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Abstract

The coming changes to the electric utility industry require a reformulation of many
basic power system concepts such as frequency control, dynamic stability, and reserve.
One such concept is unit commitment, which is the process of selecting which gener-
ators will be used to meet the system demand and reserve requirements. At present,
a single utility performs unit commitment for a large number of generators in a given
area; however, after deregulation most generators will be independently owned. In
such an environment, each owner will perform unit commitment independently in
order to maximize profit, having price as an input. Conceptually, unit commitment
under deregulation has many fewer decision variables, allowing many more features,
such as stochastic inputs, to be included that are not considered in most present
implementations.

The proposed unit commitment formulation includes generation limits through
truncated probability distributions. A price model for electricity is used to make
price predictions over the planning horizon, accounting for the expected change in
demand at different hours of the day. A solution can be calculated directly by dynamic
programming. Ordinal optimization techniques using Monte Carlo simulations may
also be applied, giving a solution which is not 100% guaranteed optimal but may be
determined much more quickly. Finally, many extensions of unit commitment may
also be added. Prior forward contract agreements do not affect the optimal unit
commitment decision; however, forward contracts can be used to significantly reduce
risk. Participation in reserve markets offers opportunities for additional profit, while
loads are offered a choice of reliability levels at different prices. Transmission line
congestion may affect the price model, reducing profits; limits on power sales may
also be imposed.

Thesis Supervisor: Marija D. Ilié
Title: Senior Research Scientist
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Chapter 1

Introduction

The coming structural changes in the electric utility industry require that power
suppliers change the procedure by which both financial market and generator unit
decisions are made. Industry deregulation will lead to the formation of markets for
electric energy. At present, no mature energy markets exist. The principal trend is
toward bid-based power pools [1]; however, this thesis will also consider other possible
market structures, such as bilateral contracts [2, 3].

This thesis focuses on the unit commitment problem in transition from a regulated
environment to one that is deregulated and market-driven. Unit commitment is the
process by which generating units are turned on and off. Unit commitment decisions
are subject to many constraints, such as minimum up and down times.

The thesis begins by presenting a generalized formulation of the present unit com-
mitment problem in Chapter 2. The complexity of the generalized problem clearly
illustrates the simplifications that are made in order to make the problem tractable.
In particular, the stochastic aspects of unit commitment are often reduced to a deter-
ministic form, which drastically reduces computation but also leads to a suboptimal
solution. Interruptible power contracts are also presented; these contracts are most
often associated with the deregulation movement, but they can also be included in a
regulated environment.

Chapter 3 describes the likely forms of the spot market under deregulation. Two
basic market structures are presented, and the unit commitment problem for an in-
dividual power producer under each scenario is presented. This problem is one of
choosing whether to invest a fixed startup or shutdown cost now in order to max-
imize expected profit over the near term in the presence of uncertainties [4]. The
unit commitment problem under deregulation has many fewer decision variables, and
consequently many more characteristics can be included. In particular, a stochas-
tic approach becomes feasible. Additionally, under the assumption of a competitive
market, the unit commitment problem for an owner of multiple generators may be
solved by optimizing each generator individually; such an approach further reduces
computational complexity.

Chapter 4 gives an overview of dynamic programming [5] which will be used as the
principal tool for solving unit commitment. Dynamic programming is used in order
to account for inter-temporal effects that arise when a decision in one time period
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affects the options available in subsequent time periods. Such inter-temporal effects
are present in the unit commitraent problem, which includes minimum up and down
times for a generator and startup and shutdown costs [6]. If the generator is turned
on now, then it rnust remain on for a fixed length of time and a startup cost must be
paid. A decision to turn on now may increase profit ~ver the current hour but reduce
profits over the next several hours. Dynamic programming is a technique often used
to account for these effects. By contrast, static optimization techniques such as [1]
and (3] only optimize over a single time step and do not consider these effects. Only
recently in [7] have inter-temporal effects been considered in the literature; this thesis
continues study in this direction.

Chapter 5 gives a detailed formulation of the cost functions for an individual
power producer’s unit commitment problem. The cost functions are developed both
without and with upper and lower limits on the power generated at any given time.
Without generation limits, the expected cost is a simple function of the price mean
and variance. When generation limits are included, the expecied cost can still be
expressed as an analytic function by introducing truncated random variables. A
truncated random variable has a probability density between two limits, but it also
has positive probability of being equal to either limit.

Prices at consecutive hours are not independent of each other. In order to obtain a
realistic solution to unit commitment, a price process model for electricity is needed.
In chapter 6, a representative price model for electricity is developed from actual
price data. This model takes into account both the correlation between prices at
consecutive hours and the hour of day and time of year. Outside factors, notably
temperature, have a significant effect on the price of electricity.

After the problem model is developed, the next question is how to solve it. Chap-
ter 7 illustrates several viable methods for solving unit commitment on a hypotheti-
cal numerical example. Enumerative dynamic programming is the primary solution
method used in this thesis; however, an application of ordinal optimization is also
shown. Ordinal optimization [8, 9] aims to find a “good enough solution with high
probability,” and it is a possible approach to handling computational complexity.

Finally, several extensions of the deregulated unit commitment problem are con-
sidered. Chapter 8 explores the use of forward contracts. Forward contracts can be
used to greatly reduce the risk inherent in profits which depend on spot prices in the
distant future. Chapter 9 expands on the idea of a 1eserve market. Two possible pay-
ment methods for reserve are shown. The strategies for an individual power producer
when offered the opportunity to sell reserve are illustrated. Chapter 10 discusses
possible effects of congestion. On the cne hand, the price model may be sufficient
to reflect the effects of congestion on a power seller; however, a fixed limit on power
sales may also be imposed.

While a practical problem in its own right, unit commitment is an illustrative one
as well. The methodologies developed in this thesis may also be applied to optimal
decision-making by various market participants in several different market structures.
Because of the conceptual symmetry between supply and demand, it is expected that
buyers and sellers will make choices in a similar manner. For example, an industrial
customer may have large electric machinery, such as a loom, that is expensive to turn
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on and off and can not run for short periods of time. Deciding whether to turn such a
machine on or off in response to price is the demand-side analog of unit commitment,
and hence unit commitment solution techniques are directly applicable.
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Chapter 2

The Unit Commitment Problem

Unit commitment is the process of deciding in advance whether to turn on or off
each generator on the power grid at a given hour. In order to illustrate the changing
nature of unit commitment as the electric power industry moves into a deregulated
market, a broad form of the unit commitment problem for the present environment is
first presented. An overview of present solution methods is given in order to illustrate
simplifications which are frequently made, such as neglecting the stochastic aspects
of the problem. Although interruptible power contracts are usually associated with
electricity deregulation and the end of the “obligation to serve,” they may also be
implemented in the present industry, and therefore they are included in the following
unit commitment description.

2.1 Unit Commitment in a Regulated Industry

The problem of unit commitment is to determire, on a given day, which generation
units should be running to meet the anticipated system load and reserve requirements.
Since generators can not instantly turn on and produce power, unit commitment must
be planned in advance so that enough generation is always available to handle system
demand with an adequate reserve margin in the event that generators or transmission
lines go out or demand exceeds the expected amount. The units are chosen so as to
minimize the expected total cost over the long term horizon. The costs considered
include the cost of generation, the startup and shutdown costs for each generator,
the costs of failing to serve loads in the form of insurance payments, and the revenue
received for each unit of energy used by the loads.

Unit commitment decisions are made at periodic intervals (typically every 24
hours). The time period between decisions will be referred to as a stage. The total
cost incurred during stage k, denoted as C, is:

N¢ "
Cy = Z [/Oh CG,'(PG,'(t)) dt + uk(i)I(:t:k(z') < O)S,' + (1 - uk(z))I(zk(z) > 0)T,
i=1

Ny .
+ [(1 = Rpi)Ipi — ps /oh Pp(t) dt] (2.1)

i=1
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The indicator variable I of a conditional statement has a value of 1 if the statement
is true and 0 if it is false. In equation (2.1), the first term is the cost of generation.
The next two terms are the startup and shutdown costs respectively, followed by
insurance payments for interrupted loads, and lastly revenue for power delivered. The
definitions of the symbols in this equation are shown in Table 2.1. The state value
zx (1) is positive if generator ¢ has been up for z,(i) stages and negative if generator
¢ has been down for —z(i) stages [6]. The state transition equation is given by [6]:

~ ) max(L,ze() +1) o w(d) =1
Zrr1 (8) = { min(—1, 2(i) — 1) - wgd) = 0 (22)

Each generator must also observe minimum up and down time constraints; a
generator may not be on for fewer than t,, consecutive stages or off for less than 4,
consecutive stages:

uk(2) > 1(1 < 2oy (2) < typ— 1) (2.3)
uk(i) <1 = TI(~tgn +1 < 15y (3) < —1) (2.4)

The power produced by each generator is constrained by load flow relations:

N¢ N
uk()AciPei — )_ ArcicjPreic; — Y, ArciLiPreir; = 0 (2.5)
i=1 j=1
Ng NL
RpiPLi+ Y ArvriciPrric; + Y Arvi; Priiv; =0 (2.6)
i=1 i=1
NG Np
RLQLi + Y ArLiciQrrici + Y ArLiLjQrrir; =0 (2.7)
ji=1 i=1

The real and reactive power flow in a transmission line of conductance G,, and sus-
ceptance B,, are given by:

Pray = VfGab — VaVsGap cos(8, — 6y) — V,Vy By sin(8, — 6,) (2.8)

QTab = _Va2Bab -+ VaVbBab cos(()a - 0(,) — VaVbGab sin(aa — 01,) (29)
The load flow equations ((2.5) to (2.7)) are represented by a single vector function f:

f(pg,Pr,ar,ag,ar,rL) =0 (2.10)

The rationing of loads is determined by a predetermined rationing function g:

ry =g(aG,aTaPG,uk,xk1pL:QL) (211)

The vectors in these last two equations are defined in Table 2.2. There are several
operating limits that must be observed:

Voin < Vo, < Ymes (2.12
Gi Gi X
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Pmin < P < prmas (2.13)
szn < QG| < QmﬂI (2'14)

Within the load flow constraints and operating limits, the generation levels are chosen
according to optimal power flow:

Nc Nc
P = argmin Zcz (Pei) + XY I(|Praic;| > Prgia;)Apcici(Preic; — Ppe;)?
i=1 j=1
Ng N
+ 3 I(|Preiril > PFgh;)Apcivi(Prair; — PRas;)?
i=1j=1
N; Ng

+) Z I(|Prrig;| > Prrig;)ApLici(Priici — Priie;)”
i=1j=
Ny N

+ 2> I(|Preisl > PR ;) Aprici(Procey — PRES,) (2.15)
i=1j=1

As before, the indicator variables have a value of 1 if true and 0 if false. The four
double summations in the optimization are “soft” constraints on line flow congestion;
for each line flow that exceeds the maximum limit Pf2%*, a quadratic penalty function
is added to the total cost.

2.2 Present Unit Commitment Solution Methods

A large variety of solution techniques for unit commitment scheduling have been
implemented and proposed [10]. These techniques include priority list methods [10],
Lagrangian relaxation with subproblems solved by dynamic programming [6, 11, 12],
and dynamic programming with branch and bound search filtering [13]. In these
techniques, a finite cost horizon is used, ranging from eight hours to a week or more
10, 12, 13].

The possibility of generator failures is typically handled by providing an adequate
reserve margin [6, 11, 13]. Other schemes are available for a more detailed reliability
analysis. One scheme uses Monte Carlo simulation of generator outage scenarios [14];
the possible scenarics can also be enumerated [14]. Monte Carlo simulation is used
in [15, 16] to analyze future load patterns for medium term planning (about 5 years).

Many methods in use are deterministic with respect to the load power, meaning
that the optimization is performed assuming that the demand is equal to the fore-
casted value [6, 13]. This method produces a certainty equivalence controller (CEC)
[5], since a random variable has been replaced by its expected value. Some methods
do allow for a probabilistic distribution of the load power [12, 17). Also, many for-
mulations simply require that total generation exceed total demand and ignore some
details of the network, such as losses [12, 13].
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Time of day (hours)

hg Number of hours in stage k
N¢ Number of generators
N Number of loads
Pg; Real power from generator ¢
Qai Reactive power at generator 3
PyLi Real power at load i o
Qi Reactive power at load 4
Pra Real power flow in transmission line frem a to b
Qrab Reactive power flow in transmission line from a to b
Vei Voltage magnitude at generator 2
Oc: Voltage angle at generator 1
Vii Voltage magnitude at load :
0L Voltage angle at load 7
Agi Availability of generator i (1 = Available, 0 = Not available)
Atap Availability of transmission line between a and b
Apap Penalty cost factor for transmission line between a and b
cci(Pgi) Cost of generation for generator i
Ry; Rationing of load i (1 = Served, 0 = Dropped)
Ip; Insurance payment to load 7 in event of loss of service
S; Startup cost for generator 7
T; Shutdown cost for generator 7
Pi Unit price for load 7 (§/kWh)
i Reliability of service for load 2
f Load flow equations
g Rationing function (known a priori)
uk(i) | Control decision at stage k for generator 7 (1 = On, 0 = Off)
z (1) State at stage k of generator :

Table 2.1: Quantities included in the cost equation for unit commitment.

Pc = [Ps1 Psa - .. Pang|”
PL =[P P2 ... Pin,]
n aL = (@1 QL2 ... Qun,|"
ag = [Aci1 Aca ... Acng]”
ar = [Arcica - .- Arengin, At - Aruv,—yin )T
r, = [Rui Ria ... Ryw,|”
Uy = uk(l)uk(2) ce uk(NG) T

xk = [zk(1) 2£(2) ... z(Ng)]"

Table 2.2: Vector quantities used in the load flow and optimal power flow equations.
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2.3 Interruptible Service Contracts

At present, reserve requirements are based on the (N —1) criterion, which means that
there must be sufficient reserve on the system such that no load will lose power if any
one line or any one generator fails [18]. Our formulation allows for the possibility of
customer choice of interruptible service for a reduced rate. In this scenario, a customer
chooses service with a given reliability p for a given price p [19]. A discrete number of
contracts are available, including an option for maximum reliability. If all customers
choose the maximum reliability, the problem will be the same as the current (N — 1)
criterion; otherwise, the utility will be allowed to drop some loads in the event of a
component failure. The rationing of a load is associated with a contingency that is
at least as severe as a minimum contingency level specified in the service contract.
To compensate the customer for loss of service, it is assumed that the utility makes
an insurance payment / to the customer for loss of service, for which the customer
regularly pays a premium (1 — p)I [19].

The formulation of reliability levels in [19] presumes that the total supply available
takes on discrete values with known probabilities. Given a set of generators with
maximum generating limits and failure probabilities, a set of contracts with known
reliabilities can be obtained. One method is to consider every possible combination
of at most I, generator failures. The probabilities of each such combination may be
used to devise a set of contracts.
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Chapter 3

Unit Commitment in a
Deregulated Environment

So far, the focus has been on unit commitment in the current regulated environ-
ment; however, the approach is easily extended to the deregulated environment of
the future. In one possible scenario, the unit commitment problem becomes one of
dispatching units solely to meet reserve requirements, while base load is provided by
other generators through bilateral contracts. Another possibility involves an Inde-
pendent System Operator (ISO) receiving bids for available generation from varicus
individual power producers after indicating at what price power will be bought and
sold. The ISO then uses the given unit commitment formulation to determine which
units will actually be used. Generally, individual owners of generation will determine
a unit commitment strategy only for the generation units that they own; this thesis
will focus on answering the question of how individual power producers can make
optimal unit commitment decisions.

3.1 Possible Formats for the Electricity Market

At the time of this writing, discussion on the configuration of the marketplace in a
deregulated environment is centering on two basic models. The first model is referred
to as a “poolco” setup. In this format, a single entity, generally called an Independent
System Operator (ISO), acts as a middleman for all power transactions; i.e., all
customers buy their power from the ISO, and all of the individual power producers
sell their power to the ISO. The second type of marketplace being considered is
known as bilateral contracts. In this scenario, power customers can buy directly from
specific generators at prices and terms of mutual agreement. An ISO exists; however,
its function in a world of bilateral contracts is to determine whether the complete set
of bilateral contracts is teasible on the transmission grid. A feasible set of transactions
is one that does not violate any load flow restrictions (transmission line flows, voltage
restrictions, etc.) or dynamic stability constraints. The ISO also provides ancillary
services such as frequency regulation. Many models currently under discussion are
a hybrid scheme, consisting of a power pool, but also allowing the arrangement of
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bilateral contracts between large buyers and sellers [20, 21].

3.1.1 The Poolco Marketplace

Currently, the electricity market is projected to be an hourly market, with the bidding
taking place a day in advance. The ISO in a poolco market is obligated to find the
price which balances supply and demand. This price may be found in different ways.
In one method, each supplier and buyer must submit as their bid a price schedule;
the amount that the participant is willing to buy or sell at many different prices. The
ISO then takes the most expensive price bid submitted for supply that is needed to
satisfy demand and the market clearing price is set equal to that bid. All generators
are paid at the market clearing price for their bids [22]. An alternative is to have the
ISO begin by guessing a price and receiving bids for generation and demand at that
price. The ISO then adjusts the price to offset the imbalance and receives new offers
for supply and demand. The process iterates until convergence at an equilibrium is
reached.

3.1.2 The Market of Bilateral Contracts

Bilateral contracts can have essentially any length from hours to months to even
years. Throughout this thesis, the term “bilateral market” refers to a competitive spot
market of hour-long bilateral contracts. Longer term bilateral contracts are identical
to a series of hour-long forward contracts over the term of the long-term contract;
forward contracts are discussed in detail in Chapter 8. In a bilateral marketplace,
it is generally assumed that the market forces of supply and demand will result in
the price converging to the equilibrium, just as it does in other markets. Bilateral
contracts may also be obtained by loads or groups of loads with generators for reserve
to provide a back-up supply if the original supplier should experience a failure.

3.2 Unit Commitment for an Individual Supplier

3.2.1 Bilateral Market

From the perspective of an individual power producer, this case is simpler; therefore,
we first examine unit commitment in a competitive bilateral market. For this formu-
lation, we assume that the generator is capable of selling as much power as desired
at the market equilibrium price p; for hour k. The only control for the problem is
uk(1), the decision whether to turn on or off at hour k. The generation level, Pg,
may be regarded as a function of the control ux(1) and the price px. If ux(1) = 0,
then Pg, = 0. If ux(1) =1, then Pg; at hour £ is set to maximize the profit:

pePe1 — cc1(Par)
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For a quadratic cost function:
cc1(Per) = a1Pg + b Pe1 + ¢ (3.1)
the derivative of profit with respect to Pg; is:
e — 201 Py — by

Setting this derivative to zero, we find the value of Pg, which maximizes profits for
hour k:

_ Pk — b,
Pg, = 50, (3.2)

The cost Cy (negative of profit) for the producer in hour k is:

Cr = uk(l)(CGl(PGl) — pi P + I(.’L‘k(l) < O)Sl) + (1 - uk(l))(cf + I(!Ek(l) > O)Tl)

(3.3)
cs are fixed costs incurred during an hour where the generator is off; it is implied
that ¢; > ¢y, meaning that the constant term of the quadratic cost function includes
these fixed costs. The remaining symbols have the same meaning as in Chapter 2.
The price py is, from the supplier’s perspective, an exogenous random variable with
some probability distribution. Notice that this distribution reflects the uncertainty
in demand. Modeling of the price is considered in detail in Chapter 6.

Note that in comparison to Chapter 2, there is only one control variable. The
unit commitment problem under deregulation is much simpler to solve than the cor-
responding problem in the current regulated environment since the number of controls
is greatly reduced. This simplification also makes it possible to consider more details
in unit commitment; in particular, a stochastic problem formulation becomes feasible
to solve.

3.2.2 Poolco Market

In a poolco market, the general unit commitment formulation for individual producers
1s complicated and raises several thorny issues; however, with several simplifying
assumptions, the problem may be solved in a similar manner to the bilateral market.
In general, the cost (negative of profit) for a single independently owned generator
during one hour is:

Ck = uk(l)(cGl(PGl) - kaGl + I(l’k(l) < O)Sl) + (1 - ’llk(].))(Cf + I(Il'k(l) > 0)(T1))
3.4
Pg, = A%PBI (3-5)

Pk is the price of power, Pp, is the amount of power that the supplier offers to sell at
price p; during hour k, and Ay, € [0, 1] is the percentage of the bid that was accepted
by the ISO.

There are two ways that the ISO can respond to bids. The first is a simple yes/no
decision; either the bid is accepted in full or rejected. For this case, Ag, only takes the
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discrete values 0 and 1. The second possibility is that the ISO may also be allowed
to partially accept bids; the generator is permitted to sell a percentage of the original
bid amount. In this case, the owner would undoubtedly set a minimum acceptance
percentage; if the ISO is unwilling to allow the generator to sell at least this minimum
percentage of the bid, then the bid is not accepted. This minimum is created by two
conditions; first, the generator itself has a physical minimum generation constraint
(PZy™), and second, because of fixed costs of generation as well as startup costs,
producing at a low generation level may cause the owner to incur a loss. Because
of these conditions, the owner would rather not produce any power than generate a
small amount. In this type of a marketplace, Ay, is continuously distributed between
AZ'™ and 1 but can take the values 0 and 1 with positive probability. If bids are only
accepted in full or rejected, then the controls are u,(1), the decision to turn on or off
the generator at each hour, and Ppg,, the bid amount at each hour. If the marketplace
format allows partial acceptance of bids, then there are three control variables: u;(1),
Pg,, and AZ™.

From the supplier’s perspective, p, and Ay are random variables; however, esti-
mating the distribution of Ay may be difficult, especially since Ag is a function of
the bid schedule. Ag is also influenced by gaming issues; a supplier may simply bid
at zero price in order to be assured of getting scheduled, and hope (or assume) that
a high-cost generator at the margin will set a profitable market-clearing price for all
participants.

A problem of interest for this type of market structure is the situation where a
bid from an individual generator is not accepted for a given period, but is accepted
for the periods immediately before and after the rejected period. It is unclear what
the producer’s options are in this case [21]. Another topic of concern in pool-based
markets is the observed flatness of the optimum for unit commitment in large systems.
This characteristic of unit commitment means that the ISO can choose among many
unit commitment strategies that have virtually identical total costs; however, the
profits of individual producers vary widely among the different unit commitment
solutions [20].

Because of these complications and a lack of suitable models for their representa-
tion, the poolco unit commitment problem is largely outside the scope of this thesis.
However, if the producer can reasonably assume Ay, = 1 for all bids, then the bilat-
eral market formulation may be used, with modifications. If the generator is not able
to choose generation level in response to price, then the amount of power bid will
generally be chosen to maximize the expected profit:

PP — cc1(Pg1)

Since py is the cnly random variable, the optimal bid amount is, for a quadratic cost

function: E{p) - b
_ By — 0y
Pgy = 4 (3.6)
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The cost for hqur k is:

Cr = uk(l)(cGl(PBI) - kam + I(Ik(l) < O)Sl) + (1 - uk(l))(c, + I(Ik(l) > 0)(T1))
3.7

3.3 Multiple Generation

As observed in Chapter 7, the complexity of the unit commitment problem under the
present regulatory environment increases exponentially with the number of genera-
tors. However, in an idealized electricity marketplace under deregulation, an owner
of several generators can optimize each generator individually, which means that the
ccmputation increases only linearly. The key difference between the two situations is
that a utility in the present coordinated environment dispatches generation according
to optimal power flow; if a given generator is turned off, then the output of all other
generators will need to be readjusted in order to remain optimal. However, if the
marketplace is competitive and no congestion constraints are present, then a genera-
tor owner who shuts down one generator will have negligible impact on the aggregate
supply curve of the market, and hence the price will remain essentially unchanged.
Since the optimal power setting of any generator in a competitive marketplace is
determined by the price equals marginal cost rule, the profits of the owner’s other
generators will be unaffected. Of course, if the owner has significant market share,
then this reasoning is no longer valid.

3.4 Secondary Market for Reliability

In a deregulated environment, an alternative method for selling variable reliability
levels which parallels interruptible contracts is the creation of a secondary market for
back-up power. In this scenario, the seller of power would arrange to buy reserve
cnergy from another generator or generators to cover sales in the event that the
original generator experiences a failure. The seller could even arrange an interruptible
contract with one or more loads as an equivalent to purchasing reserve from other
generators. In this formulation, the original contract between the buyer and seller
would specify a level of reliability; the seller will then purchase reserve to meet the
probability of service that was agreed upon in the contract. The reliability level would
likely be specified as a penalty payment for loss of service; this payment implicitly
defines a probability of service. This idea is explored in detail in Chapter 9.

3.5 Other Issues

There are several other factors that can affect the results that are derived in this
thesis. One such issue is market power. It is generally assumed that the generation
marketplace is competitive. However, it is possible that some generator owners will
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have a significant market share, resulting in an oligopolistic market. Gaming theory
is generally required to analyze these situations.

A second issue worth mentioning is stranded cost recovery for existing utilities.
Many utilities have made investments in generation which will become obsolete and
of little value in an open access market. Various methods have been proposed to
compensate these utilities for these losses that are due to deregulation. The planning
horizon for the problems of interest in this thesis are short enough such that capital
is regarded as a fixed cost. The producers are assumed to make capital investments
over a much longer time herizon in anticipation of recovering the capital costs through
future operating surpluses.

Another issue is the pricing of power under congested transmission line conditions.
There is a large debate over what method should be used for the pricing of power
in these situations. In general, transmission congestion is handled in this thesis by
assuming that the price for power sold reflects congestion if it exists. Congestion is
examined in more detail in Chapter 10.
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Chapter 4

Survey of the Dynamic
Programming Formulation

Mathematically, the unit commitment problem can be expressed as a dynamic pro-
gramming (DP) problem, including control inputs, system states, and uncertain (ran-
dom) quantities. Time is broken down into a series of stages, and a control decision
is made at the beginning of each stage. The system can be described by the following
equations [5):

Xk4+1 — fk(xk, Uk, Wk) (41)

where k = 0,1, ... is the time index, x; is the state vector at time k, u is the control
input at time k, and wy is a random disturbance. The control uy is constrained to
be in the set of admissible controls Ux(xx) and is usually chosen by:

ug = pe(X) (4.2)

A set of functions u(x,) for all k is defined as a control policy.

At each stage, there is a cost to be paid. This cost may be negative, meaning that
a reward is received. The protlem is tc determine a control policy that minimizes
the cost (or maximizes the reward). The exact definition of minimal cost depends on
whether the planning horizon is finite or infinite.

4.1 Finite Horizon Problems

A finite horizon means that the total cost over a specified number of stages is to
be minimized. The number of stages is denoted by N. At each stage k, a cost
gk(Xk, uk, wi) is incurred. Additionally, there is a terminal cost gy(xx) which de-
pends on the final value of the state vector. The object of the problem is to find the
control policy that minimizes the total expected cost over N stages; this is known as
the optimal policy. Dynamic programming is an algorithm to find the optimal policy;
the algorithm is expressed mathematically as [5]:

In(xn) = gn(xn) (4.3)
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Jk(xk) = min E {gk(xk, g, Wk) + Jk,-,l(fk(xk, Ug, Wk))} (44)
U €Uk (X)) Wi
where E denotes the expected value operator with respect to the random variables
wi. Ji(xi) denotes the optimal expected cost when beginning at stage k. An optimal
policy is obtained as a set of functions pug(xx) such that uj = pj(xx) attains the
minimization in equation (4.4) for each x; and k; note that the optimal policy need
not be unique.

4.2 Infinite Horizon Problems with a Discount
Factor

In many cases, it is desirable to minimize the total cost over a very large number of
stages. In these situations, posing the problem as a finite horizon problem with a
large N is impractical because of the enormous amount of computation involved. A
simpler solution is to use an infinite cost horizon, meaning that the cost is minimized
over an infinite number of stages. In order to make sure that the problem is well
defined, several approaches are possible. In this section, we consider the case where
the cost of the next stage is discounted by a factor a such that 0 < o < 1 and the
cost per stage has a finite upper bound, so that the cost over the infinite horizon is
finite.

We will assume that the state transition equation, cost per stage, and probability
distribution of the random disturbances is the same for all stages. Notice that under
these assumptions, the time subscript k on the state and control is superfluous, since
being at time 0 and looking ahead to an infinite number of stages is identical to being
at time 1 (or 100) and looking ahead to an infinite number of stages. Furthermore,
the optimal policy is a stationary policy, meaning that it is the same function y for
all time steps.

To simplify the analysis, we will assume for the infinite horizon problems that
there are a finite number of states, numbered from 1 to n. The transition probability
from state ¢ to state j with the application of control u is denoted by p;;(u). If we are
currently at state ¢ and control u is applied, then the expected cost for the current
stage is denoted as g(7, u).

Using the same line of reasoning as before, it is clear that the optimal cost-to-go
function is only a function of the state and not of the time step. Therefore, the
finite horizon DP equation (4.4) becomes the following equation, known as Bellman’s
Equation, for an infinite horizon problem with cost discounting [5]:

n
J*(1) = mi ' i(w)J* (g =1,... 4.5
(1) = min 1g(i,u) + a;pu(u)J U)],i=1,...,n (4.5)
Bellman’s Equation is actually a system of equations, and J* () represents the optimal
total expected cost when starting at state <. The costs J*(i) for i = 1,...,n are the

unique solutior to Bellinan’s Equation [5], although this does not imply that there is
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a unique optimal policy.

4.3 Stochastic Shortest Path Problems

A second type of infinite horizon problem is one that has no discounting factor but
does have a termination state, denoted as t. Once the system enters the termination
state, it remains in that state and no more costs are incurred. This is expressed
mathematically as p,(u) = 1 and 9(t,u) = 0. The problem is well defined if for
all admissible policies there is positive probability that the system will enter the
termination state in no more than m stages, for some integer m [5]. For the stochastic
shortest path problem, Bellman’s Equation is [5]:

J*'(2) = renl}?) [g(z',u) + Zp,-j(u)J‘(j)J yi=1,...,n (4.6)
u 1 ]=l
It is worth noting that:
n
2_opii(u) =1-py(u) < 1 (4.7)
J=1

since there may be a positive probability of entering the termination state from state
1.

4.4  Average Cost per Stage Problems

A third type of infinite horizon problem is one that considers the average cost per
stage, not the total cost over an infinite horizon. For a policy 7, the average cost per
stage is defined as [5]:

N-1
T2 = fim, {5 atow, o - i (45)
Note that the average cost per stage of a policy is the same for initial states ; and j
if, when starting at state i, state j is eventually reached with probability 1, or vice
versa. The average cost for the two initial states is identical because the expected
time to reach j from i (or % from J) is finite, and therefore the costs incurred during
the transition from i to J contribute nothing to the average cost per stage (the sum of
a finite number of terms multiplied by 1/N approaches zero as N — 00). Similarly, if
any state can be reached from any other state with probability 1 by any policy, then
J* (i) = J*(5) for any i and j between 1 and n [5].

Since in most average cost problems the optimal average cost is independent of the
state, a stochastic shortest path problem which ic equivalent to the original average
cost problem can be used for analysis. One state, henceforth assumed to be state n,
is assnmed to be visited with positive probability during the first m stages, regardless
of the policy used, where m is some positive integer. The stochastic shortest path
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problem with an expected cost per stage of g(i,u) — A* for state ¢, and in which
any transition to state n is replaced by a transition to a termination state t, is an
equivalent problem to the original average cost problem. A* is the optimal average
cost per stage.

The reasoning for the equivalence of the two problems may be summarized by
noting that the average cost per stage for a stationary policy 4 may be written as:

_ Cun(w)
* " Nn (1)

where Cpn(1) is the expected cost from starting at state n until the next return to n
and Ny, (p) is the expected number of stages to return to n when starting at state n.
Since A, > A*:

(4.9)

Cnn(»u) - Nnn(ou)’\‘ >0 (410)

Furthermore, the expected cost of the average cost problem under the optimal policy
p* when starting at state n is equal to:

Cnn(ﬂ.) - Nnn(#.)’\- =0 (4'11)

The expected cost of the associated stochastic shortest path problem is denoted by
h*(i) for the initial state i. Notice from equation (4.11) that k*(n) = 0. Bellman’s
Equation for the average cost problem, which is identical to Bellman’s Equation for
the associated stochastic shortest path problem, may be written as [5]:

A+ h(3) = 21(}?) g(i,u) + ) pii(w)h’(G)|,i=1,...,n (4.12)
u 1 j=l

h*(n) =0

Like the other infinite horizon problems, this form of Bellman’s Equation has a unique
solution. The preceding argument and a formal proof are found in [5].
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Chapter 5

Unit Commitment for an
Individual Power Producer

In this chapter, we examine unit commitment scheduling in a scenario where all
power producers decide individually whether to operate their generators or not dur-
ing a given time period. In this formulation, the producer makes a unit commitment
decision before deciding how much power to sell in the market and setting the gen-
eration levels on each generator. At the time of each unit commitment decision, the
first hour’s price may either be a known value or a random variable of some mean
and variance. Throughout the remainder of this thesis, this price will generally be
treated as unknown.

