = 4; (c) I = 8.

sharper characterization of the possibility region — thanks to the higher fidelity characterization of δ(t).

However, Figure 5(c) shows that for I = 8 we again increase the size of the possibility region: the culprit

is the denominator of (20); we would need more independent experiments (larger K) in order to accurately

characterize the (I = 8) 9-variate normally distributed data. We note from our “best result” Figure 5(b) that

there is greater relative uncertainty in (less sensitivity of the output to) κ2: the first layer enjoys undivided

attention for the shorter times during which the thermal penetration depth has not yet reached the second

layer. Note that ε = 0.005 corresponds to a relative output noise of roughly 1%.

Unmodeled Physics

As already indicated, in our unmodeled physics scenario the proposed parametrized PDE is described, as

before, by (32). In order to construct our unmodeled physics and synthetic “experimental” data, however,

we shall require a new PDE model which, of course, must include the unmodeled physics — in our case a
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Figure 6: Transient thermal conduction in a domain which contains a crack, Γcrack, of length Lc between Ω1

and Ω2.

crack. This new PDE model shall be denoted the reference PDE model; for our particular problem here,

the reference PDE model, described in Figure 6, shall carry a superscript “cracked.” In this “cracked” PDE

model we introduce a crack, Γcrack, of length Lc between Ω1 and Ω2 (centered at x2 = 5.0). We apply zero

flux boundary conditions on the surface of the crack; the weak form is then given by (32) except that the

domain Ω is replaced by Ω′ = Ω\Γcrack (the zero flux condition is natural). Now scrack
h (tj , κ∗, Lc) shall denote

the output associated with the truth finite element approximation — defined in the same way as (34) except

now the integrals are performed over Ω′ — for the “cracked” PDE system with crack length Lc. We now set

the output of a “cracked” Physical System, PS′, to be sPS′
(tj) ≡ scrack

h (tj , κ∗, Lc); we again set κ∗ ≡ (4, 1).

The experimental realizations are then generated by V exp(tj , ω) ≡ sPS′
(tj) + εG(tj , ω), 0 ≤ j ≤ J , where the

Gaussian process G(tj , ω) is calculated according to Section 2. We again consider the proposed PDE (32)

so that the RB output sN is determined by (35), hence Y κ̂(tj , ω) = [sPS′
(tj) − sN (tj , κ̂)] + εG(tj , ω) — in

this Non-Destructive Testing scenario we perform model validation with respect to the baseline “idealized”

system to test for the presence of perturbations or defects.

Figure 7 shows the possibility regions with cracks of length Lc = 1 and Lc = 1.5. Figure 7(a) illustrates

that the Lc = 1 crack results in a shift in the possibility region so that it no longer contains κ∗; we note that

the shift is predominantly toward lower κ1 as the crack results in a reduction in heat penetration through

Ω1. Figure 7(b) shows that with Lc = 1.5 we obtain an empty possibility region. Hence in this case, with
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Figure 7: Possibility regions for homoscedastic white noise with ε = 0.005. We set γ = 0.95, K = 10,
M = 101, N = 40, I = 4 and (a) Lc = 1; (b) Lc = 1.5.

a confidence level of γ = 0.95, we have deduced the presence of unmodeled physics: (34) is not a good

model for PS′. We note that for sufficiently large N , K, and I it would also be possible to obtain an empty

possibility region with the smaller Lc = 1 crack, though of course this would increase the computational cost

of our procedure.

4.2. Helmholtz Acoustics

Proposed PDE Model

We consider a Helmholtz acoustics impedance model in the domain Ω shown in Figure 8. In the proposed

PDE model, we choose as parameters the frequency of the (time-harmonic) sound field, k, and the complex

impedance of the wall Z = Zr + iZi (i =
√
−1); we provide a sound source at a speaker diaphragm, and we

take as our output the average pressure at the microphone. Similar to the previous example, the proposed

parametrized PDE model shall also include both the equation for the field and the prescription of the output.