The unit commitment problem fits nicely into the dynamic programming frame-
work, in which each stage of the problem is a one hour time interval. The problem
to be solved by the generator owner is to minimize the total cost (maximize profit)
over a long term period. This problem may be expressed in three ways: 1. A finite
horizon problem with a fairly high number of periods, 2. An infinite horizon problem
of minimization of the average total cost, or 3. An infinite horizon problem with a
discount factor reflecting inflation and interest rates. The examples in this thesis will
use a 24-hour horizon; formulating an infinite horizon is difficult because the expected
price is a periodic function of the time of day. In the dynamic programming frame-
work, the state is zx(1), the generator status, while the control is the on/off decision,
denoted uk(1). Price is the only random disturbance input.

5.1 Unit Commitment without Generation Lim-
its

We begin with the simplest formulation of the deregulated unit commitment problem;
one in which there are no generation limits, and the producer receives the same price
for all power sold during a single market time period. We further assume that the
price px for each time period k is a random variable with mean 7, and standard
deviation opk, which are estimated from past data.

The only control for the problem is u,(1), the decision whether to turn on or off
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at stage k. The generation level, Pg;, may be regarded as a function of the control
ux(1) and the price pg. If ux(1) = 0, then Pg, = 0. If ux(1) = 1, then Pg, at stage k
is set to maximize the profit:

pxPe1 — ca1(Par)
For a quadratic cost function:
cai(Pa1) = a1Pg, + b Poi + 1 (5.1)
the derivative of profit with respect to Pg, is:

Pk — 2a1Pgy — b,

Setting this derivative to zero, we find the value of Pg, which maximizes profits for

stage k:

P —b
2(11

P(;[ = (52)

The cost C) (negative of profit) for the producer in stage k is:

Cr = uk(1)(ce1(Por) — pePer + I(zx(1) < 0)S1) + (1 — uk(1))(es + I(zk(1) > 0)T)

(5.3)
cy are fixed costs incurred during a stage where the generator is off; it is implied that
c) > cy, meaning that the constant term of the quadratic cost function includes these
fixed costs. The cost per stage Ci(zk, uk, i) is a function of the state, control, and
the random disturbance; here and throughout this thesis, the notation of functional
dependence is suppressed. Since Cy depends on the random variable py, it has an
expected value:

E{C"} = uk(l)(g{cm(l’al) — pePoi} + 1(zk(1) < 0)S))
+ (1= up(1)) (s + I(ze(1) > O)T) (5.4)

Substituting for Pg,, this becomes:

p0) = () (pfa Bl o By o M 16,0 <0)s))
+ (1= w(1)(er + I(a(1) > 0)T:) 55)

The first two fractions in the expectation may be combined to form:

2 — 2pkby + b2 + 2pby — 202 2_p
pE‘{Ck} — uk(l)pE{pk P01 1 P01 l+Cl—pk lpk}
k k

4(11 20,1
+ ug (1)1 (z(1) < 0)S1 + (1 — uk(1))(cy + I(zk(1) > 0)T1) (5.6)
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which may be rewritten as:

G} = w() (g{”i;"f+cl-”§;—:"’*}+1(xk(1)<o>sl)
(1= w(1)(es + I(ze(1) > OT}) (5.7

Note (see equation (E.14)) that the expected value of the square of a random variable
is the sum of the mean squared and the variance (standard deviation squared):

E{p} =pi + 0} (58)

The expected cost for stage k then becomes:

=2 2 2 =2 = 2
_ Pi + 05 — by _ Pk = bipy + oy
E{Ck} = u(l) (———; 10, +c " 2a; + I(z(1) < 0)S,
+ (1 = we(1))(cy + I(ze(1) > 0)T1) (5.9)

Note that the fractions in equation (5.9) can be combined; we have left them separate
to distinguish expected generation cost from expected revenue. Note that we did not
initially assume any particular distribution for p, in the derivation of equation (5.9);
this equation will give the expected cost per stage for any distribution of the price.

5.2 Unit Commitment with Generation Limits

We now consider the effect that minimum and maximum generation limits have on
the expected cost. Recall from equation (5.2) that power is a linear function of price;
therefore, the power generated will be a random variable that has a distribution
with the same shape as that of the price. When we include generation limits, the
distribution of the power becomes a truncated distribution, with a finite probability
that the power is at either the upper or lower limit. To calculate the expected cost
per stage when generation limits are present, we will need to examine in detail the
properties of a truncated probability distribution. Truncated versions of the normal
and lognormal distributions are presented here; the latter case is particularly useful
for price models (see Chapter 6).

5.2.1 Truncated Normal Distributions

Throughout this discussion, we will assume that X is a normally distributed random
variable with mean 7n and standard deviation . Z is a truncated normal variable
with a minimum Z,;, and a maximum Z,,,.; Z may be generated from a normal
random variable X by:

Zmin X S Zmin
Z={ X Zpin<X < Zmaz (5.10)
Zma:: X 2 Zma::
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Therefore, Z is continuously distributed between Z,,;, and Z,,,; but also has a finite
probability of being equal to Z,,;, or Z,,,;. We are interested in finding the mean
and variance of Z, as well as computing the expected value of X Z, as these are all
quantities we will need when calculating the expected cost. The formulas for these
quantities in terms of m and o are presented here; the derivation of these equations
is detailed in Appendix C.
The mean of Z is:
E(Z)=m+ Lcr (5.11)

LCF—\/_— 5
1
2

() (o

Lcr is a “correction factor” to account for the change in mean of Z due to the
presence of upper and lower limits. The variance of Z may be calculated by:

var(Z) = (o2 + L%p) (%erf (gm—a\—/%'"‘l) ;‘“f(éaf%m))

(7527 = ) (G = ) (5

+ (Zmin — m — Lcr)? (% + %erf (Z'";"—\/_;m)>
tenctor (-]

* % ((Z"‘"‘ — m = 2Lop)e”

— (Zingz —m - 2ch)e-‘z"‘—;:;”—”) 6.1

Finally, the quantity X Z, where Z is derived by truncation of X between Z,,;, and
Zmaz, has expected value:

1 -"‘)2 Zma::""l)2
E(XZ) = +0°+ — 202
(X2) = w4t T2 (o mgin o tngnt)
1 Zmin

vt =) a3t (5577))

+ (MZmaz — m? — 0?) (% - %erf (%_m_)) (5.14)

5.3 Truncated Lognormal Distributions

We will now consider the effects of limits on the mean and variance of a random
variable whose logarithm is normally distributed. Given a truncated normal random
variable Z with mean m, standard deviation o, and limits Z,,;, and Z,,,;, we wish
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to ﬁnd the mean and variance of e2. We also want to determine the expected value
of eXe?, where Z is a truncated version of the normally distributed variable X. As
before derivations of these results are in Appendix C.

The mean of a truncated lognormal variable may be written as:

E(e?) = Corm + Ler (5.15)

with the quantities Ccr and Ler defined by:

| Zmaz — M — 02 Zmin — M — 02
= —e2? —
Ccr 5€ (erf( > ) erf( ~7 )) (5.16)
= Zmin }. 1 ZL"___
Lcrp = e (2 + 2erf /o
1 1 Lmaz — M

Zmaz [ = _ 2 mazx

+e (2 2erf (—a 5 )) (5.17)

As with the normal distiibution, Ccr and Ler are quantities that described how the
mean of eZ is affected by the limits on Z. The variance of a truncated lognormal
randorn variable is:

1 21 Zmaz — M — 207 Znin — M — 202
, Z — 2m+20% = erf mazc _ f( min )
var(e”) Py 5 ( r s er Y

1 1 Zmin — M 1 1 Zmaz — M
2Zmin | il min 2Zmaz | = _ mazc
+e (2+2erf(——a\/§ ))+e (2 Qerf(_—a\/ﬁ ))
— (Ccrm + Ler)? (5.18)

Finally, the expected value of eX

- 1 | PP Zma:z: m — 20 Zmin — m — 202
E(eX*?) = = [ 2m-42 ( ( ) —erf( o ))
1 Zmnn+m+ 1o? Zma:: - _ me -—m - 02
+ 26 ( I‘f( erf 0'\/§
1

1 Zmaz+m Zma:: Zmin —m— 02
+26 +mtg (erf( 0\/2 )—erf< s ))
(5.

9)

5.3.1 Expected Cost of Generation

Having formulas for truncated normal variables, we can readily find the expected cost
of generation in each stage. First, we define the upper and lower marginal cost limits
as:

Pia = 2a, PT" 4+ b, (5.20)

34



Pye = 20, P35 + b, (5.21)

If pr < pyic, then the optimal amount of power to produce is PZ"; similarly, if
Pr > PyC, then profit is maximized by selling PZ2*. This observation leads us to
define payc(x), the marginal cost of production, as a truncated random variable in
terms of the price p:

phic  pr < PRB
Pmciky = Pk Pyc <P: <DPyE (5.22)

maxr mar

PMc Pk 2 Pumc

The choice of Pg; which maximizes profits for stage k may thus be written as a
function of pascyk for the case where Pg, is constrained between PZ™ and PZY*:

D(MC)k — b,
Pry = 222F .2
Gl 2 ) (5 3)

The expected cost in stage k is the same as equation (5.4), which was derived for
the case without generation limits:

pEk'{Ck} = uk(l)(pE’:{cGl(PGl) —PkPGl} + I(Ik(l) < 0)S))
+ (1= uD)(er + I(za(1) > )T (5.24)

Substituting equation (5.23) for Pg;:

(Pimeyk — br)? pmcyk — by PrP(MC)k — Dipk
Ci} = 1 b -
E{G} = w(1) (E {“‘ s T g, ta 2,

+ I(zk(1) < O)Sl) + (1 — ue(1))(cy + I(zx(1) > 0)T) (5.25)

The first two fractions may be combined via the same procedure as in equations (5.6)
and (5.7):

p2 _b2 —b
pC) = u) (g {MU o BRI ) <),

+ (1 = we(1))(es + I(ze(1) > 0)T) (5.26)

At this point, if the price p; could be expressed as an independent identically
distributed random variable, then the unit commitment problem would be essentially
solved (23]. However, the price at time k is strongly correlated with the price at time
k — 1, and therefore, it is necessary to augment the state of the system to include
the price. This state augmentation is necessary because a high price in the next hour
also implies high prices (and profits) during subsequent hours.

In order to continue, it is necessary to develop a price process model that reflects
reasonably accurately the price correlations between hours. This price model for pj
is the subject of Chapter 6.
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Chapter 6

Price Process of Electricity

In general, representing a price over several time periods as a series of independent
random variables is a poor model, as it ignores correlation in the uncertainties between
time perinds. A more conventional model is to use a price process [4]. Developing a
price process for electricity, however, is quite difficult as there is very little empirical
data available. Furthermore, the demand for electricity is not the same over all hours
of thc day. As shown in Figure 6-1, the price is generally lowest in the early morning
hours and highest in the early evening. This relation between hour of day and price
closely follows the load profile (shown in Figure 6-2). In this thesis, price models are
developed to account for the change in average price as a function of hour of day in
addition to standard price models which treat all time steps equally. Additionally,
the variance of the price estimate for the next time step may be significantly reduced
by incorporating additional variables which are correlated with price, such as day of
weel: or temperature. To create a price model for electricity, hourly data from the
PiM market [24], which opened on April 1, 1997, will be used.

6.1 Price Process Models

Prices for most common commodities, such as copper and oil, are typically modeled
using a stochastic process, in which the price at a future time is a random function
of the current price. A common price process model is Brownian motion (also called
a Wiener process) which is a continuous-time process given by [4]:

dr = ¢Vt (6.1)

Since electricity markets typically operate on hourly intervals, a discrete-time process
may be more appropriate. Brownian motion is in fact the limit of a discrete-time
random walk:

Ty =11 + € (62)

as the time interval approaches zero [4]. e, is normally distributed with zero mean
and is independent of e, for any u # t.
Another price process model is the mean-reverting process. Whereas a random
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PJM Price v. Hour of Day
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Figure 6-1: Average price vs. hour of day in the PJM electricity market.
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Figure 6-2: Average load vs. hour of day in the PJM electricity market.

37



walk can deviate far from the starting point and not return for a very long time, a
mean-reverting process will have a tendency to return to a mean value over time. The
mean-reverting process may be expressed in discrete time as the following:

,=Z(l—e ") +e "z, + ¢ (6.3)

which is known as the first order auto-regressive (AR(1)) process [4]. Here T is the
mean and 7 is the rate of reversion; as n — 0, the process becomes a random walk.

6.1.1 Long Term Model Behavior

Given the current price zg, it is often important to ask what happens to the price
many stages in the future. For the random walk model, the price at stage k may be
written as:

k
Iy =T+ Z €; (6.4)

i=1

Since e; has zero mean, the expected value of z; is simply:
E{.’L‘k} =T (65)

Also, since the error terms are all independent of each other, the variance of z; is:

k
var(z;) = z_: var(e;) (6.6)

or, by defining 02 = var(e;):
var(zy) = ko? (6.7)
Note that the variance tends to infinity as k — oo.

For a mean-reverting process, the equation for z; is less obvious; however, it can
be easily derived by induction:

k
Tp = f(l - C_kn) + e"""zo + Z 6_(k_i)"6,' (68)

i=1

This relation may be verified by substituting into equation (6.3). Since e; is assumed
to be normally distributed, z,x will also be normally distributed [39]. The mean of zy
is:

E{z} =Z(1 — e ") + ¥z, (6.9)

The variance of z, is calculated by applying the relation var(cX) = c?var(X) and
again observing that the terms in the summation are all independent:

var(zy) = zlc:e‘z("—i)"var(ei) (6.10)

=1
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By substituting 7 = k — i
k-1
var(zy) = Y e %707 (6.11)
Jj=0

the summation is simply a geometric series. The formula for a geometric series is:

k-1 k
1-—
Y of= a2 (6.12)
i=0 l-a
so the variance of zx may be concisely written as:
1 — e 2k
var(:rk) = Uzm (613)
1t is very interesting to observe that:
klgg E{zx} =% (6.14)
. a?
kllvl?o V&I‘(Ik) = m (615)

Unlike the random walk, the variance of a mean-reverting process tends toward a
constant for values in the distant future. It is important to note that this conclusion is
inappropriate when using mean-reverting processes to model prices, as the parameters
T and 7 will slowly change over time. However, for a relatively short-term horizon,
equations (6.14) and (6.15) provide a good estimate of future prices.

6.1.2 Price Models using Logarithms

It should be noted that price models often are applied to the logarithm of the price
rather than the actual price, as price changes are observed to be larger at higher
price values (a lognormal distribution model), and the use of logarithins means that
the price does not fall below zero [4]. Since the price models give the mean and
variance for a logarithm of the price, it is necessary to convert these numbers to find
the expected value and variance of the actual price. Given a normally distributed
variable X with mean x and variance o2, the expected value of e* is:

E(eX) = e#t2 (6.16)

with variance:
var(eX) = e+ (¢ — 1) (6.17)

These equations are derived in Appendix A.

6.1.3 Unit Root Tests

Given price data for a given commodity, it is possible to determine to a given degree
of confidence whether or not the price process for the commodity is mean-reverting.
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This determination is made by using nrocedures known as unit root tests [25). To
test whether the price process is AR(1), the discrete-time price data is fitted to the
regression model:

Lt=a+pr+e 2<it<n (6.18)

where z, is the price (or log of price) at time ¢. The test statistic @, is computed froin
the regression as:

_ (0 =15}y — (n - 3)5?
b= 252
Here 62 is the estimated variance from the regression model, and 6% y 18 the estimated
variance from the null hypothesis model (NH), in which the price follows a random
walk:

(6.19)

Iy =1, te (620)
Under NH, the estimate of variance is:
n

) 1
Ghn = 1 Z(-Ti —z:.)? (6.21)

n i=2

) is therefore simply the F-statistic of standard regression theory to test the alternate
hypothesis of the mean-reverting model against the nu!l hypothesis of a random walk
(25, 26]. However, it turns out that if the null hypothesis is true, the test statistic o
does not have an F-distribution as would be normally expected; instead, the value
of ¢, is checked against a set of empirically derived percentiles to determine whether
the process is mean-reverting, to a given confidence level. For the same reason, a
¢-interval test for p = 1 using the regression estimate of the variance of p is not
applicable (4, 25].

6.1.4 Application of Unit Root Test to PJM Electricity
Data

The unit root test may be applied directly to the price data from the PJ M electricity
market. By performing the indicated regression on 502 hours of data (hours 2499 to
3000) using the natural logarithm of price, the parameter estimates are & = 0.266
and §p = 0.917, with an estimated variance of 2 — 8.95 x 1072, The value of the
test statistic is ¢, = 10.87. For a random walk, the 99% level of ¢, for a sample of
n = 500 is 6.47 [25]. Since ¢, for the PJM data is larger than 6.47, we can conclude
that the PJM data is mean-reverting, with 99% confidence.

However, this model for the price treats all 24 hours of the day equally. Since
the average load is higher at some hours than others, it would be expected that the
average price for different hours would also vary. We will therefore examine whether
the price process model can be improved by examining the load data.
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MCP v. Load
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Figure 6-3: Scatter plot of price vs. load in the PJM electricity market.

95% Confidence Interval
Variable |  Value Lower | Upper

B 7.46 x 107° [ 7.17x 10~° [ 7.74 x 10~°
Bo 7.55x 107! [ 6.72 x 107! | 8.39 x 10!

Table 6.1: Regression results for 8, and f,.

6.2 Correlation of Price with Load

An examination of price data from the newly formed PJM market [24] reveals a clear
correlation between the price of power and the system load. Figure 6-3 shows a plot
of the market clearing price versus the PJM loac for each hour in the data set. The
price clearly is higher for larger load values, although there is significant variance in
the price at any given load. The slope of price is moderate for intermediate load
values but becomes very large for both low and high loads. A logarithmic plot of the
price data (Figure 6-4) shows that the slope of the lcgarithm of price is relatively
constant except for low load levels.
Applying linear regression to Figure 6-4 gives the following relation:

InP =BL+f (6.22)

with the values for 8, and f; given in Table 6.1. The estimated variance is 62 = 0.274.
(See section 6.4.1 for an overview of regression analysis.)
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Log (MCP) v. Load
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I'igure 6-4: Scatter plot of natural logarithm of price vs. load in the PJM electricity
market. Hours for which the market clearing price is zero are plotted as having a log
of —1.

6.2.1 Expanded Price Process Models

In order to include load information in the price model, the following model is sug-
gested:
Iy = Ty + m(L, - Lt—l) + e (623)

L, is the actual load used (purchased) at time . This model approximates the supply
curve of the market as a line with a fixed slope and an intercept which follows a
random walk. The demand curve is also approximated as a line of fixed slope. To see
this, note that a linear supply curve relates price (P) to quantity (Q) by:

P =mgQ + bs (6.24)
Similarly, a linear demand curve may be written as:
Q=Ly—ypP (6.25)

where Ly is the demand at a price of zero and yp is the inverse of the slope. The
equilibrium point of the market is the point at which the supply and demand curves

Cross:
P — by

ms

Lo - yDP = (626)
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The equilibrium price is given by:

1 -1
P=1L, (yp + m—) + bs(msyp + 1)_1 (6.27)
S

Let Lp: denote the quantity demanded at price P':
LPI = Lo - yDP’ (628)

The equilibrium price may then be written in terms of Lp:

1 -1 1 -1
P =Lp (yD + —) + yDP’ (yp + —) + bs(msyl) + 1)_l (629)
ms Mms

From equation (6.29), the price is a linear function of the level of demand. Lp
may be approximated by measuring the actual load. For the electricity market,
which is observed to have very inelastic demand (yp small), the error due to this
approximation is small. This models treats the load as an exogenous random input
of known mean and variance; L, is an approximation of the demand curve at a given
hour. Equation (6.23) is derived directly from:

, =mL, + b (6.30)
Ty—1 = mLt_l + bg_l (631)

which represent the price curve at times ¢ and ¢ — 1, and:
bt = bt—l + € (632)

where b, is the intercept of the price curve.

Not surprisingly, this model can be modified by treating the supply intercept as
a mean-reverting process instead of a random walk. This modified model may be
written mathematically as:

I = 5(1 - 6—7') + 6_n$¢_1 + m(Lt - e""Lt_l) + e (633)

This equation may be derived from the supply curve model of equations (6.30) and
(6.31) and the equation for a mean-reverting process:

by=b(1—e") +e ") +e (6.34)

The parameters of the mean-reverting intercept model may be estimated using non-
linear regression, as described in Appendix A.

6.2.2 Test for Mean Reversion

We will now examine the price data from the PJM market to determine which of the
above two models is more appropriate. A modification of the unit root test can be
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applied to answer this question. Specifically, we will calculate the F-statistic for the
null hypothesis of equation (6.23) versus the alternate hypothesis of equation (6.33).
This modified test statistic, which is denoted ¢,,,, can then be compared against an
estimate of its percentiles under the null hypothesis; these percentiles can be generated
by Monte Carlo, similar to the method of [25].

The F'-statistic for testing two hypotheses may be written:

2 ypdnyg — o2d
o2(dyy — d)

(6.35)

test —

where, as before, o2 ~yu and o2 are the estimates of variance under respectively the
null and alternate hypotheses, and dyy and d are the degrees of {freedom in the nuli
hypothesis and alternate hypothesis models. For n hours of price data encompassing
n — 1 intervals, the test statistic ¢;,, may be written as:

(n —2)oky — (n—4)5°
267

For the PJM data from hour 2499 to hour 3000, ¢,,, = 36.85. Based on 1000 Monte
Carlo simulations of the random walk intercept model using the load values from the
PJM data over the same 502 hour period, ¢, is less than 6.02 with probabiiity 0.99
under the null hypothesis model, which strongly suggests rejecting the model with
the intercept as a random walk in favor of a mean-reverting intercept.

¢lm =

(6.36)

6.2.3 Price Prediction Algorithms

Now that we have several plausible price models, we will test each of them to see
which one best predicts future prices. As mentioned earlier, it is often desirable to
apply price process models to the logarithms of the price. From equation (6.16), the
expected price should therefore be multiplied by e3°” to account for the bias resulting
from taking an exponential of a normally distributed variable. However, a plot of the
price over time, as shown in Figures 6-5 and 6-6, indicates that the variance estimate
may be substantially different over different time ranges. Furthermore, the hours
with zero and very low prices fall outside the line that describes the remainder of the
data (as shown in Figure 6-4), and should probably not be included when estimating
variance, as these points will cause the variance to be significantly overstated for
most hours, leading to an exponential bias factor which is too large. The regression
data for each model is given for three ranges: the complete range of 3096 hours,
from hour 125 to hour 1225 (1100 intervals), and from hour 2649 to hour 3096 (447
intervals). The last two ranges do not include any hours with zero prices. Note also
that the second interval has significantly less variance than the third interval; this
may be a function of market startup, or possibly a seasonal volatility increase. The
bias factor for each price model in the subsequent sections is estimated from the third
range (hours 2649 to 3096). The task of estimating the variance at each hour from
weighted least squares regression and devising an algorithm to discard outliers is left
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Price vs. Time in PJM Market
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Figure 6-5: Plot of price vs. time in the PJM electricity market.

Hours | Degrees of Freedom | &2
1 - 3096 3095 1.27 x 107!
125 - 1225 1100 2.80 x 1072
2649 - 3096 447 4.17 x 1072

Table 6.2: Variance estimates for random walk model of price logarithm.

for fuvure research.

Random walk

If the price process is modeled as a random walk, the estimate of the variance from
the PJM price data is 31.84. The standard deviation of the error when predicting
prices using a random walk model is therefore about 5.64. If the logarithm of price is
modeled as a random walk, the variance estimates of In P are given in Table 6.2. The
exponential bias factor for this model is estimated as 1.021. However, in this case,
the random walk model using logarithms results in a somewhat worse performance,
with a prediction error having variance 32.79 and standard deviation of about 5.73.

Mean-reverting process

We now consider modeling the logarithm of price as a mean-reverting process. The
regression results are given in Table 6.3. In order to allow for the possibility that the
price process parameters may vary over time, the parameters will be estimated for
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Figure 6-6: Plot of natural logarithm of price vs. time in the PJM electricity market.
Hours for which the market clearing price is zero are plotted as having a log of —1.

Hours | Degrees of Freedom | n | T | &2
1 - 3096 3093 0.134 | 2.87 [ 1.19 x 107!
125 - 1225 1098 0.171 | 2.90 | 2.58 x 1072
2649 - 3096 445 0.097 | 3.01 | 3.99 x 1072

Table 6.3: Parameter estimates for mean-reverting model of price logarithm.

each hour using weighted least squares, in which the squared residual for hour 7 — 1
has weight f with respect to the squared residual for hour ¢, where 0 < f < 1. The
regression can be updated for each hour using a recursive algorithm, as described in
Appendix A. For the estimated variance, the appropriate bias factor is 1.020. Upon
applying the mean reverting model for price prediction, the lowest prediction variance
(31.78) occurs for f = 0.99; the standard deviation is therefore about 5.64.

Load regression line

The advantage of the first two price prediction methods is that they do not need
any estimate of the load. However, they have the disadvantage of relatively large
prediction error, which can be lowered if an accurate estimate of system demand is
available. The remaining prediction methods assume that the load is known exactly;
this information is then used to predict the price. A discussion of the effects of
uncertainty in load prediction is deferred to the end of this chapter.

A simple method for using the system load to predict price is to simply apply
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Hours | Degrees of Freedom | B | Ao | 62

1 - 3096 3094 7.46 x 107> [ 0.755 | 2.74 x 10!
125 - 1225 1099 5.47 x 107 | 1.525 | 4.26 x 1072
2649 — 3096 446 7.20 x 1075 | 0.741 | 5.52 x 1072

Table 6.4: Parameter estimates for linear load function model of price logarithm.

Hours | Degrees of Freedom | m | G?
1 - 3096 3094 9.04 x 10 | 1.07 x 107!
125 - 1225 1099 6.58 x 107° | 1.99 x 1072
2649 - 3096 446 6.85 x 107° | 3.00 x 1072

Table 6.5: Parameter estimates for linear load function model of price logarithm with
intercept following random walk.

the regression curve of price v. load. Using the estimate of variance from Table 6.4,
the bias factor for the price estimate is 1.028. As before, the recursive regression
algorithm with a “forgetting” factor may be used. For the PJM price data, setting
f to 0.825 produces the lowest prediction variance; however, this variance value is
45.64, giving a standard deviation of 6.76. Although this method does allow for the
use of load prediction, it does not accurately estimate the price.

Linear load function with intercept as random walk

We now consider the first of the two price process models that include load informa-
tion. First, the parameters are estimated by linear regression, with the results shown
in Table 6.5. The bias factor for this data is 1.015. Using recursive least squares
with a weighting factor f = 0.999, the variance of the error is 24.09, and the stan-
dard deviation is 4.91. Interestingly, this model performs better if the bias factor is
neglected; with f = 0.999, the standard deviation of the prediction error is 4.82. The
same observation was noted earlier in the pure random walk model. The bias factor
does improve the prediction for the mean-reverting models, however.

Linear with function with mean reverting intercept

The parameters for this model can not be estimated using linear regression, as equa-
tion (6.34) has four terms but only three independent variables. However, a numerical
regression solution can be quickly calculated, as described in Appendix A. The re-
sulting parameters are given for three time ranges in Table 6.6. Because a recursive
algorithm is not available, the starting parameters were estimated from the first 11
hours of data, and the parameters were recomputed after every 100 hours, with the
(¢ — 1)th squared residual weighted by f with respect tc the ith residual. With
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Hours | Degrees of Freedom | n | & | m | 62

1 - 3096 3092 0.215 [ 0.504 | 8.34 x 1075 ] 9.70 x 10~2
125 - 1225 1097 0.262 1 1.345 | 6.18 x 1075 | 1.77 x 10~2
2649 - 3096 444 0.317 | 0.788 | 7.05 x 10~® | 2.60 x 10~

Table 6.6: Parameter estimates for linear load function model of price logarithm with
mean-reverting intercept.

f = 0.99 and a bias factor of 1.013, this method has a prediction variance of 21.15,
or a standard deviation of 4.60.

Other possibilities

There are a number of other possible methods for modeling the price process of
electricity. The method used in [27] is to find the mean for each day of the week during
a given month, and then find a price process model for the price deviations from the
mean. In [27], these deviations are modeled using an 8th-order autoregressive process.
Another idea is to use a Fourier series to represent the mean as a periodic function of
the time of year. However, as of this writing, there is only a few months of price data
available from the newly formed PJM market, and this data is insufficient to provide
parameter estimates for these methods. A very recent model in [22], postdating this
research, uses a jump-diffusion process model, in which discrete price jumps occur
according to a Poisson process.

6.3 Correlation of Load with Date

Since the price models with load information clearly improve the prediction of future
prices, the value of good load estimates becomes clear. One factor which is correlated
with the system load is the date of the year. Not surprisingly, the load on weekends
is less than corresponding hours on weekdays, sometimes by as much as 20%. Using
data from the PJM pool (Pennsylvania-Jersey-Maryland) for the years 1994 through
1996 [24], the ratio of the load on a given day of the week with respect to the average
is shown in Table 6.7. In this table, each of the 24 hours in the day is tabulated
separately. For example, on Monday morning from midnight to 1:00 AM, the average
load is 95.8% of the average load for the hour from midnight to 1 AM over all days.

Another factor affecting load usage is economic growth. It should not be surprising
to find a gradual increase in load from year to year, other factors being equal, because
of new businesses and homes and population growth. In the PJM data, the average
load growth from 1994 to 1995 was 1.97%, and the growth from 1995 to 1996 was
0.41%. The average annual growth rate over the entire period included in the PJM
data is therefore about 1.19%. It should be noted that the higher growth rate for 1995
is partially influenced by the weather, as during the summer of 1995 the weather was
quite hot, while during 1996 the summer was one of the coolest on record for the last
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Hour Mon | Tue | Wed | Thu Fri Sat | Sun
12AM-1AM |[0.958 | 1.003 | 1.013 | 1.023 | 1.025 | 1.009 | 0.969
1AM -2AM | 0.966 | 1.004 | 1.014 | 1.024 | 1.025 | 1.003 | 0.965
2AM-3AM |0.974]1.006 | 1.016 | 1.026 | 1.026 | 0.998 | 0.954
3AM -4 AM |0.980 | 1.008 | 1.017 | 1.02%,1.026 | 0.991 | 0.952
4 AM-5AM |0.988(1.01411.022|1.031 | 1.029 | 0.979 | 0.938
5AM-6 AM |1.004]1.031 | 1.037 ; 1.045 | 1.041 | 0.945 | 0.897
6 AM-7AM |[1.028 |1.060 | 1.065 | 1.070 | 1.062 | 0.888 | 0.827
7T7AM-8AM [1.039(1.069|1.074 | 1.078 | 1.072 | 0.871 | 0.797
8AM-9AM |1.036|1.057 | 1.062 | 1.067 | 1.063 | 0.900 | 0.816
9AM-10 AM ([1.031]1.046 | 1.052 | 1.058 | 1.053 | 0.923 | 0.836

10 AM-11 AM | 1.030 | 1.043 | 1.048 | 1.054 | 1.049 | 0.930 | 0.846
11 AM-12PM | 1.029 { 1.042 | 1.048 | 1.052 | 1.046 | 0.928 | 0.855
12PM-1PM |1.029 | 1.044 | 1.049 | 1.052 | 1.044 | 0.921 | 0.861
1PM-2PM |1.031(1.049|1.054 | 1.055 | 1.045 | 0.909 | 0.856
2PM-3PM ([1.031]1.052]1.058 [ 1.057 | 1.045 | 0.902 | 0.854
3PM-4PM |1.032(1.053|1.060 | 1.057 | 1.041 | 0.899 | 0.858
4PM-5PM |1.031(1.053|1.059 | 1.054 [ 1.032 | 0.902 | 0.867
5PM-6PM |1.032{1.050|1.057 | 1.050 { 1.022 | 0.907 | 0.881
6PM-7PM |1.030}1.046 | 1.052 ! 1.047 | 1.014 | 0.916 | 0.895
7TPM-8PM |1.030|1.043 | 1.050 | 1.046 | 1.006 | 0.919 | 0.906
8PM-9PM |1.029(1.041 | 1.048 | 1.046 | 1.000 | 0.920 | 0.916
9PM-10PM | 1.0231.035 | 1.043 | 1.042 | 1.000 | 0.928 | 0.928
10 PM-11 PM | 1.012 | 1.025 | 1.034 | 1.035 | 1.007 | 0.947 | 0.939
11 PM -12 AM | 1.003 | 1.017 { 1.025 | 1.028 | 1.010 | 0.964 | 0.952

Table 6.7: Ratio of load usage as a function of day of the week to average for a given
hour in the day.
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Figure 6-7: PJM load during the hour from 1:00 PM to 2:00 PM.

100 years. This observation also leads us to examine another potential determining
factor for the amount of load: temperature.

6.4 Correlation of Load with Temperature

It is generally well known that electricity usage is strongly influenced by the outdoor
temperature. On hot days, heavy air conditioning usage results in a large load on
the system, while electricity usage also is higher during cold weather for heating. A
graph of afternoon load on the PJM pool (see Figure 6-7) reveals two peaks which
occur in the summer and the winter, with the summer peak being noticeably higher.
Furthermore, scatter plots of the PJM load with respect to the daily maximum at
Philadelphia International Airport (PHL) [28] illustrate a strong correlation, although
the relation is clearly nonlinear (Figure 6-8). (The temperature data covers the 912-
day period from 1/1/94 to 6/30/96.)

In order to reduce the effects of day of week and annual growth on the load
data when studying the relationship between load and temperature, an adjusted load
L,4i(t) is computed from the actual load usage L(t) according to:

Lagi(t) = Lgr(i;t (6.37)

where ¢ is the time measured in hours, k = 1.346 x 1078, representing a 1.19% annual
growth rate, and R, (¢) is the ratio of load to the average for the hour of the day as
a function of the day of week, as tabulated in Table 6.7. Additionally, the holidays
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Figure 6-8: Scatter plot of load at 1:00 PM - 2:00 PM versus daily high temperature
at Philadelphia International Airport.

of New Year's Day, Memorial Day, July 4th, Labor Day, Thanksgiving, and Christ-
mas are estimated to have load use patterns similar to Sundays, and are adjusted
accordingly in equation (6.37). The Friday after Thanksgiving is also observed to
have reduced load and is adjusted using the Saturday weighting factor. The adjusted
load is observed to provide an improved fit, as shown by the plot in Figure 6-9.

6.4.1 Overview of Linear Regression Analysis

Linear regression is the process of fitting a linear model to describe the relationship
among two or more variables. The relationship is often used to predict future values
of a quantity. Mathematically, the linear model for regression may be described by
(26]):

Y=.30+,B1X1+.B2X2+°"+ﬁpxp+e (6'38)

Here Y is known as the dependent variable or response, while the X; are known as
independent variables, and e is an error term. It is assumed that the error e has zero
mean and a fixed variance o2, and the errors between different cases are uncorrelated.
In regression, n observations of Y for a corresponding set of X; are given, and the
object is to find the values for 3; that “best” describe the relationship between Y and
X;. The normal procedure is to select §; to minimize the residual sum of squares,
which will be defined shortly. Let y; denote the value of Y and z; the value of X;
for the k-th observation. The complete set of data may then be written in matrix
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Figure 6-9: Scatter plot of adjusted load at 1:00 PM - 2:00 PM versus daily high
temperature at Philadelphia International Airport.

notaticn as [26]:

T
y=|" (6.39)
| Yn |
.
B = é‘ (6.40)
| By |
1 2y 72 - T1p
X=|b T ot T (6.41)
1 Zpt Taz -0 Zpp

In this matrix notation, the rows correspond to individual cases or sets of observa-
tions, while the columns correspond to different independent variables. The regression
model of equation (6.38) may thus be written as [26]:

y=XB+e (6.42)

where the elements of the error vector e are unobservable.
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For an estimate f3 of 3, the fitted values of y are denoted by y and defined as:
y=XB (6.43)

The residual vector, denoted here by r, is the difference between the observed and
fitted values:
r=y-y (6.44)

The residual sum of squares (RSS) is the sum of the squares of the elements of r:

RSS=rTr=)r? (6.45)

=1
The least squares estimate 3 which minimizes RSS is [26]:
B = (XTX)'XTy (6.46)

An estimate of the variance of e may be computed by dividing RSS by its degrees
of freedom:
.o RSS

= 4
o m— (6.47)

The square root of this estimate () is known as the standard error of regression.

After a least squares computation is performed, there are a large number of tests
and studies that can be done to determine whether the original linear model is in
fact appropriate for the data. A fundamental test that is available tests whether the
dependent variable Y is in fact related to any of the independent variables X;. This
test, known as the F-test for regression, compares the residual sum of squares with
the total variability in Y, which is quantified by SYY, the total corrected sum of
squares:

SYY =) (yi — 7)° (6.48)
i=1

__ 1
g==2 v (6.49)

n i=1

The F-test is performed by computing the F statistic:
YY - RS

p=3YY_ESS (6.50)

pe

The test compares the model in equation (6.38) with the null hypothesis, which
assumes that Y has no dependence on any of the X;:

yi=P0Bo+e (6.51)

If e is normally distributed with zero mean and variance o2, then under the null
hypothesis of equation (6.51), F will follow an F distribution with (p,n —p — 1)
degrees of freedom. A large value of F' which exceeds a chosen significance level

53



strongly indicates that at least one of the coefficients of X; in equation (6.38) is
nonzero, since it is highly improbable that such a large value of F would be obtained
under the null hypothesis model of equation (6.51). This result therefore means that
Y is related to at least one of the independent variables [26).

Another useful regression statistic is the coefficient of determination, denoted as
R?. This statistic is given by the formula:

_ SYY - RSS

2
R SYY

(6.52)
Conceptually, equation (6.52) gives the proportion of the variability of Y which is
explained by the regression on the independent variables. R? varies from 0 to 1, with
larger values indicating a better regression fit [26].

The residuals can provide much information on the validity of the fitted model.
By combining equations (6.44), (6.43), and (6.46), we find that the residuals are equal
to:

r=(I-XX"X) X"y (6.53)
or, by defining the matrix V:
V = X(XTX) X7 (6.54)
we have:
r=(I-V)y (6.55)

It can be shown from this last equation that all of the residuals have zero mean, and
the variance of the i-th residual is 02(1 — v;;); however, the residuals are all correlated
[26]. To provide a better basis for analysis, the residuals may be scaled by Studentiza-
tion, or division by their estimated standard deviation. The i-th Studentized residual,
denoted here as r;, is given by:

Y e (6.56)
where vj; is the i-th diagonal element of V. Although the Studentized residuals are
not strictly ¢-distributed, they may be approximated as having a normal distribution
with mean zero and variance one, if the linear regression model is true. Furthermore,
the residuals are weakly correlated with the fitted values §;; this correlation is ignored
for most analyses [26].

Once the Studentized residuals are calculated, they may be plotted as a function
of the fitied values ; to check the accuracy of the model. If the graph shows the
residuals centered around zero with approximately 95% of the residuals between —2
and 2 for the entire range of §;, then there is no reason to suspect that the model is
inappropriate. However, if systematic features are present, such as a change in the
mean and/or variance of the residuals as a function of §;, then the model is likely
inappropriate or incomplete for the data. Many large residuals may also indicate an
inaccuracy in the model; with normally distributed errors, only about 3 out of 1000
residuals should lie outside the range —3 to 3. Residuals may also be plotted as a
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function of the independent variables X;; these plots should also reveal no systematic
features if the model is valid. A change in variance of the residuals indicates that the
variance of the error is not constant but instead is a function of the other variables.
If the mean of the residuals is not zero along the entire range of the plot, then the
underlying process is likely nonlinear {26].

If the relation is suspected or known to be nonlinear (as in the load vs. temper-
ature data shown previously), then polynomial regression may be used. Polynomial
regression uses a polynomial of order d to represent the model [26]:

Y=0o+BX+PX+ - +PeX+e (6.57)

The coefficients By, 5. ..., 54 may be estirnated through standard linear regression
by treating X, X2,...,X? as separate independent variables [26].

6.4.2 Application of Regression to Temperature/Load Data

The relation between the load and temperature is estimated by regression of the
load data with a cubic polynomial of the maximum temperature [26]. For the hour
from 1:00 PM to 2:00 PM, the coefficient of determination of this regression is R? =
0.6445 using the unadjusted load data and R? = 0.8334 using the adjusted load
data. Again, the adjusted data clearly provides a better fit to the temperature data.
The F statistic for the adjusted load data is 1514, while the 99% significance level
for the F distribution with (3, 908) degrees of freedom (denoted F(0.01;3,908)) is
approximately 3.8, providing overwhelming evidence that the load is a function of
maximum temperature [26]. The 95% confidence interval for the coefficient of the
cubic term is 0.128 to 0.153, strongly suggesting that this coefficient is non-zero. If a
fourth power term in temperature is added to the regression, R? = 0.8336, which is
almost identical to the cubic macdel, while the 95% confidence range for the highest
order coefficient is from —2.91 x 10~ tc 6.88 x 10~4, which does not exclude zero.
These results therefore suggest that a third order polynomial in temperature is the
best model to use for the regression.

The load/temperature relation may be further improved by adding a cubic polyno-
mial of the minimum temperature for the day to the model. The resulting regression
calculation for 1:00 PM to 2:00 PM gives K2 = 0.9074, while the F statistic is 1471,
much greater than F(0.01;6,904) =~ 2.8. (Note that minimum temperature data for
PHL is not available for four of the 912 days [28]; these days are excluded from the
regression analysis.) The 95% confidence interval for the cubic coefficients of both
maximum and minimum temperatures does not include zero, suggesting that this
model provides a good basis for regression.

6.4.3 Conclusions of Regression Analysis for Load vs. Tem-
perature

The complete regression results for each of the 24 hours in the day are provided in
Appendix B. In the morning hours from 12:00 AM to 10:00 AM, it is observed that
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the previous day’s high temperature provides a better fit in the regression than does
the current day’s maximum. A study of the residual plots and outlying cases leads
to several conclusions. First, the cubic model may not be appropriate for extremely
high or low temperatures, as systematic errors are observed in many residual plots
for very high values of expected adjusted load. Specifically, the cubic model appears
to overestimate the load if the temperature is very high; the load does not appear to
grow as a cubic function of temperature. Secondly, although the variance appears to
be relatively constant in the residual plots, an unusually large number of cases with
high residuals (outside +3) are observed. The large errors for these cases appear to be
caused by unusual weather conditions: normally, the maximum temperature occurs in
early to mid afternoon while the minimum temperature occurs in the early morning
just prior to sunrise. On some days, however, this is not the case, and for these days,
the daily maximum and minimum suggest that the temperature (and load usage) at
the hour of study is different from the actual temperature. The availability and use
of hourly temperature data would likely eliminate this problem. Other possibilities
are the loss of power for an unusally large number of customers, possibly due to the
presence of thurderstorms, and a few unusual days where temperatures across the
PJM service area are highly variable.

6.5 Effects of Variance of Load Estimation

Since the load can never be predicted exactly, it is important to determine whether
the error in load estimation vutweighs the improved price forecasts from models that
use a demand estimate. In order to answer this question, we begin by assuming that
price deviations and errors in load estimation are uncorrzlated. While this may not be
strictly true (particularly for catastrophic events), it seems reasonable to believe that
these two processes generally act independently of each other. Given this assumption,
the additional variance in the logarithm of price (denoted o2 ) may be added to the
variance of the price process models to obtain the total variance. The variance of
In P due to load estimation in all of the models using load prediction is:

0% . =var(mL) = m2var L (6.58)

The value of o2 should not exceed a threshold. This threshold is the difference in
variance between the “best” model that includes load prediction and the “best” model
that does not. For the PJM data, this threshold is hard to define, as the variances
differ significantly over different price ranges. Also, the value of m? varies over a large
range. If the threshold is set at 0.01 and m is approximately 1 x 10~*, the standard
error of the load estimate should not exceed 1000. For m = 8 x 1075, the standard
error may be as much as 1250. If the threshold is increased to 0.022 (the variance
difference when all price data is included), the standard error for the load estimate
can reach 1854 if m = 8 x 107,

Using the temperature data for price prediction appears to have marginal value,
at least for the regressions performed in this thesis. The standard errors for the load
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are in the same range as the maximum limits estimated in the previous paragraph
(without considering the variance of temperature forecasts). It is interesting to note
that the estimates for m are lowest for time ranges in which the variance (and variance
threshold) is lowest. The standard error of the load estimate may also be improved
with additional information. Clearly, however, the price models that include a load
estimate will provide useful information about price if tomorrow’s forecast calls for a
sudden jump in temperature from 60° F to 95° F; price models without a load forecast
will not capture the expected price increase.

Although it is not clear that the mean-reverting intercept price model with load
estimates offers significantly better prediction than the standard AR(1) model, this
model is nevertheless used as the price model for the remainder of this thesis. The
mean-reverting intercept model can be used to capture the changes in average price
over different hours of the day, as depicted by Figure 6-1. This price model also makes
it possible to determine optimal unit commitment decisions as a function of time of
day, on the important assumption that the price is at its average value.
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Chapter 7

Computational Complexity of
Unit Commitment

In previous chapters, a model for the evolution of the price of power was developed,
taking into account price and demand forecasting techniques. This chapter addresses
the question of how to use the available information in order to make an optimal unit
commitment decision at each hour.

The addition of the price process model adds a state variable to the unit com-
mitment problem. In addition to zk(1), bx_,, which is the intercept quantity in the
price model from the previous hour, is also a state variable. u;(1) remains the only
control variable, while Cj, the cost during hour k, is a random quantity given by
equations (3.2) and (3.3), which are restated here for convenience:

_ Pk — by
P = 2 (7.1)
Crx = wk(1)(cc1(Po1) — pePor + I(zi(1) < 0)51) + (1 — wk(1))(cy + I(zk(1) > 0)(T1))
7.2

The price py is a function of the load L, and the price state by, from equation (6.30):
Inpy =mL; + b, (7.3)
while the state by evolves according to equation (6.34):
be=b(1—e™") + e M) + e (7.4)
The state transition equation for z(1) is [6]):

max(l,zk(l) + 1) : uk(l) =1

Ze41(1) ={ min(~1,zx(1) ~ 1) : u(1) =0 (7.5)

There are two random inputs to the system; the error term e; in the price model,
and the error of the estimation of the load Ly.
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7.1 Dynamic Programming Algorithm

It is generally well recognized that dynamic programming is applicable to many
stochastic optirnization problems; however, it also has the disadvantage of non-
polynomial (IN7?) growth of operation count with respect to problem size (the “curse
of dimensionality”) [5]. The unit commitment algorithm developed in [11] for a co-
ordinated utility has a deterministic problem formulation, as the number of control
choices is equal to 2¥¢, where Ng is the number of generators. However, the problem
for an owner of a single generator has only two control choices (on or off); therefore,
it becomes feasible to address unit commitment in a stochastic environment.

A direct implementation of dynamic programming for the unit commitment prob-
lem with a price process and generation limits may be used. The computation of the
optimal decision is as follows: Starting at the last time stage, the optimal cost and
optimal decision are calculated for every possible state. Next, the optimal cost to go
and decision are calculated for every state in the next to last stage, using the optimal
cost information from the last stage. This process continues until the first (current)
time stage is reached.

Because the state includes price, which is a continuous variable, the states must
be discretized in order to carry out the above procedure. The price difference between
two consecutive discietized states will be denoted as d. The range of price considered
at the first stage will encompass 5 standard deviations above and below the initial
price. Prices outside this range at the first time stage are highly improbable and are
assumed to have negligible impact on the expected profit. At the second time stage,
the price range considered is 10 standard deviations above and below the initial price,
so that the expected cost to go at the first stage can be calculated using a price range
of 5 standard deviations. The n-th stage has a range of 5n standard deviations above
and below the starting price. Incidentally, note that the quantity which is actually
discretized is the log of price, not the price itself. If the price model includes load
information, then the intercept b may be discretized and used as the price state.

The first time stage has 2(50d~!) + 1 price states. Each succeeding stage adds
2(50d~!) price states. Therefore, the N-th stage (where N is the horizon length) has
2N(50d7!') + 1 price states. However, states relating to the generator status (on or
off) must also be included. The number of these states for one generator is (¢4 + t4n),
the sum of minimum up and down times. The total number of states is the product
of these quantities. The n-th stage has:

(tup + tan) Ve (10nod™! + 1)

total states, where Ng is the number of generators. Recall that an optimal cost to go
and optimal decision must be calculated for each state. This computation requires
calculating the expected cost for one stage and then adding the expected cost-to-go
from the next stage, which is approximated by multiplying the transition probability
to a given state by the expected cost-to-go for that state, and then summing over all
possible future states. If more than one control choice is allowed, this computation is
performed for each control choice, and the lowest resulting cost (i.e. highest profit)
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determines the optimal contrcl. Note that the total number of states to consider in
a time horizon of N stages is:

(1/2)N(N + 1)(tup + tan) Vo (100d™") + N(tup + tan)™e

A note on the price process is in order. If a random walk (logarithm) is used, the
transition probabilities can all be computed before the DP loop, since the probability
of the price remaining the same (within the same discretization level) is identical for
any value of the price. This does not hold, however, for a mean-reverting process; in
this case, the transition probabilites are recalculated for every state. In the first case,
an array of 2(50d™') + 1 values holds all of the transition probabilities. In the second
case, an array of 4(N — 1)(50d~')? would be needed.

7.2 Heuristic Simplifications

In many cases, the exhaustive computation of an optimal unit commitment decision
gives a result which is intuitively obvious. For example, at 3 PM demand is typically
high and remains high for several hours; since the price would be expected to be
correspondingly high, it would be expected that most typical low or moderate cost
generators should be turned on (if they are not already on). Such intuitive reasoning
can be used to deveiop heuristic algorithms that cover many situations, although
extensive computation will be necessary to cover most borderline cases. The primary
difficulty with heuristic algorithms is that intuition is occasionally deceptive, and
consequently many heuristic methods are not optimal, while it is very difficult to
prove the optimality of other heuristic algorithms, even in specialized cases.

A good illustration of this difficulty in the decentralized unit commitment algo-
rithm is the following heuristic: If the generator is running and the next hour is
expected to be profitable, stay running. This algorithm will work for most practical
situations; as shown earlier in Chapter 6, the price usually stays low throughout the
night hours and rises during the day. For the example shown at the end of this chap-
ter, the generator is generally turned off from 11 PM to 7 AM and is on at all other
times. In this case, when the generator is turned off, it is expected to remain off for
many hours. However, there is a counterexample to this algorithm: if a small profit
is expected in the next hour, a large loss is expected in the following hour, and an
even bigger profit is expected in the third hour, the heuristic described above will not
be optimal for a minimum down time of 2 hours. This heuristic would require the
generator to stay on for all three hours and absorb the large loss during the second
hour. Instead, it would be optimal to turn off and forego the small profit of the
first hour in order to avoid the large loss of the second hour. The generator can be
restarted in order to capture the very large profit during the third hour.
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7.3 Ordinal Optimization

Ordinal optimization (8, 9] is an approach for finding a solution to an optimization
problem in which a large number of possible policies have to be considered. In or-
dinal optimization, the object is not to find the one best policy choice but rather
to select a policy which, with very high probability, is among the highest percentile
of all possible policies. This characteristic of ordinal optimization is termed goal
softening; although it is obviously more desirable to find the very best solution, it
may not be worthwhile or feasible to examine every possible solution out of a bil-
lion (or more) possibilities. Ordinal optimization is a prime candidate for problems
in which the number of possible policies increases exponentially or combinatorially
(such as the traveling salesman problem), the policy space has little or no structure,
and evaluation of the objective criterion for each policy is corrupted by large noise or
otherwise computationally expensive. Stochastic optimization problems have these
characteristics, and therefore they are well suited to ordinal optimization.

7.3.1 Overview of Ordinal Optimization

The idea of goal softening is much more appropriate for some problems than for
others. With high probability, ordinal optimization finds a “good enough” solution,
defined as being among the top n% of all solutions. This does not, however, mean
that a “good enough” solution is within n% of the optimal cost. For many problems,
a fairly large number of solutions perform close to the true optimum. In these cases,
the qualitative difference among “good enough” policies is small and more than offset
by the expense of trying to find the one best solution. Other problems, however, may
have one solution that stands out as being far ahead of the others; for such problems
(termed “needle in a haystack” problems), goal softening is of little value. However,
ordinal optimization can be used for these problems to learn about the characteristics
of the better solutions and thus decide where to search next.

Ordinal optimization has three basic steps. First, a uniform sample of N policies
out of all possible policies is taken. Second, using a selection rule, a subset of the N
policy samples is picked. The size of this subset is sufficiently large such that at least
one “good enough” solution is included in the selected subset with high probability.
Finally, the policy choices in the selected subset can be evaluated more thoroughly,
and the best policy of these is chosen.

The first step of ordinal optimization is to select a sample of the policy space.
Ordinal optimization assumes that it is possible to sample the policy space uniformly;
each policy has equal probability of being selected. The sample should be large enough
so that we are virtually assured of having at least one of the top n% of the overall
search space in the sample of N policies. This probability is calculated by the formula:

P=1-(1-n%)" (7.6)

In 9], a sample size of N = 1000 is used; the resulting probability P that one of the
top 5% is included is 1 — 5.29 x 10723, a virtual certainty. For n% = 1%, P is equal
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to 0.999957, which is not a guarantee, but is highly probable.

The next step is to choose a subset from the sample of IV policies. This subset is
denoted by S and contains s elements. A “good enough” subset G of the sample can
also be defined as the top n% of the sample; G therefore has ¢ = N x n% elements.
The question is how to choose the subset S and how many elements to include.
This question is answered by determining the alignment probability P4, which is the
probability that the sets G and S have at least k elements in common. k is termed
the alignment level. s is choser so that the alignment probability exceeds a desired
threshold for a selected percentile n (typically n% = 5%).

The selection rule is the process by which s elements are selected from /N sam-
ples. Although there are many possible selection rules which can be used, two of the
simplest methods are blind pick (BP) and horse race (HR). Blind pick is equivalent
to sampling without replacement; s out of N policies are chosen, where each element
has equal probability of being chosen. Note that under blind pick, no evaluation of
any of the N policy choices is done. The alignment probability under blind pick can
be written mathematically as:

— )
Pa(k,s,g|BP) = Z,:C —(T

This value of alignment probability is known as the blind pick lower bound (BPLB);
it is a lower bound since the selection method uses no knowledge of the cost of any
of the policies. If some estimate of cost is available and this knowledge is used when
selecting elements, then the alignment probability will be higher.

An obvious choice of selection method using cost estimates is known as horse
race (HR). Under this method, all N policies are evaluated by finding an estimate
of the cost for each policy. The actual method of doing the evaluations is problem
dependent, although for most stochastic problems a Monte Carlo simulation would
typically be used. After completing the simulations, the s policies with the lowest cost
are selected. Since each policy’s simulated cost is an estimate of the true expected
cost plus some noise w;:

(7.7)

j,' =J; + w; (78)

the horse race results should improve the alignment probability with respect to the
BPLB above. The amount of improvement depends on the noise variance and the
shape of the ordered performance curve (OPC), which is defined in the next para-
graph. Note that the ordering in the horse race simulation will not in general be
identical to the actual ordering of the policies, since one policy may have a large
positive noise element while another policy which is on average worse may appear to
be better because of large negative noise.

The ordered performance curve is obtained by plotting the expected cost of each
policy, in order from the lowest to the highest. The plot of discrete points may be
approximated as a nondecreasing curve, with the z axis indicating the rank of a policy
and the y axis indicating expected cost. Furthermore, the OPC may be standardized
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| No. | OPC Density | Category | Parameter Values |

1 Flat Lots of good designs a<l,f>1

2 U-Shaped Lots of good and bad designs, a<l,f<1
but few intermediate designs

3 Neutral Good, intermediate, and bad axl,f~1
designs are equally distributed

4 Bell Lots of intermediate designs, but a>1,>1

few good and bad designs
5 Steep Lots of bad designs a>1,08<1

by scaling the z— and y—axes to a range of [0, 1]. In the standardized OPC, the best
policy is denoted by 0 and has an expected cost of 0 while the worst policy is denoted
by 1 and has an expected cost of 1. All of the intermediate policies are represented
by real numbers between 0 and 1, with higher ranking policies having lower numbers.

The reason for scaling the OPC curve is to classify its shape into one of five
classes. In [9], the five classes are represented by using a smooth curve with only two
parameters, a and (. Generally speaking, a is the slope of the OPC for the lower
cost (“good”) designs, while 3 is the slope of the OPC for the higher cost (“bad”)
designs. Table 7.3.1 lists the five classes and the corresponding range of o and 3; the
OPC shapes for each class are shown in Figure 7-1. For a given problem, the OPC
curve is not known exactly (otherwise the problem is solved!); however, its class may
be guessed by using intuition or a rough estimation; the neutral class is a good choice
if no other evidence is available.

The OPC classes are used to estimate the alignment probabilitics using the HR
(horse race) selection method. A closed form expression for the alignment probabilj-
ties under HR is not available; however, an estimate of these probabilities from Monte
Carlo simulation is given in (9], in which the estimates are used to determine Z(k,g),
which is defined as the minimum size of the selected subset required to achieve an
alignment probability P, = 0.95 for a given alignment level & and “good enough” cri-
terion g. The Monte Carlo estimates of Z are fitted using regression to the following
function, which is useful for all five OPC classes:

Z(k,g) = e®kPq" + (7.9)

The parameters Zy, p, 7, and n depend on the OPC class and also the variance of the
noise w; in the horse race estimates of cost. Assuming that 20 < ¢ < 200, Z < 180,
and k/g is small, equation (7.9) will accurately estimate how many elements should
be selected from the sample of N policies in order to obtain k “good enough” solutions
with 95% probability. Note that if the OPC is perfectly flat (meaning all policies are
equally good) or the noise variance is infinite, then the horse race method offers no
improvement over blind pick, since the policy rankings from a horse race outcome are
uniformly random.
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Figure 7-1: The five classes of ordered performance curve shapes.

In summary, ordinal optimization may be performed for a given problem using a
basic three-step procedure. First, a sample of N policies out of all possible choices is
selected, using uniform random sampling. [9] recommends N = 1000 as being a suffi-
ciently large sample; higher values of N improve the chance of obtaining exceptionally
good policies, but the heavy computation required using larger samples is contrary to
the spirit of ordinal optimization. Second, a subset of s elements is drawn from the
sample of N policies. For most problems, the elements chosen are the s policies that
have the lowest cost after all N sample policies are simulated using a Monte Carlo
approach. The value of s is derived from equation (7.9) using an estimate of the OPC
class of the problem (or the neutral class, if no better choice can be determined),
and an estimate of the amount of noise present in each Monte Carlo simulation. The
s selected policies may then be evaluated more thoroughly to determine which one
offers the best performance. Ordinal optimization is a method for greatly reducing
the search space for problems in which a thorough evaluation of all possible choices
is impractical.

7.3.2 Application to Unit Commitment

In order to reduce the computation of the optimization algorithm, an ordinal opti-
mization approach may be used. This approach is aided by using the conjecture that
the optimal poiicy is a threshold policy with respect to the current price; if it exceeds
a fixed threshold value, then it is optimal to turn on (or stay on); otherwise, the
generator should be off. (Note, however, that the threshold depends on the current
state and will in general vary from one hour to another.) While this conjecture is
intuitive and supported by the numerical examples solved in this thesis, a proof is
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left for further research.

Ordinal optimization can be implemented by noting that any policy may be spec-
ified by providing two price thresholds for each hour in the planning horizon. One
threshold is for the “on” state, while the other is for the “off” state; note that a
decision is possible only if the state zy is equal to t,, or —t4,. The threshold for the
“off” state will always exceed or equal the threshold for the “on” state because of
the startup cost and minimum up time. For a price process model with load infor-
mation, the threshold may also be expressed in terms of the intercept value; in this
case, the actual threshold value for the price at a given hour depends on the load
for the preceding hour, whereas a threshold value for the intercept may be calculated
many hours in advance. A random policy can be determined by drawing 2/N random
numbers. For each pair of numbers, the lower number is the “on” state threshold
for a given stage while the higher number will be the “off” state threshold for the
same stage. After drawing a sample of 1000 random policies, each policy is evaluated
by a Monie Carlo simulation, having knowledge of the initial state and price. An
approximation of the ordered performance curve for the unit commitment problem
is shown in Figure 7-2; this curve was derived by randomly selecting 1000 policies
and running 500 Monte Carlo simulations per policy. Note that the OPC for unit
commitment clearly falls into the “bell” class.

Alternatively, because of the principle of optimality 5], the problem may be tack-
led by backwards recursion. Beginning at the last stage, a subset of policies may
be randomly selected and simulated. The best performing policy is then assumed
to be the optimal policy, and the process moves back one stage, by selecting a new
subset of thresholds for the next to last stage. Each simulation at a given stage is
performed by using the assumed best policy for all future stages. If the number of
policies at each stage is 1000/N, then a total of 1000 simulations is performed, but
the results may be expected to be more accurate, since in effect (1000/N)" policies
are evaluated. The same random price path for a Monte Carlo simulation at a given
stage may be used simultaneously for evaluating all policies; although no theoretical
alignment probabilities are available, the resulting correlation in policy costs may be
expected to keep the policies closer to their actual order [9)].

7.4 Example

To demonstrate how the unit commitment algorithm under deregulation may be im-
plemented, a hypothetical example is developed in this section. The cost of generation
is equal to c(Pg;) = 2P2 + 2P + 18. While the generator is down, the fixed cost per
hour is ¢y = 4. The minimum up time is 3 hours and the minimum down time is 2
hours. The startup cost S; is 4 and the shutdown cost T} is also 4. The problem will
be solved for a time horizon of N = 24 hours. The generation limits are 5 < Pz < 8.
The expected load for each of the next 24 hours is shown in Table 7.4. The price
process is modeled using the mean-reverting intercept model from Chapter 6, with
parameters n = 0.317, b = 0.788, m = 7.05 x 107%, and o = 0.1612. The starting
price (from the previous hour) is p_; = 13.91 with a load of L_, = 26167.
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Expected | Standard
Hour Load Deviation
12:00 AM 23830 996
1:00 AM 22402 955
2:00 AM 21531 925
3:00 AM 21291 909
4:00 AM 21374 903
5:00 AM 22429 948
6:00 AM 24562 1111
7:00 AM 27274 1177
8:00 AM 29123 1137
9:00 AM 30396 1149
10:00 AM 31462 1198
11:00 AM 31989 1242
12:00 PM 32089 1277
1:00 PM 32252 1332
2:00 PM 32275 1386
3:00 PM 32145 1438
4:00 PM 32138 1547
5:00 PM 32024 1829
6:00 PM 31448 1748
7:00 PM 30982 1570
8:00 PM 31216 1292
9:00 PM 31092 1221
10:00 PM 28937 1185
11:00 PM 26167 1134
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Ordered Performance Curve for Unit Commitment
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Figure 7-2: Simulated ordered performance curve of unit commitment policies.

7.4.1 Solution by Dynamic Programming

Using the exhaustive dynamic programming algorithm, with a discretization of 0.05
for the logarithm of price, the optimal decisions for 10:00 PM and 11:00 PM for the
given data are shown in Tables 7.1 and 7.2. The optimal decision at 10:00 PM is
to keep the generator in its current state. The optimal decision at 11:00 PM is to
always turn off, if the minimum up time constraint is not violated. The DP algorithm
required 84.307s of user time (101.95s of elapsed time) to calculate the solution for
10:00 PM on a Silicon Graphics workstation. If the problem is solved for each hour
of the day using the load data from Table 7.4, with the previous hour’s intercept at
the mean value b, the resulting unit commitment decisions are shown in Figure 7-3.
Note that a unit commitment schedule under this problem formulation is not drawn
up for a 24-hour period; instead, a unit commitment decision is made at each hour.
Price jumps or drops that occur in the near future will affect the optimal decision
when those hours are reached.