The relevant domain boundaries are the speaker source (Γin), the wall of unknown impedance (Γw), the

truncated exterior (Γrad), and finally the microphone Γmic. The speaker diaphragm is of length a = 1.0, the

wall is of length L = 12, and the semicircular truncated boundary is of radius Rrad = 6 (measured relative

to the midpoint of the wall); the distance from the diaphragm to the wall is 4, and Γmic is halfway between

the diaphragm and the wall. Our ν in Section 2 is now k with Dk ≡ [1, 2], and κ of Section 3 is now (Zr, Zi)

(impedance, abbreviated as Z) with (Zr, Zi) ∈ DZ ≡ [1, 4]× [0, 1].

We first consider Mν,κ, the weak form of the governing PDE: for (k, Z) ∈ Dk × DZ , find the acoustic
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Figure 8: Acoustics impedance problem.

pressure φ(k, Z) ∈ X that satisfies

∫
Ω

∇φ(k, Z)·∇v−
∫

Ω

k2φ(k, Z)v+

∫
Γw

ik

Zr + iZi
φ(k, Z)v+

∫
Γrad

(
ik+

1

2Rrad

)
φ(k, Z)v = −

∫
Γin

ikv, ∀v ∈ X,

(36)

where X is the Hilbert space X ≡ {v ∈ H1(Ω)} (over complex-valued fields) and v denotes the complex

conjugate of v. We note that the third and fourth terms of the left-hand side, and the right-hand side of (36),

represent the impedance boundary condition on the wall Γw, the first-order radiation boundary condition on

the truncated exterior boundary Γrad, and the source at the speaker diaphragm Γin, respectively. We then

consider the output

s(k, Z) ≡ `(φ(k, Z)) =
1

|Γmic|
Re

{∫
Γmic

φ(k, Z)

}
, ∀v ∈ X, (37)

which measures the real part (Re) of the averaged pressure over the (microphone) strip Γmic.

To obtain Mν,κ
h we now replace X with a truth finite element space Xh ⊂ X of dimension dim(Xh) =

14,126 degrees of freedom: For k ∈ Dk and Z ∈ DZ , φh(k, Z) satisfies

∫
Ω

∇φh(k, Z) · ∇v −
∫

Ω

k2φh(k, Z)v +

∫
Γw

ik

Zr + iZi
φh(k, Z)v

+

∫
Γrad

(
ik +

1

2Rrad

)
φh(k, Z)v = −

∫
Γin

ikv, ∀ v ∈ Xh. (38)
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The truth output is then given by sh(k, Z) = `(φh(k, Z)).

We then denote the RB approximation space as XN and define our RB approximation: For k ∈ Dk and

Z ∈ DZ , φN (k, Z) satisfies

∫
Ω

∇φN (k, Z) · ∇v −
∫

Ω

k2φN (k, Z)v +

∫
Γw

ik

Zr + iZi
φN (k, Z)v

+

∫
Γrad

(
ik +

1

2Rrad

)
φN (k, Z)v = −

∫
Γin

ikv, ∀ v ∈ XN ; (39)

our RB output is then given by sN (k, Z) = `(φN (k, Z)). We generate the RB space XN by the Greedy

algorithm: we require dim(XN ) ≡ Nmax = 35 in order to satisfy an error bound tolerance of 10−5. We

note that, for given (k, Z) ∈ Dk ×DZ , in the Online stage — relevant to many queries — it will be roughly

1,000× faster to evaluate the RB (N = 35) output and output error bound, (k, Z) → sN (k, Z), ∆N (k, Z),

than to directly evaluate the truth, (k, Z) → sh(k, Z). Recall that |sh(k, Z) − sN (k, Z)| ≤ ∆N (k, Z),

∀ (k, Z) ∈ Dk ×DZ : ∆N (k, Z) is a rigorous error bound.

We now apply our statistical framework to this proposed PDE model. We also consider two cases, as in

the previous example: a “fully modeled physics” case in which we assume that the physical system (PS) is

fully modeled by the proposed PDE model and validation hypothesis tests are performed to determine which

values of the impedance are consistent with (synthetic) experiment data; and an “unmodeled physics” case

in which a physical system (PS′) is introduced which does not correspond to the proposed parametrized PDE

for any choice of parameters. Note we of course assume that we are unaware of the “unmodeled physics”: the

validation procedure should inform us that the physical system (PS′) can not be modeled by the proposed

PDE. The confidence level for both cases is γ = 0.95.