7.4.2 Solution by Ordinal Optimization

Several methods of applying ordinal optimization to the unit commitment problem
were outlined earlier in Section 7.3.2. The most direct method is to randomly select
1000 policies and simulate them. The thresholds of the intercepts are drawn uni-
formly from [0, 2]; a suitable range may be found by repeated application of ordinal
optimization. Each policy is simulated 25 times with both possible initial decisions
(on and off). The top performing policies, starting at 10:00 PM, are shown in Ta-
ble 7.3. The average simulated profit and its standard deviation is shown for each
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Expected | Optimal

Status Profit Decision
On since 9:00 PM | 397.21 On
On since 8:00 PM | 402.42 On

On since 7:00 PM 402.42 On
Off since 9:00 PM | 391.28 Off
Off since 8:00 PM | 391.28 Ooff

Table 7.1: Optimal decison and expected profit for each state at 10:00 PM

Expected | Optimal
Status Profit Decision
On since 10:00 PM | 373.66 On
On since 9:00 PM 387.38 On
On since 8:00 PM 390.36 off
Off since 10:00 PM | 394.37 Off
Off since 9:00 PM 394.37 Off

Table 7.2: Optimal decision and expected profit for each state at 11:00 PM

7:00 AM & 11:00 PM
On

Off : | = | : | : -
] | Time

12:00 AM  6:00 AM 12:00PM 6:00PM 12:00 AM

Figure 7-3: Optimal unit commitment decision over a 24 hour period.
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off On Optimal

No. | Profit Std. Dev. | Profit Std. Dev. | Decision
1 | 351.07 60.93 230.77 41.42 off
2 | 240.57 38.97 349.45 64.23 On
3 | 341.43 49.37 266.55 59.43 Off
4 |233.35 62.62 324.45 47.37 On
5 | 309.40 72.37 235.94 47.73 Off
6 | 130.26 34.64 302.91 66.41 On
7 |1217.23 52.63 301.49 57.18 On
8 |236.63 52.19 294.23 31.64 On
9 [293.83 40.14 206.54 33.40 Off
10 | 290.00 80.10 123.09 37.07 Off
11 | 284.03 47.01 222.42 45.35 off
12 | 283.12 51.30 182.03 51.87 off

Table 7.3: Results of ordinal optimization of 1000 random policies.

policy. The highest observed standard deviation in the simulations is 80. Since the
cost range in the OPC (Figure 7-2) between the best and worst solutions is at least
450, the medium noise range class may be used to estimate Z(k, g). From [9], the pa-
rameters in equation (7.9) are Zp = 8.1998, p = 1.9164, v = —2.0250, and n = 10.00;
to obtain one of the top 5% policies with 95% probability, 12 policies are sufficient
(Z(1,50) = 11.3).

Without significantly increasing the computation, it appears that this implementa-
tion of ordinal optimization is not very satisfactory. There is significant disagreement
among the selected policies regarding the optimal decision. The simulation noise
appears to be a greater influence on the optimal decision that the choice of policy.
Another problem with this algorithm is that any selected policy still generally has
at least one time stage where the threshold is far from optimal. Comparison of the
thresholds of the policies selected by the ordinal optimization algorithm (Tables 7.4
through 7.6) with the optimal policy in Table 7.7, extracted from the dynamic pro-
gramming algorithm, illustrates this fact. Using identical price samples for both the
on and off simulations (as mentioned in Section 7.3.2) could alleviate these problems,
although the backwards iteration algorithm would appear to make much better use
of the same number of computations.

The backwards iteration algorithm uses an ordinal optimization approach at each
stage, instead of over the entire policy space. It is necessary to select one and only one
policy at each hour, as otherwise the number of policies would increase exponentially
with the number of stages. To compare the two ordinal optimization approaches on a
relatively even ground, we will sample 20 policies at each stage and run 50 simulations
per policy. With N = 24, this amount to calculating 24000 simulations, as compared
to 25000 simulations for the first approach. (Note that in the backwards iteration
algorithm, each simulation averages 12 hours instead of 24.) The results are given

69



Policy # 1 | Policy # 2 | Policy # 3 | Policy # 4

Hour { On Off | On Of | On Off | On Off
1 008 1.83|0.24 0.86|0.07 1.57 061 1.46
2 1060 068025 035({010 1.33|0.28 0.29
3 1.17 1.65(0.17 0.291.32 1.55|1.17 1.19
4 1.39 1871030 041053 1.40|1.14 1.56
5 1002 045079 173|083 134124 141
6 1.47 1811039 0.52 |0.66 1.75|0.08 0.82
7 0.02 148|132 1.74(0.66 091|094 1.49
8 |0.66 0.74 10.37 1.57|0.18 0.52 [ 0.27 1.78
9 (0637 1441022 0.27 (155 1.67|0.02 0.49
10 ({029 088|087 1.88|0.02 1.84(0.72 0.88
11 (035 184|070 191(0.23 0.84 | 0.85 1.19
12 | 041 1.10{049 157 (0.15 041 [0.14 0.62
13 |142 145113 197060 1.76 { 0.38 1.89
14 |[1.25 1271075 190|0.16 0.37|0.17 0.96
15 {069 0.79 1020 046 [0.62 1.23 |0.08 1.02
16 [(0.36 0.53 109 1.30|0.20 0.30|0.18 0.38
17 (021 1.17 (151 179031 0.68 [0.04 1.37
18 (0.17 0.44 |0.47 097084 1.620.21 1.32
19 10.07 0.47 |[0.14 0.21 |1.52 1.54 |0.61 1.07
20 |0.05 037038 097056 1.110.89 1.22
21 10.19 1.8 (0.06 0.99|0.24 033|156 191
22 (030 149|046 1.081.09 1.21{1.19 1.51
23 [0.10 0.44 085 1.06 |0.83 1.03 |0.67 1.82
24 (027 0.81]1.18 187|195 1.99 121 134

Table 7.4: Thresholds for policies #1 - #4.
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Policy # 5 | Policy # 6 | Policy # 7 | Policy # 8

Hour | On Off {On Off | On Off | On Off
1 1.69 1.95(0.33 038095 1.22|141 1.50
2 1.55 190|059 1.09 046 198|169 1.79
3 |059 180|078 1.19|0.01 0.87|042 1.94
4 1076 1.26 [0.77 145 |0.61 1.59 (0.70 1.15
5 1.17 192|156 191}0.22 163|034 1.80
6 1159 1.78 (0.58 198 {031 0.90 049 0.94
7 {002 0.06]0.89 121076 094 |1.02 1.52
8 (156 1.85(0.42 0.85(0.24 1.29|0.54 1.13
9 1141 179(030 0.76 |0.61 1.40|0.41 1.96
10 | 0.04 0.88(0.01 1.21)0.56 1.77(1.13 1.59
11 051 1.14]1.01 1.35[0.29 0.71 |0.94 1.98
12 | 044 1.99 (028 0.92]1.08 1.18 (053 0.94
13 | 063 1.60]0.08 0.20 {131 1.84|0.07 0.21
14 |1.18 1.32|0.37 1.35]0.46 0.50 | 0.28 0.55
15 | 0.82 1.71|0.68 1.49)|0.28 094 |0.99 1.84
16 | 049 0.60|1.02 1.19|0.21 0.67 (0.18 0.21
17 1023 1.73 050 1.12|0.62 0.98 |0.38 1.81
18 1023 1.50 |0.83 0.84|0.73 0.89 (0.59 0.97
19 1035 0.56 082 153|064 0.73|0.61 1.99
20 [0.77 1.1710.14 1.79 (0.40 1.54 |0.08 1.16
21 [0.24 0.64)|0.06 1.36 {0.60 1.15|0.52 0.70
22 (1.8 188|060 1.02(0.53 0.830.23 1.12
23 [0.84 137125 1.40(0.17 046 |0.69 1.18
24 [0.77 0.86]0.06 1.97 (0.15 0.59|0.13 1.90

Table 7.5: Thresholds for policies #5 - #8.
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Policy # 9 | Policy # 10 | Policy # 11 | Policy # 12

Hour | On Off | On Off | On Off | On Off
1 024 0.71 033 0.37 (034 0.72 |0.23 1.99
2 1047 161|084 166 |1.68 193 |0.17 0.94
3 |015 132({095 107 |034 135 {0.75 1.93
4 (082 159{024 192 (072 164 |0.71 1.09
5 |0.75 181|185 191 [0.38 193 |0.48 1.93
6 1.79 1.96 | 0.64 0.87 |0.26 1.57 |0.57 1.66
7 1077 167]0.04 062 |042 172 |0.84 1.11
8 1.00 1.78|10.11 1.09 |1.44 1.70 (042 0.74
9 110 188|062 1.21 |0.56 0.91 |0.82 1.73
10 {1.81 192(052 166 [1.91 194 |0.11 0.73
11 (030 049|100 1.19 (0.28 1.79 |0.30 1.98
12 |0.82 099 {041 0.78 |0.02 0.54 {0.37 0.86
13 1038 0.83(0.02 035 |0.27 183 [0.23 0.49
14 {0.08 0.43(0.75 0.90 {0.09 0.57 |0.57 1.06
15 [0.52 1.39 {020 1.34 (061 1.36 |0.85 1.70
16 [0.06 0.42 047 1.23 (0.18 134 |0.16 1.32
17 10.06 0.48 {031 1.70 [0.49 142 |1.07 1.80
18 1052 1271091 199 {039 1.70 {0.28 1.58
19 (141 1.87{0.33 1.72 |0.58 1.22 |0.03 0.77
20 |1.11 1711052 090 {0.02 1.07 (143 1.85
21 0.30 0.41 {0.22 145 |0.69 1.24 |1.00 1.01
22 1061 121 (1.27 1.77 |1.33 1.74 [0.70 0.92
23 |1.87 198 (0.15 176 |1.39 194 |[1.00 1.71
24 1013 036{023 161 [035 1.72 |0.33 1.15

Table 7.6: Thresholds for policies #9 - #12.
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Thresholds

Hour | On Off
1 0.86 1.16
2 1.06 1.36
3 1.21 1.46
4 1.26 1.51
5 1.31 1.51
6 1.26 1.41
7 1.06 1.26
8 0.81 1.01
9 0.51 0.76
10 |0.36 0.56
11 [0.21 0.46
12 10.16 0.36
13 0.11 0.31
14 |0.11 0.31
15 |0.06 .31
16 |0.06 0.31
17 |0.11 0.31
18 0.11 0.31
19 0.11 0.31
20 |0.16 0.36
21 |0.21 041
22 1021 046
23 10.31 0.46
24 1051 0.66

Table 7.7: Thresholds for optimal policy.
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Off On Optimal
Profit Std. Dev. | Profit Std. Dev. | Decision
348.98 29.25 | 364.85 36.63 | On

Table 7.8: Results of backwards iteration using independent simulations of 20 policies
per stage.

in Table 7.8 and Tabie 7.9. The expected profit is higher for this one policy than
for any of the selected policies in the previous algorithm. The policy is also a better
approximation of the optimal policy. Since the two sets of simulations for the on and
off decisions are independent, the confidence level that “on” is actually optimal may
be estimated. By the Central Limit Theorem [38], the averages of the cost for each
simulation approach a normal distribution; for the given data, the probability that
the “on” average is lower (more profitable) than “off” is 62.55%.

Using identical price samples for simulations at the same stage improves the results
further. Although the simulated profit in Table 7.10 is slightly lower, the calculated
policy in Table 7.11 more closely follows the optimal policy of Table 7.7. By measuring
the difference between the “on” and “off” simulations, the power of using correlated
simulations becomes clear. This difference has an average value of 12.76 over 50
simulations, with a standard deviation of 11.65. Since the standard deviation of the
sample mean (12.76) is 11.65/1/50 = 1.65, the probability that the average difference
of the two simulations exceeds zero is 100.00%; i.e. using the policy in Table 7.11,
it is virtually certain that leaving the generator on at 10 PM is the better choice.
Using 50 policies per stage, with only 20 simulations per policy, gives a solution even
closer to the optimum, as shown in Tables 7.12 and 7.13. The confidence level in
the decision is 99.98%, derived from an expected difference of 13.79 with a standard
deviation of 16.59.

The ordinal optimization algorithm uses much less computation than dynamic
programming; on a Silicon Graphics workstation, the DP algorithm required 84.307s
of user time, while the ordinal optimization algorithm using backwards iteration and
independent simulations needed only 8.136s of user time, and 9.15s of elapsed time.
Using identical price paths for all policies at a given stage not only further improves
the results; it also requires even less computation. Simulating 50 polices per stage,
with 20 simulations per policy, used only 1.114s of user time (2.49s of elapsed time) on
a Silicon Graphics workstation and gave a result with a very high level of confidence
(99.98%).

Given a numerical specification of the unit commitment problem for a power
producer, an optimal solution may be calculated by computer, using both dynamic
programming and ordinal optimization. The dynamic programming solution has a
rigid theoretical foundation, although a discretization is needed to find a solution.
The ordinal optimization method is subject to more chance, but a solution may be
calculated quickly; this feature is particularly important when extensions of the unit
commitment problem are considered in the following chapters. Note from Figure 7-2
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Thresholds

Hour | On Off
1 0.41 1.36
2 1.87 1.99
3 1.28 1.70
4 1.52 1.95
5 1.14 1.66
6 {0.10 0.8
7 (058 1.13
8 0.64 1.67
9 |[0.08 0.96
10 [0.90 1.85
11 0.19 0.38
12 10.05 0.36
13 1042 1.78
14 0.41 0.43
15 0.17 0.22
16 | 0.19 0.61
17 1 0.05 1.89
18 }10.13 0.72
19 0.08 0.52
20 |0.05 0.98
21 |1 0.00 0.23
22 1050 1.98
23 [0.52 0.81
24 017 0.78

Table 7.9: Estimated optimal policy from backwards iteration using independent
simulations of 20 policies per stage.

Off On Optimal
Profit Std. Dev. | Profit Std. Dev. | Decision
342.87 30.59 | 355.64 30.68 | On

Table 7.10: Results of backwards iteration using correlated simulations of 20 policies
per stage.
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Thresholds
Hour | On Off

1 097 1.24
2 1.00 1.85
3 1.21 1.61
4 1.28 1.78
S 1.24 1.40
6 1.32 1.40
7 1.89 1.96
8 (092 097
9 1030 0.72
10 (0.11 0.1
11 [0.36 0.37
12 [ 0.13 0.55
13 [0.25 0.29
14 1029 0.38
15 [0.12 0.69
16 |[0.17 0.27

17 | 0.30 0.47
18 ;0.10 0.33

19 {0.02 0.35
20 [0.03 0.14
21 {034 0.61
22 1026 0.34

3 026 047
24 1055 0.74

Table 7.11: Estimated optimal policy from backwards iteration using correlated sim-
ulations of 20 policies per stage.

Off On Optimal
Profit Std. Dev. | Profit Std. Dev. | Decision
394.30 81.14 | 408.09 81.80 | On

Table 7.12: Results of backwards iteration using correlated simulations of 50 policies
per stage.
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Thresholds

Hour | On Off
1 0.82 1.03
2 1.08 1.99
3 143 1.57
4 1.07 1.81
5 1.46 1.70
6 1.56 2.00
7 1.02 178
8 0.69 1.05
9 0.56 0.91
10 {0.22 0.39
11 | 0.08 0.66
12 10.07 0.17
13 [0.12 0.23
14 (0.26 049
15 [0.12 0.48
16 |0.07 0.07
17 (0.02 0.35
18 {0.20 0.26
19 {025 0.27
20 [0.05 0.33
21 [0.26 0.34
22 [0.08 0.50
23 |[0.37 0.46
24 [0.55 0.74

Table 7.13: Estimated optimal policy from backwards iteration using correlated sim-
ulations of 50 policies per stage.

77



that the top 5% of solutions have an expected profit of at least 200. The calculated
solution from the backwards iteration using 50 policies per stage (Table 7.12) has an
expected prcfit which lies 2.54 standard deviations above 200; this suggests that this
solution is in the top 5% of all solutions with 99.4% confidence. With 20 policies
per stage (Table 7.10), the expected profit lies 5.07 standard deviations above 200,
suggesting that this is “good enough” with virtual certainty. A similar conclusion
may be made for the top performing policies in Table 7.3. Since ordinal optimization
performs well at finding “good enough” solutions for the basic unit commitment
problem, we have confidence when applying it to more complicated formulations of
unit commitment.
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Chapter 8

Forward Contracts and Futures

Most market scenarios anticipate the development of a futures market. There are
many possible forms for an electric futures market, including basic call and put op-
tions [29], forward contracts [30], callable forwards [31], and bid-based power pools
[1]. Interruptible contracts [19], also known as recallable contracts or non-firm con-
tracts, may be treated as callable forwards. This chapter will examine the impact of
derivative securities on the profits of electric power producers and unit commitment
strategies.

8.1 Forward Contracts

The deregulated electricity marketplace, whether poolco or bilateral, will likely in-
clude a market for forward contracts [29, 30, 31]. A forward contract is an agreement
between a buyer and seller that a commodity (in this case electric power) will be de-
livered on a specified date in the future at a specified fixed price. The date specified
by the contract is called the delivery date, while the price is known as the forward
price. By contrast, the price of a tnit power delivered immediately is referred to as
the spot price. This type of contract offers both sides protection from possible future
changes in price. In the electric marketplace, the contract may cover power delivery
for an hour, a day, or a year or more.

In a forward contract marketplace, the price for a forward contract on a given
date will vary over time, eventually converging to the spot price as the delivery
date approaches. At each market time interval, which may be as frequent as one
hour, the price of a forward ccntract will in general change. The buyer at that
time can then sell the old contract and buy a new one at the new price. A buyer
whose demand is inelastic to price can lock in the original forward contract price
by maintaining the original demand ievel, while a buyer with more elastic demand
can reduce consumption if forward prices rise and realize a profit on the sale of the
original forward contract [30].

The forward price may be described as the market price for delivery of a commod-
ity at a fixed time in the future. The forward price may also be interpreted as the
risk-neutral expectation of the spot price at delivery. The forward price is a function
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of the expected price of the commodity on the delivery date. To show this, we first
note that the present value at time ¢ of an asset S at time T in the future is equal to
the expected future value discounted at a risk-adjusted interest rate rg:

PVi{S(T)} = E{S(T)}esT~" (8.1)

using continuous compounding. In the case of a forward contract, since both buyer
and seller have agreed to the contract, the contract has a present value of zero at
the time of agreement, and consequently the present value of the spot price equals
the present value of the forward price. The spot price is discounted at a rate that
reflects the risk in price changes, while the forward price is discounted at a risk-free
rate 7g. Therefore, if a forward market for a commodity exists, the forward price,
discounted by the risk-free rate of return, is equal to the expected present value of
the commodity on the delivery date [29):

it = E{p(T)}el-m0)T-9 (82)

Here p,_,r is the forward price at time ¢ for delivery at time T and p(T') is the price
at time T, which may be treated as a random variable at time ¢. Since 75 > 7o, it
follows that p,,r < E{p(T)}.

Futures are similar to forward contracts. Futures have prespecified terms, and they
are traded on organized exchanges. Also, futures are typically “marked to market”
every day; this means that the difference in the futures prices between the start and
the end of the day is exchanged between the buyer and seller of a futures contract.
The resulting payment schedule is spread out over the duration of the futures contract,
instead of occuring as a lump settlement on the delivery date; although this difference
in payment means that futures have a different value from the corresponding forward
contract, this difference is often neglected in practice. A futures market for electricity,
defined by delivery at the California-Oregon border (COB), started trading in March
1996 [29, 22].

8.2 Producer Profits with Forward Contracts

If at some earlier time, a power producer has agreed to a forward contract to sell
Prc units of power at the price py for delivery at time k, then when time & does roll
around, the hourly cost is:

Cr = wu(1)(ca1(Ps1) — pePer + I(zk(1) < 0)S, + Pre(pr — p;))
+ (1 — ue(1))(cy + I(zk(1) > 0)T + Prc(px — py)) (8.3)

If the generator is running, then the producer may generate Pg; units of power. Pg,
is chosen to maximize the hourly profit, having knowledge of the spot price p;. If
Pg) exceeds Ppc, then Prc units are sold at the forward price p; while the remaining
units are sold at p. If Pg; is less than Pgc, then the producer can still fulfill the
terms of the forward agreement by selling the Pg, units generated at the forward
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price and then purchasing the difference on the spot market at the spot price py.
This principle also applies if the generator is off (Pg; = 0); all Ppc units may be
purchased at the spot price p; and resold at the forward price p;. The cost term
Prc(px — py) in equation (8.3) accounts for all of these possibilities.

In order to fulfill delivery of a forward contract by purchasing from the spot
market, it is necessary that spot market power be substitutable. While this is true
in many cases (the end user simply draws power from a large network), it is not true
if congestion is present, as not all generators may be able to supply the purchaser
because of bottlenecks in the transmission grid. In these cases, the generator may
have to purchase power at a price higher than the spot price p; if extra power is
needed to fulfill delivery terms in a forward contract; in extreme cases, the generator
may be the only possible supplier on the entire grid, and therefore the generator is
obliged to commit the generator to be turned on during hours where forward sales
have been made. The generator can be relieved of the commitment to deliver in such
cases only by buying back the forward contract, which likely would be very expensive.

On the other hand, many forward contracts and other derivative securities are set-
tled financially rather than physically. In such cases, the two parties simply exchange
money according to the forward and spot prices at the time of delivery. In a forward
contract, if the spot price exceeds the forward price, then the seller pays the buyer
the price difference for each unit sold in the forward contract; if the spot price is less
than the forward price, the price difference times the quantity is paid by the buyer
to the seller. Both parties may also conduct transactions on the spot market inde-
pendently of each other. If no congestion exists, then the two methods of settlement
have essentially identical outcomes for the profits of the generator and the consumer
in the contract; however, as described above, the presence of grid congestion may
cause the outcomes to differ. For now, we assume that there is no congestion present
(or equivalently, that all forward contracts are settled financially).

Since the extra term in equation (8.3) due to forward contracts is not a function
of the unit commitment decision u,(1), the expected cost at hour k£ may be rewritten
as:

Cik = Pre(pe — ps) +uk(1)(cc1(Par) — pePar + I(zx(1) < 0)S))
+ (1~ ue(1))(ey + I(zk(1) > 0)T1) (8.4)

Since the forward contract profit is also independent of Pg, it is easy to see from
equation (8.4) that the optimal generation level is the same as if forward contracts are
not present; i.e. the marginal cost of generation is equal to the price. Furthermore,
since the unit commitment decision does not affect the forward contract profit term,
this term may be pulled out of the minimization that is done when the optimal unit
commitment strategy is selected. In other words, the unit commitment problem has
no dependence on the forward contract commitment of the supplier.
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8.3 Forward Contract Strategies

Given that a generator owner is able to sell power in forward markets for a given
delivery date, the owner would like to know how much power should in fact be sold in
the forward market. The optimal decision for this problem depends on two factors:
the prices for forward contracts, and the desired optimization criterion. The owner
may choose to simply minimize the variance of profit or to minimize a weighted sum
of expected profit and variance. We will consider this problem for both a single hour
of delivery and for contracts which require delivery over a period of many hours.

8.3.1 One Hour Forward Contracts
The total cost at hour k will depend on the unit commitment decision u(1):
Ck = Prc(pe — pr) + uk(1)(ca1(Par) — piPer) + (1 — we(1))ey (8.5)

The >.artup and shutdown costs can be ignored, as they are constants. Substituting
the optimal generation level:

Py — b
Pgy = ——— 8.6
o = ISk (86)

the ¢t is, for a quadratic cost curve:

2 2
Pimey — b PkD -b Pk
Ce = Prc(pe ~ py) + u(1) ((M+1l o — (MC2')(I: I
1

+ (1 - uk(l))cj (87) i

This may be rewritten as:

u(1) u(1) b
Cr = a0, Pimcy — 2a, PEPIMONK + PFC+UI:(1)‘—‘2;' Pk
b2
- Propy +ui(1) ( - ;1—;—) + (1= u(1))ey (8.38)
1

The cost is a quadratic function of the random variables Pr and peascy; for simplicity,
we will denote:

Cy = CAIP?MC)L- + Caapkpmey + Copr + Ce (8.9)
The mean of the cost at hour k is:

E{Ck} = CAI(??MC)/: + 0(2MC)I:) + CAZPE;{PICP(MCM} +Cppi + Cc (8.10)
As before, P, is the mean of py, P(mcyk is the mean of piarcye (from equation (5.15)),

and U(ZMC)/: is the variance of p(ac), which is calculated by applying equation (5.18).
To find the variance of the cost, we first note that any sum of random variables
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X, Y, and Z has a variance of:
var(X +Y + Z) = X'L;ZIZ{((X -X)+(Y-Y)+(Z-2))%} (8.11)
Expanding the square gives:
var(X +Y + 2) = X'I;;'Z{(X ~ X4+ (Y -V +(Z-2)*+2(X -X)(Y -7)
+2(X -X)NZ-2)+2(Y -Y)(Z - 2Z)} (8.12)
This is equivalent to:

var(X + Y + Z) = var(X) + var(Y) + var(Z) + 2cov(X, Y) + 2cov(X, Z) + 2cov(Y, Z)

(8.13)
Applying equation (8.13) to the cost of equation {8.9) gives:
var(Cy) = C:lvar(p?MC)k) + Cyvar(ppmcye) + Chvar(py)
+ 2C a1 Cazcov (P prcyir PeP(ME)k) + 2C41CBCov(Pircyks Pr)
+ 2C 42CBcov(prp(mc)k Pr) (8.14)

Note from equation (8.8) that the variance does not depend on the forward price p;.
Also note that the forward contract quantity Prc affects only Cg and C¢. The value
of Prc that minimizes the cost variance can therefore be found by differentiation:

dvar(Cy)

5, - 2Cpvar(pi) + 2C 160V (D{rscyr Px) + 2C a2cov(prp(mcyk, Px) = 0 (8.15)

Solving for Cp:

_ Carcov(plucyr: Pe) + Caacov(Pepmoyk, P)
var(p)

Cp = (8.16)
rrom the standpoint of minimal variance, the optimal quantity of power to sell in
forward contracts for hour k is:

Ca160V(Dirrcyrr Pr) + Ca2cov (prpac)ks Pr) by

o) ~ w15 (8.17)

Ppc = -

If the generator is off at time k, then both Cy4, and Cy4, are zero, and the variance
is simply:
var(Cy) = P2cvar(px) (8.18)

and therefore it is easy to see that minimal variance is achieved if Prc = 0.

In order to determine the expected profit during a given hour in the distant future,
we need to estimate the probability that the generater will be up at that time. This
probability can often be assumed as zero or one in many situations (for example, a
low-cost generator may be expected to run 24 hours, while many generators may be
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expected to run during peak hours); however, in some cases, it is more difficult to
estimate. One approach would be to estimate the probability that the price exceeds
a threshold level; however, it is necessary to acrount for the correlation between uy
and Dk-

This formulation also assumes that the cost curve is constant or known with
certainty. Many investment problems often assume the existence of only one random
input, as multiple random inputs greatly increase the complexity of the problem, and
some random effects can be combined into a single random variable [29).

8.3.2 Multi-Hour Forward Contract

Many forward contracts and futures specify a single price for delivery of electricity
over many hours. For example, the COB (California-Oregon border) peak futures
contract specifies delivery for 16 hours a day on 5 days a week over an entire month
[22]. The cost over all hours of a multi-hour forward contract (denoted Crrc)) from

hour h, to hour h, is:
hb

Crirey = ) Ck (8.19)
k=ha

Substituting equation (8.8) for Cy:

h hy,

J 1
uk(l)p?MC)k T oar E u(1)Pep(mcye
ha v k=h,

1
Crrcy = 1o,
k=
hy hy

b
+Prc S pe+ = S w(1)pe — Prepg(hy — hy)
k=ha 201 oy,

bf hy hy
+ (cl — ZJ—) > uk(1) +cp D (1 — uk(1)) (8.20)

k=h, k=ha

This problem is essentially the same as the one hour problem developed earlier; Prc
is chosen to minimize a desired criterion, such as variance of Cr(rc). It is, however,
more difficult to solve; while the mean is generally easy to calculate analytically
(due to linearity of expectation), the variance of equation (8.20) is much harder to
determine, as there are many correlated random variables whose covariances all need
to be known. Monte Carlo simulations may be a practical approach to estimating
these variances.

8.3.3 Example

To illustrate the use of forward contracts to hedge risk, a simple numerical example
is given here. First, recall from the price process model that:

Iy = bt + mL[ (821)
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where z, is the logarithm of price, b, is an intercept which follows a mean-reverting
process, and L, represents the demand, which can be forecasted. If time ¢ is sufficiently
far into the future, then the expected value of z; is:

E{z;} = b+ mE{L,} (8.22)

Since the process of b, and the demand are assumed to be independent processes, the
variance of z; is:

var(z,) = var(b;) + var(mL,) (8.23)
Using the long-range variance of a mean-reverting process:
o2
var(z,) = T 2_2') + m2var(L,) (8.24)

where o? denotes the variance of b;.

We will now use some representative numbers. From Chapter 6, the mean-
reverting process of b, has parameters b = 0.788, n = 0.317, m = 7.05 x 1075, and
o2 = 2.60x 1072. On a Monday with a high of 65°F and a low of 45°F at Philadelphia,
the expected load between 3:00 and 4:00 PM is approximately 25984. The error of
this estimate is modeled as having a normal distribution with a standard deviation of
1600. Substituting these parameters into equations (8.22) and (8.24), E{z,} = 2.62
and var(z,) = 6.81 x 1072, The price pi is therefore lognormally distributed with
mean 14.2 and standard deviation of 3.77 (from equations (6.16) and (6.17)).

The generator will be modeled with a cost curve ¢;(Pg,) = P2, + Pg1 +9 and gen-
eration limits 1 < Pg; < 10. To find the variances and covariances in equation (8.14),
the truncated lognormal formulas in Appendix C may be used to find the expected
values in the following equations:

var(X) = E(X?) — [E(X)]? (8.25)

cov(X,Y) = E(XY) — E(X)E(Y) (8.26)

For the example data, the optimal value for Pr¢c from equation (8.17) turns out to be
7.21. If the price py is equal to its expected value (14.2), then the optimal quantity
of power to produce is 6.6; this difference is a result of the quadratic cost function.
The variance of Cy when Prc = 7.21 is 21.67. If no forward contracts are issued
(Prc = 0), then the variance of C; jumps to 761.90. The expected cost for this
example is:

B{Ci} = ~38.03 + Pec(E{p:} — py) (8.27)

Forward contracts clearly provide & hedge against the risk of price uncertainty, al-
though from equation (8.2) the forward price will offset the reduced risk by lowering
the overall expected profit for stage k.
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8.4 Temporal Forward Contract Problem

Up to this point, the question of choosing how much power to sell forward has been
treated as a one-step problem; a quantity Prgc is selected, and then a random outcome
is determined. In practice, forward prices evolve over a long period of time, provid-
ing many opportunities to change the amount of forward holdings. The problem of
choosing the optimal forward contract amount at each time step for a fixed delivery
date in the future may be formulated as a dynamic programming problem. In this
formulation, the control variable is the quantity of forward contracts sold for delivery
at time N, and the state is equal to the control of the previous time period; i.e. it
is the amount of power currently sold forward for delivery at time N. Note that a
generator owner would simultaneously solve this problem for all future delivery dates
for which forward sales are possible.

At time NV, the spot price py is known, and the total cost for the generator owner
having sold z, units forward is:

CN = pN(:cN - P(;l) + C(Pcl) (8.28)

At time N, this quantity has zero variance. At time N — 1, uy_; = Ty units are
sold through forward contracts at a forward price piy_1)-~. The total cost for stages
N —1and N is:

Cno1 + Cn = pv-1yan(zn-1 — un—1) + Pn(un-1 — Par) + ¢(Pei) (8.29)
with variance:
var(Cy_, + Cy) = var(py(un—1 — Pc1) + ¢(Pg1)) (8.30)

Starting at time zero, the total cost for all stages is [30]:

N N-1
Z Ck = —Po=aNUg T+ Z Pk—vN Uk-1 — uk) +PN(UN 1= PGI) + C(PGI) (8-31)
k=0 k=1

The variance of this cost is:

N-1
var (Z Ck> = var (Z Pr-n(te-1 — ug) + pyv(un—1 — Per) + C(PGI)) (8.32)

k=0 k=1

In principle, this is a dynamic programming problem. The first major problern is
determining an objective function. An obvious candidate would be to minimize:

fj Ci + Wvar (zNj ck) (8.33)

k=0 k=0

where W is a weighting factor. However, it is not clear that this choice of objective
function is justified by finance theory. A practical choice would be to maximize the
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present value of the total profit:

PV{Q} = E{Q}e ™" (8.34)
This can be transformed by applying a logarithm:
log PV{Q} = log E{Q} — uN (8.35)

This has the same form as the objective in equation (8.33); however, the relation
between the variance and the risk-adjusted rate of return p is not clear.

Using (8.33) as an objective, the temporal forward contract problem then may be
solved by the dynamic programming recursion:

In(xn) = gn(%n) (8.36)

Jk(xk) = min E {gk(xk, Ug, Wk) + Jk.,.l(uk)} (837)

U, €U (X)) Wk

where the cost functions g are:

gn(zn) = ﬁv{PN(IN - Pe1) + ¢(Pa1)} (8.38)

N N
gk(IlIk) = Pk—vN(mk - 'U.k) + Wvar (z C,) — Wvar ( Z C,) (839)
i=k i=k+1

This problem is theoretically solvable; however, it requires a large amount of price
information, including the mean and variance of all future forward prices up to the
delivery date and the expected variance of the spot price at future times. The cost
function can also be amended to include both fixed and variable transaction costs. A
complete study of this problem is left for future research.
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Chapter 9

Reserve Markets for Power
System Reliability

Up to this point, we have assumed that a power producer is always capable of pro-
ducing the power that it sells. Unfortunately, in the real world, mechanical devices
sometimes break down, and generators are no exception. It has been remarked that
“it is not a question of whether or not a particular piece of equipment will fail, but
rather when it will fail” (14]. 1t is widely observed in electricity restructuring debates
that electricity is not storable, and consequently temporary production failures can
not be covered by inventory, as is the case with most other commodities. Instead, it
is necessary to have generation on the system operating at ::ss than capacity, so that
reserve power is readily available in case of a generator or line failure.

For a power producer, reliability poses two main questions. The first question is
the provision of backup for the power that is sold to loads. The second question is to

nature of the provision of generation reserve is not clear at the time of this writing;
however, we will use a generalized formulation that incorporates many possible forms.
In particular, we will assume the existence of a market for reserve generation. We
then consider the second question above (determination of optimal selling strategy
for a power producer) first and return to the first question later in the chapter.

9.1 General Form of a Reserve Market

A market for reserve will operate concurrently with the spot market for power, al-
though the reserve price pp will be different from the spot price p. Whereas spot
market power is sold and scheduled in advance of demand, reserve power must be
available for immediate use in the event of unexpected contingencies, such as genera-
tor outages. Reserve power is a fundamentally different commodity from spot power.
Like any other market, the reserve price reflects an equilibrium point between the
supply and demand. The supply for reserve comes from generators, who also supply
the spot market for electricity. The demand for reserve can come from any number of
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sources, depending on the exact nature of reliability maintenance in the market. An
ISO may calculate and purchase all of the reserve needed for the system area in order
to maintain a minimum standard. Alternatively, groups of generators may contract
with each other to provide reserve for each other’s transactions; in this case, a power
producer is both supplying and demanding reserve. Loads may wish to buy reserve
for their power. Reserve brokers may develop in the marketplace to purchase reserve
power for their customers, who may be loads and/or generators.

The reserve price can either be higher than or lower than the spot price, depending
on whether reserve payments are made for actual power delivered or for power that
is merely reserved.

9.1.1 Payment for Power Delivered

In this scenario, a generator which sells power as reserve is paid the reserve price for
that reserve only if the reserve power is actually used. The reserve price is therefore
higher than the spot price, since excess generation capacity has a per unit cost that is
higher than the spot price. (Generation with a lower marginal cost is sold for profit
on the spot market.) In this case, a generator receives a profit on sales of reserve only
for the time periods when the reserve actually needs to be generated. The generator
receives zero profit if the reserve is not called.

9.1.2 Payment for Reserve Allocated

In this payment method, a generator receives the reserve price per unit of reserve
power for every time period that the reserve is allocated and not used. If the reserve is
used, then the generator receives the spot price for the reserve power that is generated.
Since the reserve is not generated most of the time (hopefully!), reserve power has a
very low expected cost, and herce the price of reserve will be much lower than the
spot price of power. A generator receives a small profit for each time period in which
the reserve is sold but not used; however, the generator will absorb a loss if the reserve
is called. The reserve price pg will be high enough such that the generator expects
an overall long-term profit; otherwise, no reserve would be offered for sale.

9.1.3 Price Process for Reserve Price

Unfortunately, since there are no existing reserve markets, there is no empirical data
available for building a price process model. However, it is clear that the reserve price
and the spot price must be strongly correlated, since the quantity traded on the spot
market largely defines the demand for reserve power. A hypothetical price model can
be developed.
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9.2 Individual Power Producer Strategies for Sell-
ing Reserve

If a power producer is able to sell power into a reserve market, then the producer’s
strategies for profit maximization in both the spot and reserve markets are inter-
twined. The producer decides to sell Pg(s) in the spot market and Pgg) in the
reserve market. The exact determination of Pgs) and Pg(r) depends on the way
reserve payments are made, although the results are very similar.

9.2.1 Payment for Power Delivered

For 1his payment method, p < pr. During a given time period for a known price, the
profit for a power producer is a random function with expectation:

E{Trc;} = pPG(s)-l-TpR(PG(T)—Pg(s))—(1—T)(G.Pé(s)-i-bP(,'(s)-i-C)—T(an;(T)'l")PC(T)-i-(:)

(9.1)
Here Pg(r)y = Pg(s) + Pg(ry and 1 is the probability that the reserve power is called
and generated. An individual producer will choose Pg(s) and Pgpy to maximize
equation (9.1); these values may be found by differentiation:

OF{rn
OE(ne} _ b pp— (1 - r)(2aPgs) + b) (9.2)
9Pg(s)
OE{w
—{ c} =rpp — 7(2aPg(T) + b) (9.3)
aPG(T)
Setting these derivatives to zero, we have:
p,— TPR = 2aPG(s) +b (9.4)
l1—r '
PR = 2an(T) +b (9.5)

These equations are easy to interpret. Equation (9.4) indicates that power is sold
on the spot market until the marginal cost of power equals an adjusted version of
the spot price p. The adjustment reflects the fact that the marginal units of power
have very little profit and would be more profitable on average if they are sold in
the reserve market at the higher reserve price pg. Since r is typically very smalil,
the adjustment to p will also be very small. Equation (9.5) means that the power
producer will sell reserve until the marginal cost reaches the price of reserve.

Both Pg(s)y and Pg(ry must fall between the upper and lower generation limits.
The optimal decision for these two variables with generation limits is essentially the
same as the earlier model without a reserve market. Since the derivatives of profit
are monotonically decreasing, if equation (9.4) yields a value of Pgs) that is less
than PZi", the optimal choice is Pg(sy = PZin. Similarly, if Pg(s) is calculated to be
greater than PZ\"*, then Pgs) = PZ**. The same is true for Pgr). Mathematically,
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this relationship may be written using the marginal cost limits defined in Chapter 5:
phic = 20 PG + by (9.6)

pmc = 20 FPGy* + by (9.7)

By further defining p.ss, the “effective” price for spot market sales:

P —TPr
= 9.8
Pefs =T, (9.8)
the prices p.sy and pp may be written as truncated random variables:
PUE  Pess < PB
PMCeff)k = § Peff  PMc < Peff < Pumc (9.9)
PMC  Peif 2 PMC
prié  Pr < PR
P(MCR}k = Pr pmc < Pr < PMC (9.10)
PNié PR 2 PyMC
Using this notation, the optimal Pg(s) and Pg(ry are:
PMces ik — by
Pricy = 9.11
G(S) 2%, (9.11)
P — PAMCR)E — by (9.12)
Gr) 2a, '

The expected profit in stage k is given by:
E{nc} = (1=7)(pessPos) — (@Ps(s) +bPa(s) +€)) + T(Prpacr) — (aPéry + bPagry +¢))
(9.13)

9.2.2 Payment for Reserve Allocated

Under this payment method, p > pr. The expected profit of an individual generator
is determined by using the same procedure as in the last section:

E{mc} = pPgs)+ ((1 —r)pr+7p)(Peiry — Pos))
-(1- T)(G.Pé(s) + bPg(s) + c) — T((I.Pg'-(rp) + bPg(r) + c) (9.14)

As before, we find the maximum of equation (9.14) by differentiation:

% =p—((1 =r)pr +71p) — (1 —1)(2aFPgs) + b) (9.15)
G(S)
%:(TC:} = ((1 = r)pr +7p) — 7(2¢Pg1) + ) (9.16)
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The zero point of the derivatives gives the strategy for maximizing profit:
p—pr=2aPgs) +b (9.17)

p+ (r"' = 1)pr = 2aPgr) + b (9.18)

Equation (9.17) indicates that the marginal cost of power scld on the spot market
should be reduced by the reserve price, in comparison to the original formulation
without a reserve market. One disadvantage of this payment method can be ohserved
from the optimal strategy for a power producer given by equation (9.18): the amount
of reserve offered for sale is highly sensitive to r, because of the depedence on r~!.
Generation limits are handled by the same procedure used in the preceding section.
First, we define the following “effective” prices, which determine the optimal marginal
cost:
Peff(s) =P = PR (9.19)
Pessiry =P+ (r™' = 1)pg (9.20)

The corresponding truncated random variables, using the limits of equations (9.6)
and (9.7), are:

PG Pess(s) < PR

PMCeff(SH% = § Pess($)  PuMC < Pefs(s) < Prmc (9.21)
- U PRE  Pesses) 2 PRfE
PRi¢  Pesser) < Plire

PMCeff(T)k = Peff(r)  PRIC < Pefs(r) < Prc (9.22)

marxr

PyiC Pefs(r) 2 PYC

Pe(s) and Pgry then become, for optimal profit:

parcesssyk — b .
Pgs) = = ’g‘al” (9.23)
PMcerfpe — b
Pgiry = & f;‘a I” ! (9.24)

The expected profit in stage k is given by:

E{mc} = (1 —r)(pesss)Po(s) — (aPisy + bPes) + ¢))
+ 7(pessryPa(ry — (aPory + bPo(r) + ¢)) (9.25)

9.3 Provision of Reserve for Transactions

We now return to the first question regarding reserve posed ecarlier: How is reserve
provided for power sold on the open market from generators to loads? The respon-
sibility for provision of generation reserve can rest either with the loads or with the
generators, although the end result (price paid by loads) will likely be the same in
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either case. Reserve can aiso be provided by the ISO as a system service, with its
cost included in the charge for system use. If the load is responsible for reserve, the
load has flexibility to precisely determine a desired tradeoff between reliability and
price. A group of loads may collectively purchase a block of reserve under a joint
agreement; purchases through a reserve broker have a similar net result. A load may
also choose to be fully or partially interruptible and thus avoid or reduce the cost of
reserve.

If generators are responsible for providing reserve, then they can form collective
agreements in a similar fashion to loads as described above, either through negotiation
or through a reserve broker. The price paid by loads for power will be somewhat
higher than if loads are responsible for reserve, with the difference reflecting the cost
of reserve. Loads that choose interruptible power vill pay a lower price.

The development of an area-wide market for reserve has an advantage of offering
a lower price than if bilateral reserve agreements are made. This concept is best
illustrated by an example in which reserve payments are for power that is generated.
If generator A has a 500 MW contract and needs backup for this contract, then in
order to induce generator B to sell reserve, A would need to offer a reserve price
cqual to B’s marginal generation cost at the generation level of both spot power for
B’s sales and all 500 MW of A’s reserve power. However, in a reserve market, the
500 MW reserve can be spread across all generators in the rea, which means that
B might only offer 100 MW in the reserve market. In this case, the marginal cost
of generating the 100 MW of reserve is clearly less than the cost of gencrating all
500 MW of reserve, leading to a lower price for reserve. If the total reserve offered
among all generators in the area exceeds the largest amount of power generated by
any one generator, then the (N — 1) contingency criterion will be satisfied, assuming
that transmission constraints are not a factor.

9.4 Effect of Reserve Market on Unit Commit-
ment

The inclusion of a reserve market has two principal effects on the unit commitment
algorithm. First, the ability to sell reserve power affects the profit maxiiization
strategy, as shown earlier in section 9.2, and therefore the expected one-stage profit
is also changed. The correlation between reserve calls and prices may need to be
included in the expected cost; a higher price may imply a higher value of r. Second,
the responsibility for reserve and the possibility of generator failure (a major reason for
having reserve in the first place) should also be included in the expected profit. Note
that both factors do not change the available unit commitment options; therefore,
the unit commitment algorithm can be modified to account for the reserve market
by adjusting the expected one-stage cost, and if necessary, adding another continous
state variable, which is the price of reserve.

Since reserve market sales are added to the problem formulation, the reliability of
the producer’s own generator should also be considered. If a single generator, with
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failure probability f, experiences a failure and is unable to produce the power it sold,
it must buy that power from the rescrve market at the reserve price pg (assuming
that reserve payments are for power delivered). In this case, the expected profit per
stage should be adjusted accerding to:

alé,‘l{ﬂcn} = (1 - f)E{ng} + f(p — Pr) Pgs) (9.26)

The optimal Pg(s) also needs to be adjusted, according to:

9E {mc} 9E{nc)
Tc(s)—(l—f) ET +f(p—pr) =0 (9.27)

This equation may be transformed to-

0E{nc} _ flpr—p)
0Pg s 1-f
If f is small, then the effects of a producer’s generator failure are also small and may

be neglected. The exact form of equation (9.26) for a specific situation may have
many possibilities, depending on the form of the reserve market.

(9.28)

9.5 Example

The following hypothetical example, derived from the example in Chapter 7, illus-
trates a possible reserve market unit commitment strategy. The reserve price will be
modeled as:

Inpg =Kgp+er+Inp; (929)

K g is a constant, while eg is normally distributed with zero mean; for this numerical
example, Kp = 0.7 and var(eg) = 0.0625. Reserve payments are made for power
delivered. The probability of reserve calls will be taken as r = 5 x 1073, independent
of the price. The failure probability of the generator is f = 1 x 1074, To simplify
the problem, the generator will use the strategy p.ss = px, since p.ss is not strictly
lognormal. With this strategy, the expected cost per stage is:

_ Pimcye — bt _ Pkpmcyk — bipk
E{Ck} = u(l) ((1 - f) [(1 - T)E{_ +e —

Pimcry — b PRP(MCR)k - D1PR
+rp{TMCRE T
{ 4al 20.1 }]
—-b
+fE {(Pk - PR)p(h—m)k—l} +I(z(1) < O)Sl)
Pk 201
+ (1= w(D)(e + @) > OT:) (9.30)
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Expected | Optimal
Status - Profit Decision

On since 9:00 PM | 411.52 On

On since 8:00 PM | 416.50 On

On since 7:00 PM 416.50 On
Off since 9:00 PM | 404.62 Off
Off since 8:00 PM | 404.62 Ooff

Table 9.1: Optimal deciscn and expected profit for each state at 10:00 PM

The first two expectations may be evaluated by using the truncated lognormal distri-
butions in Chapter 5. The last expectation requires an evaluation of E{pnp(,\m)k}.
Taking an exponential of both sides of equation (9.29):

Pr = preXReR (9.37)

Therefore:

,

pE’:{pRP(MC)k} = E{ka(ArlC)keKReeR} (9.32)

ef# is a constant and may be factored out of the expectation. Furthermore, €®? is
independent of p; (and hence parc)c) and therefore:

E{pRP(MC)k} = CK"E{PkP(ntcw}E{@e"} (9.33)

since the expectation of a product of uncorrelated random variables is the product of
the expectations. The expected cost therefore becomes:

Placye — 0} PePacyk — bipk
£l = i) (0= fa-np{fee=t, . - ok =i

4&[ 2al

2 _ b'Z —b
TR {p(MCR)k L, o — PRP(MC R)k 1PR }]
Pk 4a| 20.1
, 1 — eKrRE{eerY) —} —
" fE{PkP(MC)k( € {6 }) 1(Px PR)} n I(zk(l) < O)Sl>
Pk 2a,
+ (1 — uk(1)) (s + I(zk(1) > 0)T7) (9.34)

Using the same cost and price process data as in Chapter 7, the results of the
unit commitment algorithm for 10:00 PM and 11:00 PM are given in Tables 9.1 and
9.2. The optimal unit commitment decisions are the same as in Chapter 7, but the
opportunity for sales of reserve power somewhat increases the expected profit.
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Expected | Optimal
Status Profit Decigion
On since 10:00 PM | 387.95 On
On since 9:00 PM 401.36 On
On since 8:00 PM 403.92 off
Off since 10:00 PM | 407.92 Off
Off since 9:00 PM 407.92 Ooff

Table 9.2: Optimal decision and expected profit for each state at 11:00 PM
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Chapter 10

Congested Transmission Systems
in a Deregulated Environment

The presence of physical limitations on the amount of power that may be transferred
through a given transmission line gives rise to a very vigorous debate on how to
account for these limits in a deregulated utility environment. Many pricing schemes
that account for line flow limits are being discussed and debated [1, 2, 3, 40}, but no
consensus has been reached. This uncertainty makes it difficult to predict the effects
of congestion on a power producer. Congestion will likely changes the prices of power
as well as reserve, but maximum generation limits at certain locations may also be
implemented. If no such limits are present, then the strategy for selling power and
unit commitment is essentially as described in the previous chapters, with the only
difference being that the price for power reflects the presence of congestion, and the
price process must model the price that the generator actually receives. If congestion
does impose limits on power generation for a given producer, then a more complicated
model is needed.

10.1 Probabilistic Model of Congestion

As with reserve, we will develop a generalized formulaticn for modeling the effects of
congestion on individual power producers.

10.1.1 Modifications to Price Model

If price data is available from a congested system, then a price model may be devel-
oped directly from the data. Such a price model would account for line congestion.
One possible form for a congested model takes the price model for uncongested sys-
tems (Pk(uncong)) @nd includes a congestion penalty py(cpen) as a second random input
[32]:

Pk = Pk(uncong) — Pk(cpen) (101)

The price px from this model is used for the optimization algorithms. It is important
to note that Pi(uncong) and Pr(cpen) Will generally be correlated.
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10.1.2 Congestion Model with Limits

This model assumes that there is a maximum limit Pgy;,, of power that can be sold.
Like PZ®*, Pcum is an upper limit on production. However, PZY'* is a fixed physical
quantity, whereas Pgpm varies from one time period to the next. Pgy, is treated as
a random variable; additionally, it follows an auto-regressive process similar to the
price process model of Chapter 6. As with the reserve price model, the limit due to
congestion is likely correlated with the price of power in addition to the amount of
congestion during the previous hour.

10.2 Producer Strategy under Congestion

We will now determine the optimal selling strategy for a power producer in both
the power and reserve markets when confronted with the possibility of congestion.
Since Fgpm is a maximum generation limit, the optimal strategy for a seller is the
same as in Chapter 9, with PZ*® replaced by Pgym if the congestion limit is lower
than the maximum generation limit. Furthermore, this formulation assumes that
any power that cannot be sold due to congestion may still be offered for sale on the
reserve market. The probability r that the reserve is used takes into account the
congestion constraints on the system; if reserve generation is needed, then it is used
from generators that do not cause any line flow limits to be exceeded.

Given the preceding formulation, we can adjust the expected cost per stage to
reflect the probability of congestion. Using the notation from equation (9.26):

a}é?l{ﬂal} = (1 = f)E{nc} + f(p — pr) Ps(s) (10.2)

the expected profit, accounting for congestion, may be written as a double integral:

o0 o, 0]
E {mci} =/ / dens(Pciim = P',pr = p") E {16:1|Pgy" = P', pr = p"}dP'dp"
Pctim Pk o Jo ag)
(10.3)
since px and Pcin are in general correlated. The double integral may also be reduced
to single integrals over the conditional expectation of 7¢g;:

oo
L E {na} = / dens(pe =p") E {rilpe = p"}dp" (10.4)
Clim Pk 0 ag1,Pciim
E {rai} = / ” dens(Poum = P') E {nci|Pm% = P'}dP' (10.5)
Pclim Pk 0 aG1,Pk '

The congestion limit may be modeled as a continous variable or as a variable taking
only certain discrete values. In the latter case, the integrals in equations (10.3) and
(10.5) are replaced with summations over each possible value of Pgy;p.
Unfortunately, the preceding equations are difficult to use for the general case
where p; and Pgy;p, are correlated. Typically, Py, will have a probability distribution
as a function of the price px. Such a specification makes it easy to evaluate the
expectation inside the integral of equation (10.4), but performing the integration will
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Expected | Optimal

Status Profit Decision
On since 9:00 PM 393.81 On
On since 8:00 PM 399.02 On

On since 7:00 PM | 399.02 On
Off since 9:00 PM | 387.90 Off
Off since 8:00 PM 387.90 oft

Table 10.1: Optimal decison and expected profit for each state at 10:00 PM

be messy. The integration of equation (10.5) is generally easy to perform, but the
expectation requires knowledge of both the expectation and variance of p, conditioned
on Pcu;m = P’; these conditional statistics are not in general equal to the overall mean
of px.

10.3 Example

To illustrate a hypothetical congestion situation, let Py, be independent of price
and have a random distribution of:

PrOb(PC“m = OO) =0.8 PI‘Ob(Pcum = 7) =0.1 Pl‘Ob(PC“m = 5) =0.1 (106)

For this example, we neglect tha effects of the reserve market. Applying equa-
tion (10.8), the cost per stage is:

2 — b? D — Dok
E{C) = u(1)(08E P(mo)k L ¢ — PkP(MC)k 1Pk
Pk Pk 4a, 20,

2 _ b2 -}
+01E P(McCa)k Ly ¢ — PkP(MCa)k 1Pk
Pk 40.) 2(11

2 _ )2

p b .—b

+0.1E PMmce)k — 1 to — PrP(MCb)k 1Pk + I(zx(1) < 0)S,
Pk 40,1 20.1

+ (1 — ug(1))(cs + I(zk(1) > 0)T7) (10.7)

P(Mca)k 18 a truncated normal variable with an upper limit of 15 = 2a, X 7+by; p(arcy)
is a truncated normal variable with an upper limit of 11 = 2a, x 5 + b,.

The results of the unit commitment algorithm for 10:00 PM and 11:00 PM with
the preceding congestion model applied to the example of Chapter 7 are given in
Tables 10.1 and 10.2. As in the reserve market example, the anticipated conges-
tion limits do not affect the unit commitment decision, although they do reduce the
expected profit.
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Expected | Optimal

Status Profit Decision
On since 10:00 PM 370.26 On
On since 9:00 PM 383.98 On

On since 8:00 PM 386.98 Off
Off since 10:00 PM 390.98 Off
Off since 9:00 PM 390.98 Off

Table 10.2: Optimal decision and expected profit for each state at 11:00 PM

10.4 Solution of Unit Commitment under Con-
gestion and Reserve

In principle, the solution of unit commitment does not change significantly in the
presence of reserve markets or congested lines; however, a number of practical prob-
lems do arise. First, actual price data from reserve markets and congested systems is
needed to develop useful price models for unit commitment. Methods such as those
described in Chapter 6 may be used to create the price models. These models depend
on the stochastic behavior of all of the generator cost curves and all of the load de-
mand curves for market participants; hence, they are very difficult to model without
empirical data. Second, the price models for a congested system with a reserve mar-
ket will in general have three continuous state variables instead of just one, except in
certain specialized cases (such as the examples in the last two chapters). If there are
Ng continuous state variables, and each is discretized into Ny values, then the total
number of states is:
(tup + tdn)NG JV(}'VS

Clearly, the number of states grows exponentially with the number of state variables,
unless the discretization of each variable is greatly reduced. Third, owners of multiple
generators have the option of using their own generators to provide reserve. While
it is not clear whether this is more cost-effective than selling that reserve on the
reserve market, this option, along with congestion considerations, may require that
all generators be optimized simultaneously instead of individually; doing so means
that exponential growth is encountered with respect to the number of generators Ng.
To obtain near-optimal solutions in these cases, ordinal optimization and Monte Carlo
methods will likely be needed.
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Chapter 11

Conclusions

This thesis examines the role of unit commitment in the newly forming electric power
market. The analysis follows three major steps. First, the unit commitment problem
is posed for an individual producer in a deregulated market. A market model is
developed to perform price forecasting. Finally, the problem is solved using a method
that accounts for intertemporal effects. This thesis presents dynamic programming
[5] as an essential tool for making decisions. Dynamic programming (DP) software
is developed to illustrate algorithms on hypothetical market architectures. The unit
commitment problem is also extended to include forward contracts, reserve markets,
and congestion limits.

This thesis develops several new approaches to unit commitment. A broad def-
inition of unit commitment for the present utility structure is shown. The simplifi-
cations needed to apply this broaa model to practical unit commitment situations
are illustrated; in particular, the stochastic nature of the problem is often reduced
to one which is deterministic. Most dynamic optimization [6] is currently done using
a deterministic model, which treats future values of price and demand as known.
A deterministic solution is in general suboptimal, sometimes significantly so, when
applied to the corresponding stochastic problem [5].

The unit commitment problem is then defined for an individual power producer in
a deregulated industry structure. Many features of the broad model of unit commit-
ment in a regulated industry are included in the deregulated formulation of the unit
commitment problem; notably, a stochastic framework is maintained. The deregu-
lated problem has many fewer decision options, allowing for the inclusion of many
more features. A major contribution of this thesis is to carry out the optimization
by assuming a stochastic model. In this thesis, quantities such as price and demand
are treated as random variables with known mean and variance, and the optimization
aims to maximize the expected value of the objective function.

Generators cannot produce an unlimited amount of power; there is an upper and
lower limit on the power which is produced. Since the expected profit at a given
hour depends on the generation level, truncated random variables are defined and
introduced in order to account for generation limits. These variables are treated as
being distributed continuously between two limits but also having positive probability
of being equal to either limit. The optimal generation level, which is a function of a
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random price input, is well described by truncated random variables.

Unit commitment under deregulation requires a stochastic model of the price of
electricity. Although a basic random walk or mean-reverting price model may be used
to describe the price data, these models treat all 24 hours of the day equally and ignore
changes in electricity demand at different times of the day. A representative model
based on a time-varying mean is derived here from limited data using load estimates.
The load estimates may themselves be obtained from the date of the year, estimates
of economic growth, and the expected outdoor temperature; a puarticularly strong
correlation between temperature and load usage was discovered from PJM pool data
[24). While the variance of load estimation reduces the usefulness of its application to
price prediction, it still forms a good basis for changing demand patterns at different
times of the day. As the US electricity market forms and matures, the accuracy of
such models will improve as more information becomes available.

A direct solution by dynamic programming on a hypothetical numerical example
is presented for optimal decision-making. An alternative solution method based on
ordinal optimization is also presented and shown to require much less computation to
obtain the same solution. Although the dynamic programming solution is feasible for
the unit commitment model in this paper, additions to the price process model, con-
sideration of market power (requiring all generators to be optimized simultaneously),
and other possible changes will likely make a direct dynamic programming solution
impractical; Monte Carlo solution methods using far less computation can account
for many additional problem features while still giving an optimal or near-optimal
solution with high probability. Because of the success of ordinal optimization tech-
niques on a relatively small example, there is a great degree of confidence in their
application to larger unit commitment problems.

This thesis includes forward contracts and futures, which are agreements to sell
a fixed quantity of a commodity on a specified date in the future at a price fixed
at the inception of the contract. Futures markets for electricity are in their infancy;
however, independent power producers can use forward markets to greatly reduce
the risk of future profits. Forwards and futures have a payoff which increases as the
price drops. A more general optimization problem for futures can be defined which
calculates the optimal forward contract position over time as spot and forward prices
for electricity evolve; however, this problem is very complicated to solve.

This thesis examines various means for the provision of reserve gencration in
deregulated electricity markets. It is shown that reserve may be bought and sold,
and it is a separate commodity from power in the spot market. As the number of
generators participating in the reserve market increases in a given area, the price of
reserve in that area drops. Interruptible loads have the same net effect as reserve
gencration; they provide a means of maintaining the balance of supply and demand
in the event of a failure in the system. An example is presented illustrating how
independent power producers make decisions when having the option of selling in both
the spot power market and the reserve market. The price of reserve at equilibrium
will balance the supply and demand of reserve, thus setting the most economical
quantity of backup generation for the system.

Although a detailed formulation of the effects of congestion on power producers is
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not available at the time of this writing, an overview of the likely effects are considered.
There are two main possibilities: a penalty factor on the price of power sold, and hard
limits on power sales. A simple numerical example of sales limits is shown to illustrate
how their effects on profits may be computed by power sellers; not surprisingly, the
presence of congestion lowers profits.

There are many avenues of future research. The application of gaming theory is
important to properly model both market power and pool bidding strategies. Further
developments of the models in this thesis, particularly for congestion, are needed, par-
ticularly as more data becomes available, and the resulting increase in complexity will
require improvements in solution methods. The temporal forward contract problem,
using a present value objective criterion, is of great interest to power sellers. Also,
several variables in this thesis were modeled as uncorrelated; an examination of the
correlation of such variables may lead to different and more realistic results.
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Appendix A

Calculation of Parameters for
Price Processes

A.1 Exponential of a Normally Distributed Vari-
able

Given a normally distributed random variable X with mean p and variance o2, the
expectation of e¥ may be written:

E(eX) =

0\/%/ e’e Szz_a’)_da: (A.1)

The exponents inside the integral may be combined:

2—aur+p? 242
E(e¥) Rt (A.2)

1
N
By completing the square in the 2 and r terms, this equation may be written:

202 +u? - (uta?)?