In what follows, we shall employ a similar approach as in the previous section except that now each

realization corresponds to measurements at M different frequencies (rather than different time levels). The

interval k ∈ [1, 2] is divided into J = 7 subintervals of equal length ∆k = 1/7 and we set kj = 1 + j∆k,

0 ≤ j ≤ J ; measurements are performed for each frequency kj , 0 ≤ j ≤ J .

Fully Modeled Physics

We first “construct” our Physical System PS. We set sPS(kj) ≡ sh(kj , Z∗) for the reference parameter

Z∗ ≡ (Z∗r , Z
∗
i ) ≡ (3.5, 0.75); we then generate realizations V exp(kj , ω) = sPS(kj) + εG(kj , ω), 0 ≤ j ≤ J , for

homoscedastic white noise as prescribed by (7), (8). We consider the proposed PDE (36) so that the RB

approximation is determined by (39) with N = 35, and our hypothesis tests (for any given candidate Ẑ) are

24



1 1.5 2 2.5 3 3.5 4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

ZZii

ZZrr

(a)

1 1.5 2 2.5 3 3.5 4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

ZZii

ZZrr

(b)

Figure 9: Possibility regions for (a) ε = 0.05 and (b) ε = 0.01; Z∗ ≡ (3.5, 0.75) is indicated in each plot with
a cross.

based upon Y Ẑ(kj , ω) = [sPS(kj)− sN (kj ; Ẑ)] + εG(kj , ω). For all the results below, we consider γ = 0.95,

K = 8 realizations, M = J + 1 = 8 samples in frequency, and I = 3 corresponding to I + 1 = 4 Legendre

modes. Our possibility region is constructed on a uniform 100× 100 grid of parameters in DZ .

In Figure 9(a) and 9(b) we present the possibility regions for ε = 0.05 and ε = 0.01, respectively.

We observe that the reduction in noise level leads to a much sharper characterization of the parametric

uncertainty. For this “best” choice of test options (N,K,M, I) we obtain a rather small possibility region

for ε = 0.01. Note that ε = 0.01 corresponds to a relative output noise of roughly 2%.

Unmodeled Physics

In our unmodeled physics scenario the proposed parametrized PDE is described, as before, by (36). In

order to construct our modeled physics and synthetic “experimental” data, we shall define a new “reference”

PDE which includes the unmodeled physics — in our case, a heterogeneous wall: this new reference PDE

model, which corresponds to the model shown in Figure 10, shall carry a superscript “2-part wall.” In

particular, we now assume that the wall consists of two parts: the upper part, Γw,top, with real infinite

impedance (hard wall); and the lower part, Γw,bot, with impedance (Zr, Zi) ∈ DZ . The “2-part wall” PDE

weak form is thus the same as in (36), except now the integral over Γw is taken only over the lower half of

the wall, Γw,bot. We now set sPS′
(kj) ≡ s

2-part wall
h (kj , Z∗), where s

2-part wall
h (kj , Z∗) denotes the “2-part

wall” truth finite element output for Z∗ ≡ (3.5, 0.75). Finally, we take V exp(kj , ω) ≡ sPS′
(kj) + εG(kj , ω),

0 ≤ j ≤ J , for G described by homoscedastic white noise. We now pursue our hypothesis tests with

Y Ẑ(kj , ω) = [sPS′
(kj)−sN (kj ; Ẑ)]+ εG(kj , ω) for sN evaluated from (39) for N = 35: we perform validation
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Figure 10: The “2-part wall” acoustics impedance problem.
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Figure 11: Possibility regions for (a) ε = 0.05 and (b) ε = 0.01.

with respect to the baseline homogeneous wall to detect the presence of heterogeneities.

Figure 11 shows the possibility regions with noise levels ε = 0.05 and ε = 0.01. Figure 11 illustrates that

for large noise the difference between V exp and sN results in a shift in the possibility region such that the

possibility region no longer contains Z∗; however, for small noise, we obtain an empty possibility region.

In the former case the test (incorrectly) reconciles the data through an artificially large impedance. In the

latter case we have deduced the presence of unmodeled physics — a wall with non-uniform impedance.
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