202 d:r (A3)

_(z=(uto

E(eX

) = 1
ovamJ-
The exponential may be written as a product of two exponentials:

I— a%))?
. 1.2 [ e"ulf’_n'd:r
E(e") — eu+2a /
—00 O’\/2_7T

The integrand in equation (A.4) is simply the density function of a normal distribution
of mean p + ¢? and variance o?; therefore, its integral is 1. The expected value of an
exponential of a normally distributed variable is therefore:

(A.4)

E(eX) = e#*t27’ (A.5)

The derivation for the variance of e* is very similar. Using the normal distribution
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density function:

1 00 1 !z—%f
var(eX) = 5 / (¥ — e#*37°)2e™ 5 dx (A.6)
oV2r J-c0

Upon expanding the square, the integral becomes three separate integrals:
! 1 % !2-;!22 oo z—u)?
var(e®) = [/ ee” 2?7 dz — 26“+%"2/ efe” 2t dz
oV2n /- —00
oo z—p)2
+ ez"“z/ e_%dx] (A.7)
)

The third integral is simply an integral of a probability density function, while the
second integral is the mean of eX. After combining the exponentials in the first
integral, this equation bacomes:

1 oo 22— 2ur+p?+402z
var(eX) = / e TR g 9eutet | g2ut’ (A.8)
—00

oV2r

As before, we can complete the square in the exponential:

- 1 0 (r—(u+202))2+u? - (u+202)2 2
var(eX) = / e 207 dz — e**° (A.9)
0\/2_71' —00
After separating the integrand into two exponentials:
_(E-(u+202)?
2 [ e 20 T 2
var(eX) = % / — e?mto (A.10)
) oV2r

The integral is one; therefore, the variance of an exponential of a normally distributed

random variable is:
2

var(eX) = 247" (e

~1) (A.11)

A.2 Nonlinear Least Squares Regression

The nonlinear regression problem for the mean-reverting intercept mode! may be
written as:

Y = 6o+ 81Xy + BaXo + B152 X3 (A.12)

The product term in the unknown parameters makes this a nonlinear regression prob-
lem. There have been several recent publications regarding the topic of nonlinear
regression methods [33, 34]. Solving a generalized nonlinear problem may be quite
computationally expensive; however, the regression in equation (A.12) may be solved
by using Newton’s method for nonlinear systems. The residual sum of squares (the



function to be minimized) may be written:

RSS = zn:(yi = Bo = Biziy — Boziz — f1fazi3)? (A.13)

i=1

The partial derivatives of RSS with respect to the 3; are:

a—ggoﬁ = Z —2(y,~ - Go — ,31-’17;'1 - ﬁ2$i2 - ﬂlﬂ2xi3) (A'14)
i=1
%}%S%S = —2(yi — Po — Prziy — Pozir — B1Paziz)(ziy + Pazi3) (A'15)
=1
ORSS = i —2(yi — Bo — Bi%it — Boziz — BiBoziz)(ziz + Brziz) (A.16)
aﬂ? i=1

The least squares estimator is the point at which all three derivatives are zero. To
save space, the following definitions will be used:

n n n
_ 2 _ 2 — E :
S.’L‘k = E Tk S.’L‘k = E 2 S-Tkl'm = TikZim
=1 i=1 i=1

n n
Sy-= Zyi Sty = ZIik?/i
i=1 i=1

All of these quantities are functions of the data, and not of the unknown parameters.
Using this notation, the residual sum of squares is minimized when:

Sy — fon — f1Sz) — f2Szs — 1Sz = 0 (A.17)

Sty - [oSz) - ﬁlsz'f — Ba(Sz122 — S137)
~ Bof2Sz3 — 2013282123 — BiS2923 ~ ,42522 = 0 (A.18)

Sty — [oSzy — f1(Szi22 — S13Y) — p2Sz3
= Bob1Sx3 — 2, 8:Sz023 — B2Sz125 — BiBSz5 =0 (A.19)

This system can be solved using Newton’s method. Starting from a guess b(g), an
improved guess b(;) is obtained by [35]:

b(k+l) = b(k) - J_l(b(k))f(b(k)) (A.QO)

f = 0 is the system of equations to be solved; J is the Jacobian of f. For equa-
tions (A.17) to (A.19), the element in row i, column jof Jis J;;, given by:

Jl,l =—-n (A2])
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ngz = —SI% - 2625171123 - ﬁzzS:cg (A22)

J3|3 = —S:L'% - 2ﬂ15172$3 - [JfS:cg (A23)
J;_g = Jg.l = —SIE[ - ,BQSI;} (A24)
J1|3 = .]3,1 = —S.’Eg - 5131:3 (A25)

J2'3 = J3,2 = -—(SIL'l.’L‘Q - S.’E3y) - ,303.’153 - 2ﬁ25’z2$3 - 2ﬂ151‘1$3 — QﬁlﬂQS(L‘g (A26)

Note that J is symmetric. The iteration of equation (A.20) is repeated until the
difference between two consecutive values of by, is less than a chosen tolerance.
If the residuals are weighted by weighting factors w;:

RSS = Zn: wi(yi — fo — Frza — BoTio — BifBazia)’ (A.27)

i=1

the solution may be found by modifying the definitions:

n n n
2 Z 2 E '

SIk — E W;Tik S:Ijk = wixik Sxkxm = WiTixTim
i=1

i=1 i=1

n n
Sy = Zwiyi STy = Zwﬂikyi

i=1 1=1
Using these definitions in the preceding equations and Jacobian formula will produce
the weighted least-squares solution. Note that the weighting factors for the mean-
reverting intercept model in Chapter 6 are:

w; = [ (A.28)

A.3 Recursive Least Squares Algorithm

The goal of the recursive least squares algorithm is to take sequential data and update
a least squares parameter estimate with a minimum of computation. Suppose that
k sets of data have been received; the least squares estimate from this data will be
denoted by B, which minimizes:

k
RSS, =3 f*'(yi — x; By’ (A.29)

i=1

y; and x7 represent row i of the Y and X matrices respectively, while 0 < f < 1lisa
fading or “forgetting” factor. The solution for B is derived from linear regression
theory:

k k
(Z} fk—ixix?) By = 3 i (A.30)
1= i=1
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If new data yx4, and X, are received, the updated estimate B,y minimizes:

k+1

RSSky1 = Z 5 i - xg‘ﬁ(k+1))2
i=1

and satisfies:
k+1 ) k+1 fi
(Z fk_'xix.r) By = Z FFxayi
i=1 i=1
Multiplying both sides by f:
k+1 ‘ Rl
(Z fk+1_'xixiT) Br:y=2f S 47
i=1 i=1
We can now define the matrix Qj as:
k .
Q: = z fFixxT
1=1

Notice that Qx,, may be written as a recursive function:

T
Qk+1 = fQi + X1 X4y

Substituting for Qx4 in equation (A.33):

k
Q1B =Y FE %y + XYk

i=1

From equation (A.30), the summation in this equation is Qx08y), giving:

Qis1B8k+1) = (FQi + Xe1X{ 1) Bay + Xer1¥k1 — Xer1Xk41 8

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

The quantity inside the parentheses is Qx4 ; after multiplying both sides by Q;llz

ﬁ(k+1) = ,B(k) + Q,:.,l.lxk+l(yk+l - xf+1ﬁ(k))

T
Qi1 = fQi + Xpp1 X5y

(A.38)

(A.39)

Equations (A.38) and (A.39) are used to update the least squares estimate when data

is received sequentially. The preceding derivation is from [36].

108



Appendix B

Results of Regression of Load vs.
Temperature

This appendix gives coefficients for the cubic polynomial used to represent the load
as a function of temperature. Residual plots and a list of possible outliers, for which
the studentized residual exceeds 13, are also given. A separate set of coefficients and
plots is calculated for each hour of the day.

B.1 Regression on Same Day High Temperature

This section gives the coefficients and residuals for the regression results using the
same day’s high and low temperature, denoted as Ty; and Tio respectively. The first
four tables give the calculated regression coefficients along with a 95% confidence
interval (indicated as “Upper” and «Lower”). Table B.5 gives R? and the F statistic
along with estimates of the variance and standard deviation. The following tables
include a plot of the Studentized residuals and a list of data point with large residuals
for each hour.
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Coefficient of T} Coefficient of T}

Hour Value | Lower | Upper | Value | Lower | Upper

9 AM - 10 AM | 0.1163 | 0.0979 | 0.1347 | —9.66 | —12.15 | —7.16
10 AM - 11 AM | 0.1070 | 0.0883 | 0.1256 | —8.39 | —10.92 | —5.86
11 AM - 12 PM {0.1008 | 0.0814 | 0.1201 | —7.54 | —10.17 | —4.92
12PM-1PM |0.0952 | 0.0753 | 0.1151 | —6.85 | —9.54 | —4.15
1PM-2PM |0.0910 | 0.0702 | 0.1117 | —6.33 | —9.14 | —3.52

2PM-3PM |0.0845 | 0.0629 | 0.1061 | —5.59 | —8.52 | —2.67

3PM-4PM |0.0799 | 0.0575 | 0.1023 | —5.09 | —8.13 | —2.06

4 PM-5PM |0.0806 | 0.0565 | 0.1047 [ —5.30 | —8.57 | —2.03

5PM-6PM |0.0895|0.0610 | 0.1180 | —6.18 | —10.04 | —2.32

6 PM-7PM |0.0990 | 0.07:8 | 0.1263 | —7.02 | —10.71 | —3.33

7PM-8PM |0.0932 | 0.0688 | 0.1177 | —-6.56 | —9.88 | —3.25

8 PM-9PM |0.0769 [ 0.0568 | 0.0971 | —4.91 | —7.64 | —2.18

9 PM - 10 PM | 0.0696 | 0.0506 | 0.0886 | —3.93 | —6.51 | —1.36
10 PM - 11 PM | 0.0654 | 0.0470 { 0.0839 | —3.30 | —5.80 | —0.80
11 PM - 12 AM | 0.0622 | 0.0446 | 0.0799 | —2.84 | —5.23 | —0.44

Table B.1: Regression results for T3 and T2.

Coefficient of Ty, Constant Term

Hour Value Lower | Upper | Value | Lower | Upper

9 AM - 10 AM 93.87 | —12.03 | 199.77 | 37623 | 35747 | 39500
10 AM - 11 AM 73.89 [ —33.539 | 181.36 | 36941 | 35036 | 38845
11 AM - 12 PM 64.76 | - —46.69 | 176.21 | 36070 | 34095 | 38044
12 PM - 1 PM 56.83 | —57.76 | 171.43 | 35120 | 33090 | 37151
1 PM-2PM 50.16 | —69.34 | 169.66 | 34473 | 32355 | 36591

2 PM -3 PM 34.54 | —89.86 | 158.95 | 33602 | 31397 | 35806

3 PM -4 PM 24.70 | —104.35 | 153.75 | 32984 | 30697 | 35271

4 PM -5 PM 34.89 | —103.92 | 173.70 | 33005 | 30545 | 35464

5 PM -6 PM 28.35 | —135.81 | 192.52 | 33783 | 30874 | 36692

6 PM -7PM —4.70 | —161.55 | 152.15 | 32718 | 29939 | 35498

7PM -8 PM —24.76 | —165.64 | 116.12 | 32478 | 29981 | 34974

8 PM - 9 PM —-67.26 | —183.23 | 48.71 | 32755 | 30700 | 34810

9PM-10PM -98.47 | —208.06 11.11 | 31815 | 29873 | 33757
10 PM - 11 PM | —130.89 | —237.21 | —24.57 | 29851 | 27967 | 31734
11 PM - 12 AM | —158.88 | —260.66 | —57.11 | 28178 | 26374 | 29981

Table B.2: Regression results for Tj, and the constant term.
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Coefficient of T, Coefficient of T2
Hour Value | Lower | Upper | Value | Lower | Upper

9 AM - 10 AM | 0.0362 | 0.0219 | 0.0504 | —3.90 | —-6.53 | -1.27
10 AM - 11 AM | 0.0504 | 0.0360 | 0.0649 | —-5.82| --849| -3.15
11 AM - 12 PM | 0.0623 | 0.0473 | 0.0773 | —~7.34 [ —10.11 | —4.57
12PM-1PM |0.0720 | 0.0566 | 0.0874 | —8.54 { —11.39 | —5.69
1PM-2PM |0.0788 | 0.0628 | 0.0949 | —-9.32 | —12.29 | -6.35
2PM-3PM |0.0873 | 0.0706 | 0.1040 | —10.42 | —13.51 | —7.33
3PM-4PM |0.0957 | 0.0783 | 0.1130 { —11.59 | —14.80 | —8.39
4PM-5PM |0.1068 | 0.0881 | 0.1255 | —13.33 | —16.77 | —9.88
5PM-6PM |0.12190.0998 | 0.1440 | —16.06 | —20.14 | —11.98
6 PM-7PM |0.1242 | 0.1032 | 0.1453 | —17.28 | —21.18 | —13.39
7PM-8PM |0.1111 ] 0.0922 | 0.1301 | —15.60 | —19.10 | —12.10
8PM-9 M ]0.1020 | 0.0864 | 0.1176 | —14.05 | ~16.93 | —11.17
9 PM-10PM | 0.1007 | 0.0860 | 0.1154 | —13.74 | —16.46 | —11.01
10 PM - 11 PM | 0.0977 { 0.0834 | 0.1120 | —13.57 | —16.21 { —10.93
11 PM - 12 AM | 0.0897 | 0.0760 | 0.1034 | —12.62 | —15.15 | —10.09

Table B.3: Regression results for T7; and T2.

Coefficient of T},
Hour Value | Lower | Upper
9 AM - 10 AM 0.57 | —154.98 | 156.12
10 AM-11 AM | 65.89| -91.97 | 223.74
11 AM-12PM [ 11345 | -50.25 | 277.14
12PM-1PM |[151.40| -16.91 | 319.72
1PM-2PM |[173.85 —1.68 | 349.37
2PM-3PM |213.97 31.24 | 396.70
3PM-4PM | 258.38 68.83 | 447.92
4 PM-5PM |324.66 | 120.77 | 528.55
5PM-6FM |453.64| 212.52|694.76
6 PM-7PM |[578.79 | 348.40 { 809.17
7PM-8PM |538.66 | 331.74 | 745.59
8 PM-9PM |473.83 303.49 | 644.16
9PM-10PM |459.23 | 298.27 | 620.18
10 PM - 11 PM | 469.37 | 313.21 | 625.53
11 PM - 12 AM | 444.32 | 294.84 | 593.81

Table B.4: Regression results for Tj;.
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Hour R?

~2

F o Standard Error

9 AM - 10 AM | 0.8717 | 1021 | 1392592 1180.08
10 AM - 11 AM | 0.8836 | 1140 | 1434206 1197.58
11 AM - 12 PM | 0.8938 | 1264 | 1542260 1241.88
12PM -1PM |0.9032 | 1402 | 1630642 1276.97
1PM-2PM |0.9074 | 1471 | 1773250 1331.63

2PM-3PM [0.9095 [ 1509 | 1921802 1386.29

3PM-4PM [0.9084 | 1490 | 2067946 1438.04

4 PM-5PM |0.8951 | 1282 | 2392733 1546.85

5PM-6PM |[0.8550 | 885 | 3346377 1829.31

6 PM-7PM |0.8548 | 884 | 3054958 1747.84

7PM-8PM |0.8575 | 904 | 2464466 1569.86

8PM-9PM |0.8852 | 1158 | 1670008 1292.29

9PM-16PM | 0.8971 | 1309 | 1491106 1221.11
10 PM - 11 PM | 0.8960 | 1294 | 1403568 1184.72
11 PM - 12 AM | 0.8939 | 1265 | 1286157 1134.09

Table B.5: Regression statistics and estimates of variance.
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Studentized residual

Residual plot of PJM load 9:00 AM - 10:00 AM

XX

—a} % .
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Expected adjusted load x 10%

Figure B-1: Residual plot for 9:00 AM - 10:00 AM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low

4148 | 16| Sun  1/16/94 | 41805 | 37105| 15| 4
3044 | 28| Fri 1/28/94| 31919 | 28355 | 58| 33
5575 | 217 | Fri  8/5/94 | 34272 | 27823 | 86| 60
3274 | 226 | Sun  8/14/94 | 34993 | 31160 | 90| 69
4765 | 241 [ Mon 8/29/94 | 32699 | 27151 | 79| 60
3.145 | 528 | Mon 6/12/95| 30864 | 27180 | 75| 61
—3.186 | 725 | Tue 12/26/95 | 20877 | 33600 31| 22
—4100 | 738 |Mon  1/8/96| 30609 | 35378 | 26| 14
5.365 | 872 | Tue 5/21/96 | 34796 | 28625 91| 60

Table B.6: List of cases with high residuals, 9:00 AM - 10:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
4148 | 16| Sun 1/16/94 6 17 4 15| 14 34
3.044 | 28| Fri  1/28/94| 11 33| 33 58 | 34 42
5.575 | 217 | Fri 8/5/94 | 176 91| 60 86| &5 77
3.274 | 226 | Sun  8/14/94 | 75 92| 69 90 | 62 75
4.765 | 241 | Mon 8/29/94 | 70 8 | 60 79| 59 79
3.145 | 528 | Mon 6/12/95 | 66 89| 61 75| 62 74
-3.186 | 725 | Tue 12/26/95| 27 32| 22 31 21 31
--4.100 [ 738 | Mon 1/8/96 | 12 221 14 26 14 29
5.365 | 872 | Tue 5/21/96 | 68 94 ( 60 91 | 55 80

Table B.7: List of cases with high residuals, 9:00 AM - 10:00 AM.
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Studentized residual

Figure B-2: Residual plot for 10:00 AM - 11:00 AM.

115

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.805| 16| Sun 1/16/94 | 41339 36957 15 4
3579 | 28| Fri 1/28/94| 32407 28162 581 33
5.585 | 217 | Fri 8/5/94 | 35523 28967 86| 60
3.497 | 226 | Sun 8/14/94 | 36935 32784 90| 69
4.388 | 241 | Mon 8/29/94 | 33213 28018 79| 60
3.331| 737 | Sun  1/7/96 | 39894 35972 22 12
—3.533 | 738 | Mon 1/8/96 | 31107 35287 26 14
5.332 | 872 | Tue 5/21/96 | 36295 30070 91 60
Table B.8: List of cases with high residuals, 10:00 AM - 11:00 AM.
Residual plot of PJM load 10:00 AM - 11:00 AM
6 T T T T T T
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.805| 16| Sun 1/16/94 6 17 4 15 14 34

3.579 | 28| Fri 1/28/94| 11 33| 33 58| 34 42

5.585 | 217 | Fri  8/5/94| 76 91| 60 8 | 55 77

3.497 | 226 | Sun 8/14/94| 75 92 | 69 90 | 62 75

4.388 | 241 | Mon 8/29/94 | 70 89| 60 79 59 79

3.331 | 737 | Sun 1/7/96 | 10 20| 12 221 14 26
—3.533 | 738 [ Mon 1/8/96 12 22 14 26 14 29
5.332 | 872 | Tue 5/21/96| 68 94| 60 91| 55 80

Table B.9: List of cases with high residuals, 10:00 AM - 11:00 AM.
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Studentized residual

Residual plot of PJM load 11:00 AM - 12:00 PM
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Figure B-3: Residual plot for 11:00 AM - 12:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.314| 16| Sun 1/16/94 | 40441 36475 15 4
3929 | 28| Fri 1/28/94 | 32486 27660 58 | 33
3.029| 44| Sun 2/13/94 | 33603 29864 451 30
3.039 | 213 | Men  8/1/94 | 36437 32709 80| 71
5.305 | 217 | Fri 8/5/94 | 36136 29668 86| 60
3.620 | 226 | Sun 8/14/94 | 38363 33908 90| 69
3.619 | 241 | Mon 8/29/94 | 32898 28440 791 60
3.822 | 737 | Sun  1/7/96 | 40197 35542 22 12
—3.068 | 738 [ Mon 1/8/96 | 31087 34858 26 14
4984 | 872 | Tue 5/21/96 | 37109 31062 91 60
3.153 | 906 | Mon 6/24/96 | 33967 30077 84| 63

Table B.10: List of cases with high residuals, 11:00 AM - 12:06 PM.

117




Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3314| 16| Sun 1/16/94| 6| 17| 4| 15| 14| 34
3929 28| Fri 1/28/94| 11 33| 33 58 | 34 42
3.029 | 44| Sun 2/13/94| 25 33| 30 45| 24 35
3.039 | 213 | Mon 8/1/94| 72 84| 71 80| 74 88
5.305 | 217 | Fri - 8/5/94 76 91 60 86 95 7
3.620 | 226 | Sun 8/14/94 | 75 92| 69 90 | 62 75
3.619 | 241 | Mon 8/29/94| 70 89| 60 79| 59 79
3.822 | 737 | Sun 1/7/96 | 10 20 12 2| U4 26
—3.068 | 738 | Mon 1/8/96 | 12 22| 14 26| 14 29
4984 | 872 | Tue 5/21/96| 68 94| 60 91} 55 80
3.153 | 906 | Mon 6/24/96 | 68 81| 63 84| 68 87

Table B.11: List of cases with high residuals, 11:00 AM - 12:00 PM.
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Studentized residual

Residual plot of PJM load 12:00 PM - 1:00 PM

35 3 a5 P a5
Expected adjusted load x 10*
Figure B-4: Residual plot for 12:00 PM - 1:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.885| 28| Fri 1/28/94 | 31974 27067 58 | 33
3.353 | 213 | Mon 8/1/94 | 37264 33039 80| 71
4531 217 | Fri  8/5/94 | 35812 30108 8 | 60
3.693 | 226 | Sun 8/14/94 | 39338 34666 90 | 69
4193 | 737 | Sun  1/7/96 | 40191 34946 22 12
4.545 | 872 | Tue 5/21/96 | 37452 31770 91 60
3.245 | 899 | Mon 6/17/96 | 37203 33089 88| 67
3.541 | 906 | Mon 6/24/96 | 34958 30472 84| 63

Table B.12: List of cases with high residuals, 12:00 PM - 1:00 PM.
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Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
3.885 | 28| Fri 1/28/94| 11 33| 33 58| 34 42
3.353 | 2i3 | Mon 8/1/94| 172 84| 171 80| 74 88
4531 | 217 | Fri  8/5/94| 76 91| 60 8 | 55 77
3.693 | 226 | Sun 8/14/94| 75 92 | 69 90 | 62 75
4193 | 737 | Sun 1/7/96 | 10 20| 12 22 14 26
4.545 | 872 | Tue 5/21/96 | 68 94| 60 91 55 80
3.245 | 899 | Mon 6/17/96 | 66 91| 67 88| 70 82
3.541 | 906 | Mon 6/24/96 | 68 81| 63 84| 68 87

Table B.13: List of cases with high residuals, 12:00 PM - 1:00 PM.
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Studentized residual

Residual plot of PJM load 1:00 PM — 2:00 PM
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Figure B-5: Residual plot for 1:00 PM - 2:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3546 | 28| Fri 1/28/94 31286 26609 58 [ 33
3.423 | 213 | Mon 8/1/94 | 37783 33285 80| 71
3.456 | 217 | Fri  8/5/94 | 35046 30488 86| 60
3.566 | 226 | Sun 8/14/94 | 39988 35282 90| 69
—3.798 | 622 ( Thu 9/14/95 | 31640 36642 92| 70
4.190 | 737 | Sun  1/7/96 | 39938 34473 22 12
3.792 | 872 | Tue 5/21/96 | 37333 32371 91 60
3.484 | 899 | Mon 6/17/96 | 38206 33604 88| 67
3.572 | 906 | Mon 6/24/96 | 35521 30803 84| 63

Table B.14: List of cases with high residuals, 1:00 PM - 2:00 PM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.546 | 28| Fri 1/28/94| 11 33| 33 58 | 34 42
3.423 | 213 Mon 8/1/94| T2 84| 71 80| 74 88
3.456 | 217 | Fri  8/5/94| 176 91 60 8 | 95 77
3.566 | 226 | Sun 8/14/94| 75 92| 69 90| 62 75
—3.798 | 622 | Thu 9/14/95| 69 88| 70 92| 61 80
4190 | 737 | Sun  1/7/96 | 10 20 12 22 14 26
3.792 | 872 | Tue 5/21/96 | 68 94| 60 91 hY) 80
3.484 | 899 | Mon 6/17/96 | 66 91 67 88 70 82
3.572 | 906 | Mon 6/24/96 | 68 81 63 84| 68 87

Table B.15: List of cases with high residuals, 1:00 PM - 2:00 PM.
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Studentized residual

Residual plot of PJM load 2:00 PM - 3:00 PM
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Figure B-6: Residual plot for 2:00 PM - 3:00 PM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
3219 28| Fri 1/28/94 | 30504 26079 o811 33
3417 | 213 | Mon 8/1/94 | 37915 33241 80| 71
3.022 | 226 | Sun 8/14/94 | 39781 35621 90| 69
—-3.974 | 622 ( Thu 9/14/95| 31630 37075 92| 70
4.079 | 737 | Sun  1/7/96 | 39491 33951 22 12
3.558 | 872 | Tue 5/21/96 | 37615 32765 91| 60
3.318 | 899 { Mon 6/17/96 | 38425 33860 88| 67
3.588 | 906 | Mon 6/24/96 | 35841 30907 84| 63

Table B.16: List of cases with high residuals, 2:00 PM - 3:00 PM.



Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3219 28 Fri 1/28/94| 11 33| 33 58 | 34 42

3.417| 213 | Mon 8/1/94| 72 84| 71 80| T4 88

3.022 | 226 | Sun . 8/14/94 | 75 92| 69 90 | 62 75
-3974 | 622 | Thu 9/14/95| 69 88| 170 92| 61 80
4079 | 737 | Sun 1/7/96 | 10 20 12 22| 14 26

3.558 | 872 | Tue 5/21/96 | 68 94| 60 91| 55 80

3.318 | 899 | Mon 6/17/96 | 66 91| 67 88| 70 82

3.588 | 906 | Mon 6/24/96 | 68 81| 63 84| 68 87

Table B.17: List of cases with high residuals, 2:00 PM - 3:00 PM.
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Studentized resigual

Residual plot of PJM load 3:00 PM — 4:00 PM
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Expected adjusted load x 10°

Figure B-7: Residual plot for 3:00 PM - 4:00 PM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.015| 28| Fri 1/28/94 | 30078 25774 58 | 33
—3.489 | 189 | Fri  7/8/94 | 43119 48040 99 [ 80
3.441 | 213 | Mon 8/1/94 | 37983 33101 80 71
3.230 | 591 | Mon 8/14/95 42924 38318 91| 73
—4.036 | 622 | Thu 9/14/95( 31560 37294 92| 70
3.811 | 737 | Sun  1/7/96 | 39153 33776 221 12
3.287 | 872 | Tue 5/21/96 | 37640 32987 91| 60
3.027 | 899 | Mon 6/17/96 | 38278 33952 88 67
3.479 | 906 | Mon 6/24/96 | 35866 30901 84| 63

Table B.18: List of cases with high residuals, 3:00 PM - 4:00 PM.
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Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
3015} 28| Fri 1/28/94| 11 33| 33 58 | 34 42
~3.489 | 189 | Fri  7/8/94 | T4 98 | 80 99| 80 99
3.441 | 213 | Mon 8/1/94| 72 84| 71 80| 74 88
3.230 | 591 | Mon 8/14/95 | 74 91 73 91 74 92
—4.036 [ 622 | Thu 9/14/95 | 69 88| 70 92| 61 80
3.811| 737 | Sun 1/7/96( 10 20 12 22 14 26
3.287 | 872 | Tue 5/21/96 | 68 94| 60 91 55 80
3.027 | 899 | Mon 6/17/96 | 66 91| 67 88| 70 82
3.479 { 906 | Mon 6/24/96 | 68 81| 63 84| 68 87

Table B.19: List of cases with high residuals, 3:00 PM - 4:00 PM.
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Studentized residual

Residual plot of PJM load 4:00 PM - 5:C0 PM

3.5

4.5

25 a 5.5
Expected adjusted load x 10°
Figure B-8: Residual plot for 4:00 PM - 5:00 PM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
-3.533 | 189 | Fri 7/8/94 | 42949 48307 99 | 80
3.268 | 213 | Mon 8/1/94 | 37974 32983 80| 71
3.004 | 331 | Sun 11/27/94 | 32492 27873 494 31
3.157 { 591 | Mon 8/14/95 | 43182 38338 91 73
3.021 | 598 | Mon  8/21/95 | 40465 35859 93| 65
—3.827| 622 | Thu 9/14/95| 31512 37367 92| 70
3.361 | 737 | Sun 1/7/96 | 39739 34630 22 12
3.113 | 906 | Mon  6/24/96 | 35651 30867 84| 63

Table B.20: List of cases with high residuals, 4:00 PM - 5:00 PM.

127



Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
—3.533 | 189 | Fri 7/8/94 | 74 98 | 80 99| 80 99
3.268 | 213 | Mon 8/1/94 72 84| 71 80| 74 88

3.004 | 331 | Sun 11/27/94| 32 49| 31 49 | 49 67

3.157 | 591 | Mon 8/14/95| 74 91 73 91| 74 92

3.021 | 598 | Mon 8/21/95( 64 88| 65 93| 72 86
—3.827 | 622 | Thu 9/14/95| 69 88| 70 92| 61 80
3.361 | 737 | Sun 1/7/96 | 10 20 12 22| 14 26

3.113 | 906 | Mon  6/24/96 | 68 81| 63 84| 68 87

Table B.21: List of cases with high residuals, 4:00 PM - 5:00 PM.
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Studentized

Adjusted Load

Residual | Day Date Actual | Expected | High | Low
-3.091| 189 | Fri  7/8/94 | 42531 48084 99 | 80
—3.046 | 622 | Thu 9/14/95 | 31361 36887 92| 70
—3.111 | 828 | Sun 4/7/96 | 25331 30968 41 36

Table B.22: List of cases with high residuals, 5:00 PM - 6:00 PM.

Residual plot of PJM load 5:00 PM - €:00 PM

Studentized residual
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2.5 5.5

Expected adjusted load x 10*

Figure B-9: Residual plot for 5:00 PM - 6:00 PM.

Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
-3.091 | 189 | Fri 7/8/94| 74 98| 80 99| 80 99
—-3.046 | 622 | Thu 9/14/95| 69 88| 70 92| 61 80
-3.111 | 828 | Sun 4/7/96 | 36 50| 36 41| 33 48

Table B.23: List of cases with high residuals, 5:00 PM - 6:00 PM.
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Residual plot of PJM load 6:00 PM -~ 7:00 PM
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Figure B-10: Residual plot for 6:00 PM - 7:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
-3.494 | 328 | Thu 11/24/94 | 27324 33380 40| 24
—3.086 | 460 | Wed 4/5/95 | 26874 32232 43 27
—3.068 | 471 | Sun  4/16/95 | 21083 26397 67| 38
3.168 | 598 | Mon  8/21/95 | 39684 34227 93| 65
—3.381 | 828 | Sun 4/7/96 | 25461 31311 41 36
Table B.24: List of cases with high residuals, 6:00 PM - 7:00 PM.
Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
—3.494 | 328 | Thu 11/24/94| 30 47| 24 40 | 37 54
—3.086 | 460 | Wed 4/5/95 | 33 69| 27 43| 33 54
—3.068 | 471 | Sun  4/16/95| 40 60| 38 67| 43 64
3.168 | 598 | Mon 8/21/95| 64 88| 65 93 72 86
—3.381 | 828 | Sun 4/7/96 | 36 50| 36 41 33 48

Table B.25: List of cases with high residuals, 6:00 PM - 7:00 PM.
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Residual plot of PJM load 7:00 PM - 8:00 PM
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Figure B-11: Residual plot for 7:00 PM - 8:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.0371 15| Sat 1/15/94 | 41944 37308 17 6
—3.903 | 328 | Thu 11/24/94| 27021 33088 40| 24
—3.061 | 471 | Sun  4/16/95 | 21893 26656 67| 38
3.370 | 598 | Mon  8/21/95 | 38499 33290 93| 65
—3.100 | 692 | Thu 11/23/95| 26989 31823 441 27

Table B.26: List of cases with high residuals, 7:00 PM - 8:00 PM.

Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
3.037| 15| Sat 1/15/94 | 17 39 6 17 4 15
—-3903 | 328 | Thu 11/24/94) 30 47| 24 40| 37 54
—3.061 | 471 | Sun  4/16/95| 40 60! 38 67| 43 64
3.370 | 598 | Mon 8/21/95 | 64 88| 65 93| 72 86
-3.100{ 692 | Thu 11/23/95| 30 45| 27 44 ( 34 42

Table B.27: List of cases with high residuals, 7:00 PM - 8:00 PM.
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Studentized residual

Residual plot of PJM load 8:00 PM - 9:00 PM
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Figure B-12: Residual plot for 8:00 PM - 9:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.528 | 15| Sat 1/15/94 | 41112 36686 17 6
—3.013 | 149 | Sun  5/29/94 | 23363 27230 801 55
—3.477 | 184 | Sun 7/3/94 | 29946 34400 90| 72
3.307 | 213 | Mon 8/1/94 | 35216 30997 80| 71
—4.302 | 328 | Thu 11/24/94 | 26883 32378 40| 24
—3.160 | 548 | Sun 7/2/95 | 27471 31521 84| 70
3.013 | 578 | Tue 8/1/95 | 40809 36319 94 72
3.727 | 591 | Mon  8/14/95 | 40040 35272 91| 73
4.341 | 598 | Mon 8/21/95| 38887 33386 93| 65
3.436 | 608 | Thu 8/31/95| 36666 32270 90| 66
—3.462 | 692 | Thu 11/23/95| 26774 31212 44 | 27

Table B.28: List of cases with high residuals, 8:00 PM - 9:00 PM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.528 | 15| Sat 1/15/94 | 17 39 6 17 4 15
—3.013| 149 | Sun 5/29/94 | 48 71| 55 8 | 59 85
—3.477 | 184 | Sun 7/3/94| T1 94| 72 90| 70 86
3.307 { 213 | Mon 8/1/94 | 72 84| 71 80| 74 88
—4.302 | 328 | Thu 11/24/94| 30 47 | 24 40| 37 54
—-3.160 | 548 | Sun 7/2/95 | 71 89| 70 84| 64 83
3.513 [ 578 | Tue 8/1/95 | 73 9 | 72 94| 78 98
3.727 | 591 | Mon 8/14/95| 74 91| 73 91| 74 92
4.341 | 598 | Mon 8/21/95| 64 88| 65 93| 72 86
3.436 | 608 | Thu 8/31/95( 68 90 | 66 90| 75 90
~3.462 | 692 | Thu 11/23/95| 30| 45| 27| 44| 34| 42

Table B.29: List of cases with high residuals, 8:00 PM - 9:00 PM.
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Studentized residual

Residual plot of PJM load 9:00 PM - 10:00 PM
L] v
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25 35 a4 5
Expected adjusted load x 10*
Figure B-13: Residual plot for 9:00 PM - 10:00 PM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
3.709 | 15| Sat 1/15/94 | 39823 35429 17 6
—3.220 | 184 | Sun  7/3/94| 29896 33797 90| 72
—3.256 | 190 | Sat 7/9/94 | 39050 42953 99 [ 80
3.801 [ 213 | Mon 8/1/94 | 34868 30296 80| 71
—3.970 | 328 | Thu 11/24/94 | 26186 30985 40| 24
3.470 { 578 | Tue 8/1/95 | 39945 35754 94| 72
3.421 | 591 | Mon 8/14/95| 38813 34673 91| 73
4.088 | 598 | Mon 8/21/95| 37719 32819 93| 65
—-3.304 | 609 | Fri 9/1/95 | 31162 35152 90| 75
—-3.268 | 692 | Thu 11/23/95| 25889 29850 4| 27
3.250 | 749 | Fri 1/19/96 | 32040 28158 62| 22
3.115| 757 | Sat  1/27/96 | 30887 27114 571 32

Table B.30: List of cases with high residuals, 9:00 PM - 10:00 PM.
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Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
37091 15| Sat 1/15/94 ( 17 39 6 17 4 15
—3.220 { 184 | Sun 7/3/94| 71 94| 72 90| 70 86
—3.256 | 190 | Sat 7/9/94 | 80 99 | 80 99 | 76 92
3.801 | 213 | Mon 8/1/94 | 72 84| T1 80| 74 88
-3970 | 328 { Thu 11/24/94| 30 47 24 40 37 54
3.470 | 578 | Tue 8/1/95| 73 96 | 72 94| 78 98
3.421 ) 591 | Mon 8/14/95 74 91 73 91 74 92
4.088 | 598 | Mon 8/21/95| 64 88| 65 93 | 72 86
—3.304 | 609 | Fri 9/1/95| 66 90| 75 90 [ 69 83
—3.268 | 692 | Thu 11/23/95| 30 45 | 27 4 34 42
3.250 | 749 | Fri 1/19/96 | 29 58 | 22 62| 19 29
3.115 | 757 | Sat  1/27/96 | 22 48 | 32 57| 24 36

Table B.31: List of cases with high residuals, 9:00 PM - 10:00 PM.
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Siudentized residual

Residual plot of PJM load 10:00 PM - 11:00 PM
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Figure B-14: Residual plot for 10:00 PM - 11:00 PM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.507 | 15| Sat 1/15/94 | 37532 33498 17 6
—3.366 | 190 | Sat 7/9/94 | 36131 40043 99 [ 80
3.752 | 213 | Mon 8/1/94 | 32456 28076 80| 71
—3.409 | 328 | Thu 11/24/94 | 25023 29029 40| 24
3.462 | 578 | Tue 8/1/95 | 37175 33118 94| 72
3.232 | 591 | Mon 8/14/95 | 35937 32140 91 73
4.134 | 598 | Mon 8/21/95| 35056 30250 93| 65
-3.521 | 609 | Fri 9/1/95 | 28517 32638 90| 75
3.522 | 749 | Fri 1/19/96 | 30373 26295 62| 22
3.273 | 757 | Sat  1/27/96 | 29032 25187 57 | 32

Table B.32: List of cases with high residuals, 10:00 PM - 11:00 PM.

136



Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3507 | 15| Sat 1/15/94 | 17 39 6 17 4 15
—3.366 | 190 | Sat 7/9/94 | 80 99 ( 80 99| 76 92
3.752 | 213 | Mon 8/1/94 | T2 84| 7T 80| 74 88
—3.409 | 328 | Thu 11/24/94 | 30 47| 24 40| 37 54
3.462 | 578 | Tue 8/1/95 | 73 96 | 72 94| 78 98
3.232 | 591 | Mon 8/14/95| 74 91 73 91| 74 92
4134 | 598 | Mon 8/21/95| 64 88| 65 93| 72 86
—3.521 | 609 | Fri G/1/95 | 66 90| 75 90| 69 83
3.522 | 749 | Fri  1/19/96 | 29 58 | 22 62| 19 29
3.273 | 757 | Sat  1/27/96 | 22 48 | 32 37| 24 36

Table B.33: List of cases with high residuals, 10:00 PM - 11:00 PM.
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Studentized residual

Residual plot of PJM load 11:00 PM - 12:00 AM
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Figure B-15: Residual plot for 11:00 PM - 12:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.557 | 15| Sat 1/15/94 | 35398 31483 17 6
3.104| 18| Tue 1/18/94| 35073 31992 33 2
—3.249 | 190 | Sat 7/9/94 | 32894 36510 99| 80
3.748 | 213 | Mon 8/1/94 | 29765 25576 80| 71
—3.312 | 328 | Thu 11/24/94 | 23186 26914 40 24
3.558 | 578 | Tue 8/1/95 | 34011 30021 94| 72
3.267 | 591 | Mon 8/14/95 | 32869 29195 91 73
3.029 | 593 | Wed 8/16/95 | 33424 30021 94| T2
3.991 | 598 | Mon 8/21/95| 31724 27279 93| 65
—3.505 | 609 | Fri 9/1/95 | 25791 29718 90| 75
3.892 | 749 | Fri 1/19/96 | 28695 24388 62| 22
3.484 | 757 Sat  1/27/96 | 27079 23165 57 | 32

Table B.34: List of cases with high residuals, 11:00 PM - 12:00 AM.
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Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
3557 15| Sat  1/15/94 | 17 39 6 17 4 15
3.104 | 18 Tue 1/18/94 | 14 34 2 33| -5 6
—3.249 | 190 | Sat 7/9/94 80 99 80 99| 76 92
3.748 | 213 | Mon 8/1/94 | 72 84| 71 80| 74 88
—3.312 ( 328 | Thu 11/24/94( 30 471 24 40| 37 54
3.558 | 578 | Tue 8/1/95| 73 9% | 72 94| 78 98
3.267 | 591 | Mon 8/14/95 | 74 91| 73 91| 74 92
3.029 | 593 | Wed 8/16/95| 74 92| 72 94| 79 96
3991 | 598 | Mon 8/21/95 | 64 88| 65 93| 72 86
—3.505 | 609 | Fri 9/1/95( 66 9| 75 90| 69 83
3.802 | 749 | Fri 1/19/96 | 29 58| 22 62| 19 29
3.484 | 757 | Sat  1/27/96 22 48 | 32 57| 24 36

Table B.35: List of cases with high residuals, 11:00 PM - 12:00 AM.
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B.2 Regression using Previous Day’s High Tem-
perature

As mentioned earlier, superior regression results were obtained for the morning hours
by using the high temperature from the previous day (here designated Th;-;) in
combination with the same day’s low instead of using the high and low temperature
for the same day. The resulting regression coefficients and 95% confidence intervals
are given in the following tables. A table showing the coefficient of determination, F
statistic, and standard error of regression for each hour’s regression is also given. As
before, a residual plot and set of possible outliers is presented for each hour.
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Coefficient of T3 Coefficient of T2

Hour Value | Lower | Upper | Value | Lower | Upper

12 AM -1 AM | 0.0742 | 0.0622 | 0.0861 | —4.87 | —6.42 | —-3.31
1AM -2 AM | 0.0721 | 0.0607 | 0.0836 | —4.62 | —6.11 | —3.13

2 AM -3 AM | 0.0717 | 0.0606 | 0.0828 | —4.56 | —6.01 | -3.12

3AM-4AM |0.0722 | 0.0613 | 0.0831 | —4.60 | —6.02 | —3.18

4 AM-5AM |[0.0749 | 0.0641 | 0.0858 | —4.84 | —6.25 | —3.44

5AM -6 AM | 0.0795 | 0.0681 | 0.0908 | —5.39 | —6.87 | —3.91

6 AM-7AM | 0.0825 | 0.0692 | 0.0958 | —5.84 | —7.58 | —4.11

7AM -8 AM | 0.0891 | 0.0749 | 0.1032 | —6.49 | —8.32 | —4.65

8 AM-9AM | 0.0923 { 0.0787 | 0.1059 | —6.42 | —8.19 | —4.64

9 AM - 10 AM | 0.0955 | 0.0817 | 0.1093 | —6.28 | —8.08 | —4.49
10 AM -11 AM | 0.1005 | 0.0857 | 0.1153 | —6.36 | —8.29 | —4.43
11 AM - 12 PM | 0.1045 | 0.0883 | 0.1207 | —6.33 | —8.44 | —4.23

Table B.36: Regression results for T and T}.

Coefficient of T}, Constant Term

Hour Value Lower | Upper | Value | Lower | Upper
12AM-1AM | -T70.53 | —132.14 | —8.93 | 28942 | 27634 | 30250
1 AM - 2 AM —88.46 | —147.53 | —29.38 | 28592 | 27338 | 29847
2 AM -3 AM | —-101.35 | —158.55 | —44.15 | 28560 | 27346 | 29775
3AM -4 AM | —-110.39 | —166.63 | —54.16 | 28822 [ 27628 | 30016
4 AM-5AM | —-116.39 | —172.21 | —60.56 | 29169 | 27983 | 30354
5AM-6 AM | —108.68 | —167.34 | —50.02 | 2994G | 28694 | 31186
6 AM-7AM | —-104.77 | —173.46 | —36.07 | 31370 | 29911 | 32829
7 AM - 8 AM —82.93 | —155.70 | —10.16 | 32533 | 30988 | 34079
8 AM -9 AM —86.65 [ —156.96 | —16.34 | 33586 | 32093 | 35079
9AM-10 AM | -90.90 [ —161.99 | —19.81 | 34165 | 32656 | 35675
10 AM -11 AM | -90.35| —166.82 | —13.87 | 34298 | 32674 | 35922
11 AM-12PM | —-94.61 —178.01 | —11.21 | 33839 | 32069 | 35610

Table B.37: Regression results for T;, and the constant term.
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Coefficient of T3, _, Coefficient of T _,
Hour Value | Lower | Upper | Value | Lower | Upper

12 AM-1AM | 0.0746 | 0.0654 | 0.0837 | —9.70 | —11.33 | —8.06
1AM -2 AM | 0.0682 | 0.0595 | 0.0770 | —8.92 [ —10.49 | —7.35
2AM-3AM |0.0634 | 0.0549 | 0.0719 | —8.34 | —9.86 | —6.82
3AM -4 AM | 0.0589 | 0.0505 | 0.0673 | =7.79 | —9.29 [ —6.30
4 AM-5AM | 0.0561 { 0.0478 | 0.0644 | —7.57 | —9.06 | —6.09
5AM -6 AM | 0.0558 | 0.0471 | 0.0646 | —7.84 | —9.40 | —6.28
6 AM-7AM | 0.0592 | 0.0490 | 0.0694 | —8.80 | —10.62 |. —6.97
7AM -8 AM |0.0611 | 0.0503 | 0.0719 | —9.17 | —11.10 | —7.24
8 AM-9 AM | 0.0607 | 0.0503 | 0.0712 | —8.93 | —10.80 | —7.06
9 AM - 10 AM | 0.0605 | 0.0500 | 0.0711 | —8.69 | —10.58 | —6.81
10 AM - 11 AM | 0.0603 | 0.0490 | 0.0717 | —8.50 | —10.53 | —6.47
11 AM - 12 PM | 0.0615 | 0.0491 | 0.0739 | —8.60 [ —10.82 | —6.39

Table B.38: Regression results for T _, and T2 _,.

Coefficient of T};
Hour Value | Lower | Upper
12 AM-1AM | 265.35 [ 173.05 | 357.66
1AM -2 AM | 241.58 | 153.06 | 330.10
2 AM -3 AM | 226.96 | 141.25 | 312.68
3AM -4 AM | 211.52 | 127.26 | 295.79
4 AM-5AM | 216.78 { 133.12 | 300.43
5AM -6 AM | 249.48 | 161.58 | 337.38
6 AM-7AM | 323.71 | 220.78 | 426.64
7AM -8 AM | 351.38 | 242.34 | 460.42
8 AM -9 AM | 333.87 | 228.52 | 439.22
9 AM - 10 AM | 313.30 | 206.78 | 419.83
10 AM - 11 AM | 298.59 | 184.00 | 413.18
11 AM-12PM | 301.60 | 176.63 | 426.56

Table B.39: Regression results for T; ;.
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R2

A2

Hour F 04 Standard Error

12 AM -1 AM | 0.9105 | 1527 | 991996 995.99
1AM -2 AM |[0.9123 | 1561 | 912281 955.13

2AM -3 AM (0.9152 | 1617 | 855197 924.77

3AM-4AM |0.9173 | 1663 | 826594 909.17

4 AM-5AM |[0.9196 | 1715 | 814701 902.61

5AM-6 AM |0.9148 | 1611 | 899475 948.41

6 AM-7AM [ 0.8932 | 1254 | 1233436 1110.60

7AM -8 AM | 0.8760 | 1060 | 1384205 1176.52

8 AM-9AM | 0.8769 | 1068 | 1292103 1136.71

9 AM -10 AM | 0.8784 | 1083 | 1321107 1149.39
10 AM - 11 AM | 0.8760 | 1060 | 1528711 1236.41
11 AM - 12 PM | 0.8749 | 1049 | 1818077 1348.36

Table B.40: Regression statistics and estimates of variance.
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Residual plot of PJUM load 12:00 AM - 1:00 AM
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Figure B-16: Residual plot for 12:00 AM - 1:00 AM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low

3350 | 16| Sun 1/16/94 | 33895 | 30637 | 17| 4
~4.076 | 18| Tue 1/18/94 | 25728 | 29659 | 34| 2
4522 | 19| Wed 1/19/94 | 33749 | 30423 | 33| -5
5493 | 217 | Fri  8/5/94| 28580 | 21733| 91| 60
4197 | 241 | Mon 8/29/94 | 26696 | 20413 | 89| 60
~3.046 | 55" | Wed  7/5/95| 21457 | 25633 | 86| 71
—3.105 | 725 | Tue 12/26/95 | 23760 | 26953 | 32| 22
3778 | 750 | Sat  1/20/96 | 26982 | 27712 | 62| 19
3929 | 872 | Tue 5/21/96 | 28222 | 23240 | 94| 60

Table B.41: List of cases with high residuals, 12:00 AM - 1:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.359 | 16| Sun 1/16/94 6 17 4 15| 14 34
—-4.076 | 18| Tue 1/18/94| 14 34 2 33| -5 6
4522 | 19| Wed 1/19/94 2 33| -5 6 1 15
5.493 | 217 | Fri 8/5/94| 76 91| 60 8 | 65 77
4.197 | 241 | Mon 8/29/94 | 70 89| 60 79| 59 79
—3.046 | 551 [ Wed.  7/5/95| 65 86| 71 90| 73 90
-3.105 | 725 | Tue 12/26/95 | 27 32 22 31| 21 31
3.778 | 750 | Sat  1/20/96 | 22 62| 19 29 22 32
3.929 | 872 | Tue 5/21/96| 68 94| 60 91| 55 80

Table B.42: List of cases with high residuals, 12:00 AM - 1:00 AM.
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Studentized residual

Residual plot of PJM load 1:00 AM - 2:00 AM
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Figure B-17: Residual plot for 1:00 AM - 2:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
3.399| 16| Sun  1/16/94 | 33171 30016 17 4
—4.555| 18| Tue 1/18/94 | 24922 29108 34 2
4720 | 19| Wed 1/19/94 | 33329 30053 331 -5
5.582 | 217 | Fri 8/5/94 | 26965 20430 91| 60
4.208 | 241 | Mon  8/29/94 | 25135 19281 89| 60
-3.128 | 369 | Wed 1/4/95 | 23791 26377 32| 18
—3.039 | 551 | Wed 7/5/95 | 20146 24058 86| 71
3.020 | 562 | Sun  7/16/95 | 33987 25920 | 103 | 75
-3.253 | 725 | Tue 12/26/95 | 22928 26127 321 22
3.889 | 750 | Sat  1/20/96 | 26324 26906 62 19
3.225 | 780 | Mon 2/19/96 | 26626 22111 31 37
3873 | 872 | Tue 5/21/96 | 26410 21763 94| 60

Table B.43: List of cases with high residuals, 1:00 AM - 2:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.399| 16| Sun 1/16/94 6 17 4 15| 14 34
—4555| 18| Tue 1/18/94 | 14 34 2 33| -5 6
4720 | 19| Wed 1/19/94 2 33| -5 6 1 15
5.582 | 217 | Fri 8/5/94 | 76 91| 60 86| 55 77
4.208 | 241 | Mon 8/29/94 | 70 89| 60 79| 59 79
—3.128 | 369 | Wed 1/4/95 20 321 18 35| 14 25
—3.039 | 551 { Wed 7/5/95| €5 86 | 71 90| 73 90
3.020 | 562 | Sun  7/16/95 | 81| 103 | 75 91| 73 94
—3.253 | 725 | Tue 12/26/95| 27 32| 22 31| 21 31
3.889 | 750 | Sat  1/20/96 | 22 62| 19| 29| 22 32
3.225| 780 | Mon 2/19/96 | 16 31| 37 42| 48 59
3.873 | 872 | Tue 5/21/96| 68 94| 60 91| 55 80

Table B.44: List of cases with high residuals, 1:00 AM - 2:00 AM.
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Studentized residual

Residual plot of PJM load 2:00 AM — 3:00 AM
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Figure B-18: Residual plot for 2:00 AM - 3:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
-3.079 8| Sat 1/8/94 | 23534 25864 33| 18
—-3.132| 14| Fri 1/14/94 | 22656 25794 41| 17
3682 16| Sun 1/16/94 | 33132 290828 17 4
—5.156 | 18 | Tue 1/18/94 | 24469 29023 34 2
4.736 | 19| Wed 1/19/94 | 33230 30019 33| -5
5.619 [ 217 | Fri 8/5/94 1 25935 19667 91| 60
4.258 | 241 | Mon  8/29/94 | 24215 18650 89 60
—3.339 | 369 | Wed 1/4/95 | 23412 26118 32 18
-3.373 | 725 | Tue 12/26/95 | 22591 25793 32 22
3.942 | 750 | Sat  1/20/96 | 26153 26592 62| 19
3.564 | 780 { Mon 2/19/96 | 26344 21708 31| 37
3.801| 872} Tue 5/21/96 | 25317 20867 94| 60
Table B.45: List of cases with high residuals, 2:00 AM - 3:00 AM.
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Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High
-3.079 8 | Sat 1/8/94 ( 30 33| 18 37 17 28
~3.132| 14| Fri 1/14/94| 36| 41| 17| 39| 6| 17
3682| 16| Sun 1/16/94 6 17 4 15| 14 34
—5.156 | 18 | Tue 1/18/94| 14 34 2 33| -5 6
4.736 | 19| Wed 1/19/94 2 33| -5 6 1 15
5.619 | 217 | Fri 8/5/94 | 76 91| 60 8 | 55 77
4.258 | 241 | Mon 8/29/94 | 70 89| 60 | 59 79
—3.339 | 369 | Wed 1/4/95 | 20 32 18 3| 14 25
. -3.373 | 725 | Tue 12/26/95 | 27 32 22 31| 21 31
3.942 | 750 | Sat  1/20/96 | 22 62| 19 29 22 32
3.564 | 780 | Mon 2/19/96 | 16 31| 37 42 | 48 59
3.801| 872 | Tue 5/21/96| 68 94 [ 60 91 | 55 80

Table B.46: List of cases with high residuals, 2:00 AM - 3:00 AM.
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Studentized residual

Residual plot of PUM load 3:00 AM - 4:00 AM

3.2

6
x
= x
4 = b3 P4 x
x
2 -
x
0 -
-2F
~4}
1.6 18 2.2 2.4 26 28 3
Expected adjusted load x 10*
Figure B-19: Residual plot for 3:00 AM - 4:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
-3.359 8| Sat 1/8/94 | 23347 25905 33 18
-3.311 14 | Fri 1/14/94 | 22624 25859 41 17
3.578 | 16| Sun 1/16/94 | 33086 29930 17 4
—5.288 | 18| Tue 1/18/94| 24611 29193 34 2
4.631 | 19| Wed 1/19/94| 33324 30252 33| -5
5.604 | 217 | Fri 8/5/94 | 25288 19237 91| 60
4.395 | 241 | Mon  8/29/94 | 23773 18336 89| 60
—3.081 | 367 | Mon 1/2/95 [ 19626 23682 531 25
—3.480 | 369 | Wed 1/4/95 | 23348 26146 32 18
—3.358 | 725 | Tue 12/26/95| 22626 25758 32| 22
3.980 | 750 | Sat  1/20/96 | 26294 26575 62 19
3.876 | 780 | Mon 2/19/96 | 26379 21595 31 37
3.861 | 872 | Tue 5/21/96 | 24595 20318 94| 60

Table B.47: List of cases with high residuals, 3:00 AM - 4:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
-3.359 8 | Sat 1/8/94 1 30 33| 18 37| 17 28
-3311| 14| Fri 1/14/94| 36| 41| 17| 39| 6| 17
3578 | 16| Sun 1/16/94 6 17 4 15 14 34
-5288 | 18| Tue 1/18/94| 14 34 2 33| -5 6
4.631 19 | Wed 1/19/94 2 33| -5 6 1 15
5.604 | 217 | Fri = 8/5/94| 76 91| 60 86| 55 77
4.395 | 241 | Mon 8/29/94( 70 89| 60 79| 59 79
—3.081 | 367 | Mon 1/2/95 | 37 53| 25 43| 20 32
-3.480 | 369 | Wed 1/4/95 | 20 32 18 35 14 25
-3.358 | 725 | Tue 12/26/95 | 27 32| 22 31 21 31
3989 ( 750 | Sat  1/20/96 | 22 62 19 29 | 22 32
3.876 | 780 | Mon  2/19/96 16 31| 37 42| 48 59
3.861 | 872 | Tue 5/21/96 | 68 94| 60 91 55 80

Table B.48: List of cases with high residuals, 3:00 AM - 4:00 AM.
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Studentized residual

Residual plot of PJM load 4:00 AM - 5:C0 AM
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Figure B-20: Residual plot for 4:00 AM - 5:00 AM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
—-3.685 8 | Sat 1/8/94 | 23570 26436 33| 18
-3.627 | 14| Fri  1/14/94 | 22949 26422 41 17
3.746 | 16| Sun 1/16/94 | 33666 30367 17 4
—5.381 | 18| Tue 1/18/94( 25226 29840 34 2
4358 | 19| Wed 1/19/94 | 33784 30660 33| -5
5.584 | 217 | Fri 8/5/94 | 25157 19262 91| 60
4.468 | 241 | Mon  8/29/94 | 23774 18464 89| 60
—3.621 | 369 | Wed 1/4/95 | 23724 26657 32| 18
—3.507 | 725 | Tue 12/26/95| 22945 26175 32 22
3.869 { 750 | Sat  1/20/96 | 26843 27008 62| 19
4.078 | 780 | Mon  2/19/96 | 26751 21929 31| 37
3.713 | 872 | Tue 5/21/96 | 24289 20240 94| 60

Table B.49: List of cases with high residuals, 4:00 AM - 5:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
—3685| 8| Sat  1/8/94| 30| 33| 18| 37| 17| 28
-3.627 14 | Fri 1/14/94 36 41 17 39 6 17
3.746 16 | Sun 1/16/94 6 17 4 15 14 34
-5381| 18| Tue 1/18,94| 14 34 2 33| -5 6
4.358 19 | Wed 1/19/94 2 33| -5 6 1 15
5.584 | 217 | Fri 8/5/94 76 91 60 86 95 77
4.468 | 241 | Mon 8/29/94| 70| 89| 60| 79| 59| 79
—3.621 | 369 | Wed 1/4/95| 20| 32| 18| 35| 14| 25
-3.507 | 725 | Tue 12/26/95 27 32 22 31 21 31
3.869 | 750 | Sat 1/20/96 22 62 19 29 22 32
4.078 | 780 | Mon 2/19/96 | 16 31| 37 42 48 59
3.713 | 872 | Tue 5/21/96 68 94 60 91 5% 80

Table B.50: List of cases with high residuals, 4:00 AM - 5:00 AM.
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Studentized residual

Residual plot of PJM !oad 5:00 AM — 6:00 AM
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Figure B-21: Residual plot for 5:00 AM - 6:00 AM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
-3.781 8 | Sat 1/8/94 | 24855 28030 33 18
—-3.678 | 14| Fri 1/14/94 | 24383 28046 41 17
4355| 16| Sun 1/16/94 | 35650 31591 17 4
—5438 | 18| Tue 1/18/94| 26529 31407 34 2
3.537| 19| Wed 1/19/94 | 34818 31565 33| -5
5.151 | 217 | Fri 8/5/94 | 25828 20176 91 60
4.455 | 241 | Mon  8/29/94 | 24816 19495 89| 60
—-3.095 | 363 | Thu 12/29/94 | 21160 25193 56 | 26
—3.344 | 369 | Wed 1/4/95 | 25343 28225 32 18
3.157 | 583 | Sun 8/6/95 | 27022 21866 94| 71
-3953 | 725 | Tue 12/26/95 | 23864 27651 32 22
-3.318 | 739 | Tue 1/9/96 | 26638 29585 26 14
-3.113 | 749 | Fri 1/19/96 | 21874 24435 58 | 22
3.723 | 750 | Sat  1/20/96 | 28578 28479 62 19
3.697 | 780 | Mon  2/19/96 | 27872 23351 31 37
3.212 | 872 | Tue 5/21/96 | 24736 21050 94| 60

Table B.51: List of cases with high residuals, 5:00 AM - 6:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low { High | Low | High | Low | High
-3.781 8 | Sat 1/8/94 1 30 33 18 37| 17 28
-3.678 14| Fri 1/14/94| 36 41 17 39 6 17
4355 | 16{ Sun 1/16/94 6 17 4 151 14 34
~-5438| 18| Tue 1/18/94| 14 34 2 33| -5 6
3.537| 19| Wed 1/19/94 2 33| -5 6 1 15
5.151 | 217 | Fri 8/5/94| 76 91 60 8| 55 77
4.455 | 241 | Mon 8/29/94| 70 89| 60 79 59 79
—-3.095 | 363 | Thu 12/29/94| 31 56 | 26 46| 22 38
—-3.344 | 369 | Wed 1/4/95 | 20 32| 18 3| 14 25
3.157 | 583 | Sun 8/6/95 | 77 94| 71 80| 68 81
—3.953 | 725 | Tue 12/26/95| 27 32 22 31| 21 31
-3.318 | 739 | Tue 1/9/96 | 14 26| 14 29 20 32
-3.113( 749 | Fri  1/19/96 | 29 o8| 22 62 19 29
3.723 | 750 | Sat  1/20/96 | 22 62| 19 29 22 32
3.697 | 780 | Mon  2/19/96 | 16 31| 37 42 48 59
3.212 | 872 Tue 5/21/96| 68 94| 60 91| 55 80

Table B.52: List of cases with high residuals, 5:00 AM - 6:00 AM.
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Studentized residual

Residual plot of PJM toad 6:00 AM - 7:00 AM
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Figure B-22: Residual plot for 6:00 AM - 7:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
—3.449 8 | Sat 1/8/94 | 27506 31006 33 18
-3.i74{ 14| Fri 1/14/94 | 27383 31063 41 17
5.157| 16| Sun  1/16/94 | 39604 33939 17 4
-5.556 | 18 | Tue 1/18/94 | 28575 34368 34 2
3.885 | 217 | Fri 8/5/94 | 27340 22304 91 60
3.722 | 241 | Mon  8/29/94 | 26818 21732 89| 60
—3.575| 363 | Thu 12/29/94 | 23161 28186 56 [ 26
3.214 | 583 | Sun 8/6/95 | 29412 23915 94 71
—4.558 | 725 | Tue 12/26/95 | 25414 30461 32 22
—4.314 | 738 | Mon 1/8/96 | 27786 32495 22 14
—4.284 | 739 | Tue 1/9/96 | 27809 32418 26 14
3.450 | 750 | Sat  1/20/96 | 31955 31270 62 19
Table B.53: List of cases with high residuals, 6:00 AM - 7:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
—3.449 8| Sat 1/8/94 | 30 33 18 37| 17 28
-3.174 14| Fri  1/14/94| 36 41 17 39 6 17
5.157 | 16| Sun 1/16/94 6 17 4 15| 14 34
—5.556 | 18 [ Tue 1/18/94| 14 34 2 33| -5 6
3.885 | 217 | Fri . 8/5/94| 76 91| 60 8 | &5 77
3.722 | 241 | Mon 8/29/94| 70 89 60 79| 59 79
—-3.575| 363 | Thu 12/29/94| 31 56 | 26 46 | 22 38
3.214 | 583 | Sun 8/6/95 | 77 94| 71 80| 68 81
—4.558 | 725 | Tue 12/26/95| 27 32| 22 31 21 31
—-4.314 | 738 | Mon 1/8/96 | 12 22| 14 26| 14 29
—4.284 | 739 | Tue 1/9/96 | 14 26| 14 29| 20 32
3.450 | 750 | Sat  1/20/96 | 22 62| 19 29| 22 32

Table B.54: List of cases with high residuals, 6:00 AM - 7:00 AM.

157



Studentized residual

Residual plot of PJM load 7:00 AM - 8:00 AM
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Figure B-23: Residual plot for 7:00 AM - 8:00 AM.
Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
—3.387 8| Sat 1/8/94 | 29315 33002 33| 18
5.627 16 | Sun 1/16/94 | 42055 35518 17 4
-5.081 18 | Tue 1/18/94 | 30528 36148 34 2
3.788 | 217 | Fri 8/5/94 | 29914 24706 91| 60
3.400 | 241 | Mon  8/29/94 | 29111 24100 89| 60
—3.558 | 363 | Thu 12/29/94 | 25072 30267 56 | 26
—3.072 | 549 | Mon 7/3/95 | 21441 24935 84| 64
—4.615 | 725 | Tue 12/26/95 | 27021 32420 32| 22
—5.417 | 738 | Mon 1/8/96 | 28081 34357 22| 14
—4.451 | 739 | Tue 1/9/96 | 29204 34315 26| 14
3.369 | 750 | Sat  1/20/96 | 34211 33196 62| 19
3.255 | 872 | Tue 5/21/96 | 29950 25526 94| 60
Table B.55: List of cases with high residuals, 7:00 AM - 8:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
-3.387 8 | Sat 1/8/941 30 33 18 37| 17 28
5627 | 16| Sun 1/16/94| 6| 17| 4| 15| 14| 34
-5.081( 18| Tue 1/18/94| 14 34 2 331 -5 6
3.788 | 217 | Fri 8/5/94 | 76 91 ( 60 8 | 55 77
3.400 | 241 | Mon 8/29/94 | 70 89| 60 79| 59 79
—3.558 | 363 | Thu 12/29/94 | 31 56 26 46 | 22 38
—3.072 | 549 | Mon 7/3/95 | 70 84| 64 83| 65 86
—4.615 | 725 | Tue 12/26/95| 27 32| 22 31| 21 31
—5.417 | 738 | Mon 1/8/96 | 12 22| 14 26 14 29
—4.451 | 739 | Tue 1/9/96 | 14 26| 14 29 20 32
3.369 | 750 | Sat  1/20/96 | 22 62| 19 29 22 32
3.255 | 872 | Tue 5/21/96 | 68 94 60 91 55 80

Table B.56: List of cases with high residuals, 7:00 AM - 8:00 AM.
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Studentized residual

Residual plot of PJM load 8:00 AM — 9:00 AM
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Figure B-24: Residual plot for 8:00 AM - 9:00 AM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low

—3384| 8| Sat  1/8/94 | 30148 | 33691 | 33| 18
5268 | 16| Sun 1/16/94 | 42273 | 36347| 17| 4
—4346| 18| Tue 1/18/94| 32190 | 36864 | 34| 2
4434 | 217 | Fri  8/5/94| 32386| 26534| 91| 60
3.871 | 241 | Mon 8/29/94| 31375 | 25823 | 89| 60
—3.000 | 363 | Thu 12/29/94 | 26502 | 30994 | 56| 26
—3.830 | 725 | Tue 12/26/95| 28779 | 33136 | 32| 22
_5.108 | 738 | Mon  1/8/96 | 29374 | 35081 | 22| 14
—4.037| 739 | Tue  1/9/96 | 30556 | 35023 | 26| 14
3.407 | 750 | Sat  1/20/96 | 34902 | 33911 | 62| 19
3.943 | 872 | Tue 5/21/96 | 32544 | 27439 | 94| 60

Table B.57: List of cases with high residuals, 8:00 AM - 9:00 AM.

160



Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
—-3.384 8 | Sat 1/8/94 | 30 33| 18 37| 17 28
5.268| 16| Sun 1/16/94 6 17 4 15| 14 34
—-4.346 | 18| Tue 1/18/94| 14 34 2 33| -5 6
4434 | 217 | Fri 8/5/94| 76 91| 60 8 | 55 77
3.871 | 241 | Mon 8/29/94| 70 89| 60 79 59 79
—-3.090 | 363 | Thu 12/29/94| 31 56| 26 46 | 22 38
—3.830 | 725 | Tue 12/26/95| 27 32| 22 31| 21 31
~5.108 | 738 | Mon 1/8/96 | 12 22| 14 26| 14 29
—4.037 | 739 | Tue 1/9/96 | 14 26| 14 29| 20 32
3.407 | 750 | Sat 1/20/96 22 62 19 29 22 32
3.943 | 872 | Tue 5/21/96 | 68 94| 60 91| 55 80

Table B.58: List of cases with high residuals, 8:00 AM - 9:00 AM.
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Studentized resicual

Residual plot of PJM load 9:00 AM — 10:00 AM
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Figure B-25: Residual plot for 9:00 AM - 10:00 AM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
4.511 16 | Sun 1/16/94 | 41805 36655 17 4
—3.535( 18| Tue 1/18/94 | 33132 37007 34 2
3.149 | 23| Sun 1/23/94| 36324 32733 33 24
4.797 | 217 | Fri 8/5/94 | 34272 27882 91 60
3.762 | 241 | Mon 8/29/94 | 32699 27070 89| 60
-3.169 | 610 | Sat  9/2/95| 27660 30092 90| 69
3.097 | 737 | Sun  1/7/96 [ 39098 35665 20 12
—4.121 | 738 { Mon 1/8/96 | 30609 35257 22 14
4.595 | 872 | Tue 5/21/96 | 34796 28870 94 | 60

Table B.59: List of cases with high residuals, 9:00 AM - 10:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low [ High | Low | High
4.511 16 | Sun 1/16/94 6 17 4 15 14 34
—-3.535| 18| Tue 1/18/94| 14 34 2 33| -5 6
3149 23| Sun 1/23/94| 15 33 24 33 31 51
4.797 | 217 Fri -~ 8/5/94| 76 91| 60 8 | 55 77
3.762 | 241 | Mon 8/29/94| 70 89| 60 79| 59 79
-3.169 | 610 | Sat 9/2/95| 75 90| 69 83| 64 86
3.097 | 737 | Sun 1/7/96 | 10 201 12 22| 14 26
—-4.121 | 738 | Mon 1/8/96 | 12 22| 14 26| 14 29
4.595 | 872 | Tue 5/21/96| 68 94| 60 91 [ 55 80

Table B.60: List of cases with high residuals, 9:00 AM - 10:00 AM.
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Studentized residual
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Figure B-26: Residual plot for 10:00 AM - 11:00 AM.
Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
3.842| 16| Sun 1/16/94 | 41339 36610 17 4
3.057 | 23| Sun 1/23/94 | 36370 32618 33 24
4626 | 217 | Fri  8/5/94 | 35523 28855 91 60
3.079 | 241 | Mon 8/29/94 | 33213 27958 89| 60
—3.184 | 548 [ Sun  7/2/95 | 29127 32125 89| 70
-3.350 | 610 | Sat  9/2/95 | 28672 31503 90| 69
3.610 | 737 | Sun  1/7/96 | 39894 35568 20| 12
-3.331| 738 | Mon 1/8/96 | 31107 35138 22| 14
4.613 | 872 | Tue 5/21/96 | 36295 29913 94 60
3.103 | 906 | Mon 6/24/96 | 32767 29337 81| 63

Table B.61: List of cases with high residuals, 10:00 AM - 11:00 AM.
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Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.842 16 | Sun 1/16/94 6 17 4 15 14 34
3.057{ 23| Sun 1/23/94 15 33 24 33 31 o1
4626 | 217 | Fri  8/5/94 | 76 91| 60 86| 55 77
3.079 | 241 | Mon 8/29/94| 70 89| 60 791 59 79
~3.184 | 548 | Sun  7/2/95| 71| 89| 70| 84| 64| 83
-3.350 | 610 | Sat 9/2/95 75 90 69 83 64 86
3.61C | 737 | Sun 1/7/96 10 20 12 22 14 26
—-3.331| 738 | Mon 1/8/96 | 12 22| 14 26| 14 29
4.613 | 872 | Tue 5/21/96 | 68 94| 60 91| 55 80
3.103 [ 906 | Mon ©/24/96 | 68 81| 63 84| 68 87

Table B.62: List of cases with high residuals, 10:00 AM - 11:00 AM.
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Studentized Adjusted Load

Residual | Day Date Actual | Expected | High | Low
3.168| 16| Sun 1/16/94 | 40441 36162 17 4

4261 217 | Fri  8/5/94 | 36136 29368 91| 60

3.026 | 226 | Sun 8/14/94 | 38363 33788 92 | 69
—3.113 | 548 | Sun  7/2/95 | 29918 33114 89| 70
-3.359 | 610 | Sat  9/2/95 | 29295 32423 90| 69
3901 | 737 | Sun 1/7/96 | 40197 35098 20 12

4.371 | 872 | Tue 5/21/96 | 37109 30491 94| 60

3.303 | 906 | Mon 6/24/96 | 33967 29960 81 63

Table B.63: List of cases with high residuals, 11:00 AM - 12:00 PM.

Studentized Prev. Day Next Day

Residual | Day Date Low | High | Low | High | Low | High
3.168 | 16| Sun 1/16/94 6 17 4 15| 14 34

4261 | 217 | Fri  8/5/94 | 76 91| 60 8 | 55 77

3.026 | 226 | Sun 8/14/94 | 75 92 | 69 90 | 62 75
—3.113 | 548 | Sun  7/2/95| 71 89| 70 84| 64 83
-3.359 | 610 | Sat  9/2/95| 75 90| 69 83| 64 86
3.901| 737 | Sun 1/7/96 | 10 20| 12 22| 14 26

4.371 | 872 | Tue 5/21/96| 68 94| 60 91 ) 80

3.303 | 906 | Mon 6/24/96 | 68 81 63 84| 68 87

Table B.64: List of cases with high residuals, 11:00 AM - 12:00 PM.

Studentized Adjusted Load
Residual | Day Date Actual | Expected | High | Low
—4.188 | 18 | Tue 1/18/94 | 24469 29047 34 2
3.773 | 19| Wed 1/19/94 | 33230 30245 33| -5
4530 | 217 | Fri  8/5/94 | 25935 19670 91| 60
3.442 | 241 | Mon 8/29/94 | 24215 18642 89| 60
—21.560 | 457 | Sun  4/2/95 1 20286 54 | 38
3.216 | 750 | Sat 1/20/96 | 26153 26583 62 19
3.143 | 872 | Tue 5/21/96 | 25317 20875 94| 60

Table B.65: List of cases with high residuals, 2:00 AM - 3:00 AM, including erroneous

load point.
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Residual plot of PJM !oad 11:00 AM —~ 12:00 PM
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Figure B-27: Residual plot for 11:00 AM - 12:00 PM.
Studentized Prev. Day Next Day
Residual | Day Date Low | High | Low | High | Low | High

—2188 | 18| Tue 1/18/94| 14| 34| 2| 33| -5| 6
3773 19| Wed 1/19/94| 2| 33| -5| 6| 1| 15
4530 217 | Fri 8/5/94| 76| 91| 60| 86| 55| 77
3.442 | 241 [ Mon 8/29/94| 70| 89| 60| 79| 59| 79
—21.560 | 457 | Sun  4/2/95| 36| 54| 38| 51| 35| 59
3.216 | 750 | Sat 1/20/96| 22| 62| 19| 29| 22| 32
3.143 | 872 | Tue 5/21/96| 68| 94| 60| 91| 55| 80

Table B.66: List of cases with high residuals, 2:00 AM - 3:00 AM, including erroneous
load point.
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Appendix C

Derivation of Formulas for
Truncated Random Variables

C.1 'Truncated Normal Distributicns

Throughout this discussion, we will assume that X is a normally distributed random
variable with mean m and standard deviation 0. Z is a truncated normal variable
with a minimum Z;, and a maximum Z,,,,; Z may be generated from a normal
random variable X by:

A X Zmin < X < Znaz (C.1)

Zma:r X 2 Zma::

{ Zmin X S Zmin

Therefore, Z is continuously distributed between Z,,;, and Z,,,, but also has a finite
probability of being equal to Z,,;, or Z,,;. We are interested in finding the mean
and variance of Z, as well as computing the expected value of X Z, as these are all
quantities we will need when calculating the expected cost.

We begin by noting that the density of X is [38]:

| ‘
d(z) = a\/2_1re 20 (C.2)

d(z) also expresses the density of Z between Z,,;, and Z,... In subsequent calcula-
tions, we will make use of the following integrals:

/a e~ 5dr = 0\/om (l + Lot (L» (C.3)
—00 2 2 ov?2
0o L2
/a e 2?dz = oV/2r (% - %erf (;a—-\/i)) (C4)
a 22 o2
/ re 27dr = —0%e” 27 (C.9)
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oo 22 2
/ ze 27dz = 0’e” 27 (C.6)

a =2 a2 1 1 a
t’e 27 dr = —ao’e" %7 + V2 [ - + zerf C.7
L. y 2 T2 o2 (C7)
22 2
/w zle"%7dz = ao’e”w? 4+ 0>V2r L lerf 2 (C.8)
a 2 2 oVv?2

The error function, erf(z), is defined as {38]:
erf(z) = LT etar (C.9)
N | ‘

A normally distributed random variable with mean 0 and standard deviation 1 / V2
has probability erf(z) of lying between —z and z, where £ > 0. Note that erf(-z) =
—erf(z).

We also show that the density function integrates to 1 over the range of real
numbers; i.e.:

/~ ‘: d(z)dz = 1 (C.10)
To show this, we first define A as:
A= /_:e-‘%ﬁdz (C.11)
It is easy to see that this definition is the same as:
A= /: e 51dg (C.12)
Then:
A2 = /:o /_: e~ 5t dy do (C.13)

The integral can be transformed to polar coordinates, giving:
2t roo -2
A2 =/ / e~ drdf (C.14)
o Jo
Performing the first integration, we have:
2T
A? = / o?df (C.15)
0

After performing the second integration and taking the square root of the answer, we
have the value of A:
A=o0V2rm (C.16)
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We have therefore demonstrated that the density d(z) integrates to 1, since:

o0 A
/ d(z)dz = =1 (C.17)
—00 oV2nm
The preceding derivation is based on [38].
Next, we wish to show that the expected value of X is m. The expected value of
& continuous random variable is found by (38]:

B(X)= [ * zd(z)dz (C.18)
Substituting for d(z):
_ 1 oo _(z=-m 2
E(X) = ~—= /_ ze S ds (C.19)
This integral is equivalent to:
oo 22
E(X) = — [* @+ m)e s (C.20)
oV2r J-oo

which may be broken into two separate integrals:

:2 12
E(X) = ! /wze_mdr-l- i /me‘mda: (C.21)

o2 J-o oV 2w
From equation (C.5), the first integral is zero, while the second integral is the same
as A in equation (C.12), which we just showed is equal to ov/27. Therefore, the
expected value of X is indeed equal to m.

We will now determine the expected value of Z. The mean of Z may be calculated
as:

Zmﬂ: r—m 2
! [ a6 5" 4+ ZiaP(Z = Zin) + Znoz P2 = Zinaz) (C:22)

B(2)= oV?2m

where the notation P(E) refers to the probability of event E occuring. These proba-
bilities may be expressed as integrals of the density function, yielding:

0o !:—m!z Zmin !z—m!2 00 !:—m)z
E(Z) = L [/ ze dz—/ e 2 dz—/ ze =’ dr
g ~00

27r —0o Zmaz

Zmin r—mz 00 :—m2
+Zm,-n/ e 2?7 da:+ZmaI/Z e 2?2 dz] (C.23)

mazc

where the combination of the first three integrals is equal to the single integral in equa-
tion (C.22). From equation (C.19), we see that the first integral in equation (C.23)
is equal to mov/2m. After making this substitution and also replacing = with £ + m
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in the remaining integrals, we obtain:

Zmin—m 22 00 22
E(Z) = m+ [— / (z + m)e”27dz — /z (z + m)e 2%dx
maz—M

1
oV2r
=2

Zmin—1n
+ me/ e 27dr + Zma::/

Zmaz—m

22
e_mdx] (C.24)

This can be rewritten as:

1 Zmin—m £2 0 2
E(Z) = m+ [—/ ze_mdz—/ ze 2%dx
ag 27!' —00 Zmag‘}‘m

Zmpin—m 22 00 22
+ (Zmin — m) /_ o eTiTtdrt (Zmaz — m) / e‘mda:](c.zs)

Zmaz—m

We can use equations (C.3) through (C.6) to evaluate the integrals. Upon doing so,
we have:

BE) = mt = [t S e S (2, - m)ov)
1 Zmin_m 1 1 Zma,—m
e gert (25 )+ e =B (5 - ot (P57 )

This equation can be simplified, giving our answer for the mean of Z:

E(Z) = m+ % ( -Gl - Gmazom) 2) + (Zumin — M) (%

1 Zmin — M 1 1 Lmazr — M
—erf | =M naz — — — Zerf|=mar - .
+2er( s ))+(Z m)(2 26[‘( o3 ))(027)
We will subsequently find it useful to define:

o —m)2 1zmu—m! 1
LCF = ——\/2_1; ( 207 — e 20 ) . ( min m) (_

()t (o

so that we can write:

E(Z) =m+ L¢r (029)

Ler is a “correction factor” to account for the change in mean of Z due to the
presence of upper and lower limits.

Next, we wish to find the variance of Z. As before, we prepare for this calculation
by first evaluating the variance of X. Recall that variance is defined by [38]:

var(X) = E((X — E(X))?) (C.30)

171



Fer a normally distributed variable X, this expectation is computed by the integral:

var(X) = [ (o = m)d(a) dz = m}ﬂ [ - m2e 5 dr (C31)

By applying the change of variable y = z — m in the integrand, we have:

var(X) =

-
. \/27 / y2e™ 37 dy (C.32)

We can now apply equation (C.7) to this integral. The first term in the result is zero,
so the remaining term evaluates to:

var(X) = lim o? (% + %erf (UL\/Q)) (C.33)

Since erf(a) — 1 as @ — oo (as shown by equation (C.12) with ¢ = 1/v/2), the
variance of X is verified to be o2, as expected.

The procedure for finding the variance of Z is similar; however, we must remember
that the expected value of Z is not in general m. The equation for the variance of Z
is similar to equation (C.22), which we used earlier to find the mean:

var(Z)

VA
ma: _ 2 _ ! B 2
a\/ﬂ/mm z —m— Lcr)’e dz + (Zmin — m — Lep)*P(Z = Zmin)
+ (Zma:r —-m— LCI"‘)2 (Z = Zma:l:) (C34)

The first integral may be rewritten as:
= Lore 5
rT—m-— e 27 dx
oVm —00 cF

Zmiu x—m 2 oo r—m ?
—/ (z—m— Lep)e™ 27 dz —/ (£ —m — Leor)’e -5 gy

—00 maz

var(Z)

+ (Zmin —m— LCF)ZP(Z = Zmin) + (Zmaa: -—m — LCF)2P(Z = Zma:r)
(C.35)

We now can expand the quadratic expression in the first integral, while replacing z
with £ + m in the integrands of the other two integrals, arriving at:

-m 2
var(Z) = 0\/%‘_ [/ (I - —2(z —m)Lcr + LCF) 2T dz
Zmin—m 2 00 £2
- / (x — Ler)’e” 2% dx — / (z — ch)2c'27?dz]
—00 Zmazr—m

+ (Zmin -—m - LCF')2P(Z = Zmin) + (Zmar -m— LCF)QP(Z - Zma:r)
(C.36)

Next, we separate the first integral into three separate integrals, while expanding the
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squared term in the last two integrals:

z—m)? z-m)?
var(Z2) = 1 [/oo (z - m)ze‘1 27 dr — 2Lop /oo TEe 2? dr
oV2r /- —o0o

00 z—m)? Zmin—m 22
+ (2mLcr + Lf;p)/ e T dr — / (z? — 2Lcpz + Lip)e %7dx
)

—02

[o o] z2
- / (z* — 2Lcrz + L'ép)e'mda:]
maz =M

+ (Zmin —m — LCF)2P(Z = Zmin) + (Zmaz -—m— LCF,)2P(Z = Zmax)
(C.37)

If we include the constant factor 1 /o\/27 in the integrand of the first three integrals,
the first integral in equation (C.37) is the variance of X , which is 62. The second
integral is the expectation of X, which we know is equal to m. Finally, the third
integral is an integration of the density function over all real numbers, which we
know must equal 1. Making these substitutions into equation (C.37) and expressing
the two probabilities as integrals gives:

1 Zmin—m 2 - z2 Zmin—m _ 22
—/ ‘e mdﬂ:+2LCp/ TEe 22drx
oV2r —00 —00

5 Zmin—m 2 00 g _ 22 00 g2
~ LCF/ e 22dx —/ e 27%dz -+ 2ch/ ze 27dr

—00 Zmaz—m Zmaz—~m

var(Z) = o+ L%, +

00 z2 Zrm’n z—m)?
~ L%, /Z €37 dT + (Zmin — m — Lop)? / e T dg

maz—mM —-00

+ (Zmaz —m— LCF)2 L_m e ‘2"”'!’ dI] (C38)

maz

Next, we replace z with z + m in the last two integrands to get:

Zmin—m z2 Zmin—m 2
var(Z) = o®+ Lip + - —/ z’e” 27 dz + 2ch/ Te 27%dx

1
ay 2 —00 —00
Zmin—m 22
 (Zmmin = m)? = 2Lep(Zmin — m)) / e 2% dy

oo g _ 22 00
- T’e md$+2LCF/ TE 27dT
Zmaz—m Zm,",-—m
2

+ ((Zusaz = m)? = 2Lep(Zmas — m)) [ e-%rdx] (C.39)

Zmaz—m

We can now apply equations (C.3) through (C.8) to perform the integrations:

1 _(Zn —m]2
var(Z) = o*+ Lip+ Yo [(Zmin ~m)o‘e” 27
1 1 min — M (Zyin —m)2
3 min 2 —=min )
—o°V2m | -+ —erf [ 2 ) | — 2L po2e 20
(2 2 ( oV?2 ) ) F
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+ V21 ((Zmin — m)? — 2Ler(Zmin — m)) (% + %erf (_——Z’"i" — m))

1——,——“"’"‘ ! 1 maz —
— (Zmaz — m)Uze— Fmes - o*Vor (5 - %erf (-Z—Zﬂ>)

+ 2LCF'0'28-$£’%‘2:1-ﬂﬁ + a\/%((zma:z - m)2
—2Lep(Zmaz — m)) (% - %erf (Z"“" — m))] (C.40)

V2

This equation may be reduced to:

(Zgin-m)?
var(Z) = o+ Lip+ 7 ((Zm,-n -m - 2ch)e"'£m2'37—)

NoT
S __m!2
- (Zma:: —m — 2LCF)C_ Zm;: )

& (Zon = 1) — 2L (Zomin — m) — 0”) (; . (5%))

+ ((Zma:: - m)2 - 2LCF(ZmaI - m) - 02) (% B %erf (ZL;IJ%_"?:))
(C.41)

Finally, we can add L% to complete the square in the first factor of the last two
terms, giving the result for the variance of Z:

1 Zmezr — ™M 1 Zmin — ™M
Var(Z) = (0'2 + L%‘F) (5 erf (T) - '2"el'f< g\/i——))

Lo (L L (Zmin =™
+ (Zmin — m — Lcr) (2 + 2erf 7
+ (Zmaz —-—m- LCF')2 (‘ — —erf (

+ '—\/057? ((Zmin -m — 2LCF)€_—Z-%_
- (Zma:: —-m-— 2LCF)6_ z’"‘;:'"‘ ) (042)

Lastly, we wish to compute the expected value of the product of a normally dis-
tributed random variable and a truncated version of that same variable. Mathemati-
cally, we wish to determine the expected value of X Z where X is normally distributed
and Z is related to X by equation (C.1). This expected value is used to compute
expected revenue for a generator since, as will be seen, the price is treated as a normal
random variable while the power sold is a function of price, but with upper and lower
limits.

The most straightforward way to find E(X Z) is to integrate the product of XZ
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and its density; this is the same method that was used earlier in equations (C.22) and
(C.34) to find the mean and variance of Z:

_ 1 Zmax z—m Zmin
E(XZ) = o [/m... e 27 da:+/ DpinZ€” 27 dz
+ zoo Zmazze_%‘)_dx] (C.43)

As before, we begin the evaluation of this expression by breaking the first integral
into a sum of three integrals:

E(XZ) = a\}_ [/ rle ‘TTL dr — Zmnxze_%;)_dx—/ 2 —‘_TL

Z’ﬂlﬂ z—m 2
+/ ZminT€ " i d'c+/ ZmazTC 2a'~’ ] (C.44)

mnz

mazr

The ﬁrst integral is /27 times the expected value of X2, which was shown earlier
to be m? + o2. After substituting £ with z + m in the remammg integrals, we have:

Z,m',.—m 2 zz
—/ (z +m)°e 2.7dz
—00

1
E(XZ) = m*+o%+
(X2) mi+ ot s

00 . 22 Zmin—m 22

=/, (r + m)2e 22dz + / Zmin(T + m)e” 2.2dx
o P

[ Znuala+ m)e—mdz] (C.45)

Expanding the squares and collecting terms gives:

1 Zmin—m 22 ] 22
E(XZ) = m*+o°+ [—/ e 27 dz —/ e wldr
o

27T —00 Zmaz—m

Zm,-,.—m z2 00 22
+ (Zmin — 2m)/ ze” 22dz + (Zmaz — 2m)/ Te 22dx
—0oo Zmazr—m
Zmin—m 22 o0 )
+ (MZpin — m?) / e 27 dx + (nZpay — m?) /z e‘mdx]
(C.46)
Next, applying equations (C.3) to (C.8) to carry out the integrations:
E(XZ) = m+a®+ = (Zmi —m)a%"gmﬁl;—mi—aa 27 (l
B oVan e 2
1 Z in — _ r'ru:n:""'l'l!2
+ —erf Zmin — M —(Zmu—m)a e z 20
2 ov?2 :
—m\\ )
0.3V/2_7|- (l _ %e f (Zma:l: - m)) (me 2m)a e gm.lz.l;.r__
o



Z, —-m)?

+ (Zmaz — 2m)o’e” 2

ot =i (43 (257
it (et (")) oo

\ _m2 |'m'u:""l2
E(XZ) = m?+d? +ﬂ(e-—“v—‘” s )

This equation simplifies to:

2m
+ (MZmin — m* — 0%) (l + Lot (M))
2 2 oVz
+ (MZmar — m? — 0?) (l - lerf Zmaz — (C.48)
' 2 2 o2

C.2 Truncated Lognormal Distributions

We will now consider the effects of limits on the mean and variance of a random
variable whose logarithm is normally distributed. Given a truncated normal random
variable Z with mean m, standard deviation o, and limits Z;, and Z,,., we wish
to find the mean and variance of eZ2. We also want to determine the expected value
of eXeZ, where Z is a truncated version of the normally distributed variable X.

We begin by determining the expected value of eZ. As before, the mean of e*
may be calculated as:

Zmﬂ: r—m 2
E(e? [/ e’e—STTLda: + eZmin P(Z = Zpin) + €5 P(Z = Zmﬂr)}

) - 0‘\/2—71’ min
(C.49)

We can use equation (A.4) to substitute for the first integral in equation (C.2); by
making this substitution and also substituting integrals for the probability expres-
sions, we obtain:

1 12 Zmaz _ z—(m+az) 2 . zmm (: m)2
E(ez) = 5 em+§a / e LTLd.’E + Ezm'"/ 27 dx
g ™ min

oo z-m)?
+ez"‘"/ e 22 d:z:] (C.50)

—00

By substituting z with z + m + o2 in the first integral and z with £ + m in the
remaining integrals, this equation can be rewritten as:

Zmaz—m—dz :2

E eZ m+ o2 e—z_nfd:r
( ) gV 21I' [ Z,,..n—m o?
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z Zmin—m £2 z oo 22
+e ”“"'/ e 2x3dr+e "‘"’/ e‘md:r] (C.51)
—0o0o Zmaz—m
By applying the integral identity:
a

/: f(z)dz = /_bm f(z)dz — /;wf(z) dz (C.52)

we can use equation (C.3) to evaluate the integrals, as before. Upon dcing so, we
have:

z —____1 l m+La? mec_m_"2 _ Zmin—m—02
E(e®) = o 2(a\/2_1r)e 27" lerf o7 erf ~ 7

oo (3 + gor (P57

st (- ot (227 )]

The mean of eZ is therefore:

—m — g2 o — 2
E(e?) = %e"”’%”z (erf(z'"“ \/_"2’ ")—erf(z"‘"‘ ”2‘ a))+ez""'" (%
o o
1 Zmin — M 1 1 Zmaz — M
2 erf [ Zmin Zmaz 2 _ L opf [ Zmaz — ™ _
+2er< . ))+e (2 2erf( o3 )) (C.54)

We will subsequently use the notation:

E(e?) = Ccrm + Ler (C.55)

with the quantities Ccr and Ler defined by:

L2 Zmar — M — 02 Zin — M — 02
$o7 (orf ( Zmez _erf (Zmin T T O C.56
“ (er( o2 ) er( o2 )) (C.56)

1 1 Zmin — M
L = eZmin [ _ 4 _ Zmin
cF € (2 2erf( 0'\/§ ))

1 Zma:: —m

+eZmes (% -~ Eerf (W)) (C.57)

As with the normal distribution, Ccr and Lcp are quantities that described how the
mean of eZ is affected by the limits on Z.

N |

Ccr =
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Next, we wish to find the variance of eZ. Following the same procedure as earlier:

1
oV2an
+ (ez"“"' - Ccorpm — ch)zP(Z = Zmin)

+ (eZme= — Copm — Lor)*P(Z = Zax) (C.58)

zma: r—m 2
var(e?) = / (e — Ccrm — Lep)?e™ %7 dz

Expanding the quadratic expression in the first integral:

Zma: T~—m 2
var(e?) = ! / e~ T dr + e¥2min P(Z = Zmin) + €227* P(Z = Zpaz)

o2

1

zmﬂ: r—m 2
— 2(Cerm + Lcr) [ 21r/ €T @ dz+ eZmin P(Z = Zynin)

ag

1 Zma: r—m 2
+ ez'""P(Z = Zma::)] + (Cepm + ch)2 [ 5 / e = dzx
ag ™ min

+ P(Z = Zoin) + P(Z = zm)] (C.59)

The first bracketed expression in equation (C.59) is the mean of e, while the second
bracketed expression is the integral of the density function of Z, which is equal to 1.
The first integral may be substituted according to equation (A.10). Equation (C.59)
then simplifies to: ‘

1 2 Zma: (== m+2¢:rz 2
var(e?) = ——=e™t% / e %% dr

ag 27T zrru'n
Zmin !:—m!z o0 !z—m!z
+ezz,,..-,./ e 2 d$+ezz"‘"/ e 2? dr
—00 Zmaz
— (Corm + Lcr)? (C.60)

After changing the limits in the integrals:

1 2 Zmaz—m—202 _ 2?2
var(e?) = ——e?™t% / e 22dx
g 2 Zmin—m—20?
Zmin—m 2 00 2
+622“‘"/ e 2dr + e”""'"/ e wldx
—00 Zmaz—m
2
— (Ccrm + LcrF) (C.61)

Finally, applying equation (C.3) to perform the integrations:

1 Zmaz — M — 20° Zmin —m — 20°
var(e?) = oy 1'27r62m+202§ (erf( = a\f/n:?. 20 ) —erf( = am2 i ))

1 1 Znin — M . 1 1 Z, -m
2Zmin | = 4 _ min — 2Zmaz | 2 _ Z orf maz
+e (2+2erf< 7 >)+e (2 2er (——a 5 ))

— (Cerm + Ler)? (C.62)
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Finally, we now compute the expected value of eXe?, which is the product of a log-
normally distributed random variable and a truncated version of that same variable.
This quantity may be determined by evaluating the following expression:

zmaz z—m Zm|n
E(e*+?) —\/5—[/ e*Fe” w7 d:c+/ eZmingTe ™ 2t da:
oV 2 |/ Zmin
+ Zw eZmazeTe 2t dz] (C.63)

The integrals can be simplified by making use of equations (A.4) and (A.10):

E(eX+Z) = _1_2 |:62m+2¢12 /Z"'" e__(z—(n;:zaznz iz
™

mir

Z, 24,2
i 1.2 min _(::— m+o N
+ gZmingmt 3o / e %?  dT

—00

z—(m+a2))?
A (©4

mazx

This equation may be rewritten as:

E(eX+Z) — 12 [e2m+‘2¢7‘-’ ‘/z""”_m_z"2 £=_’; dz
™

Zmin—m—2a2

2
Zmin—m—a z-m)?

. 1.2 —_
+ gZmintmt3o / e w7’ dr
—00
1.2 00 _{z—m 2
4 gfmaztmtsze e %! dz (C.65)
Zmaz—m a?

K

Next, using equations (C.3) and (C.4) to carry out the integrations:

/ N — 2
E(e**?) = 1 [1 2m+20? [ orf (Zm" m — 20 ) — erf (Z""" m - 20 ))

V2
+ ezmm+m+ a? (erf Zmaz — 2) erf (Zmin -—m— 02))
oV2

Zmin —m — a*
e erf er i

(C.66)

We will also need higher powers of eX and eZ to find higher order moments of the
distribution for the futures optimization. To derive these more general formulas, we
begin by evaluating the following integral:

b 2ka z—-(x“—2mz rrl.2
/e ¢ 2 dx—/ et 4z (C.67)

a

179



Rearranging terms in the exponent:

b z—-m)? b —:2+(2k02+2m)z—m2—2mku2—k204+2mk02+k20‘
/e"’e 27 dz:/ e 27 dz (C.68)
a

a

The extra terms in the exponent are used to complete the square of (z — (m + ka?)):

b _(:—(m-{—kaz))z+2mlmz+l=2 4
/ ebre= " gz — / o dz (C.69)
a a
This equation simplifies to:
b z—m)? 2 b _(z—(m+ka?))?
/ e " %? dr = emk+k—z'”2 / e (2:!1: : dz (C.70)
a a
By substituting z + (m + ko?) for  in the integrand, we obtain:
b (z=m)? 2 b—m—ka? _,2
/ e*%e” 22 dr = e’""+kT"2/ ’ ew?dr (C.71)
a a—m—ko?

which can be integrated by equations

b c—m)? 2 ,1 b—m — ko? ‘a—m — ko?
kz -S—TL mk+ £ o2
e -2 dr = 2re 7 _ |erff | ——m———— | 4+ erf | ———mM
/; e 2 T =0V2T 5 ( r ( o ) r ( 5 >)
(C.72)

Using equation (C.72), we can readily compute the expected value of e®XefZ,
where X is normally distributed and Z is a truncated version of X. As before, the
mean of e2Xef? is calculated as a sum of three integrals:

E(eaX+ﬂZ) — 12 [/Zmu e(a+ﬁ)ze—£52_—:1')—2-d$ + /zmi" eﬁZmineﬂze—‘(—f)—z;am : dr
™ min -0
oo
+/ BZmaz oz o ‘77)-013;] (C.73)

By simply applying equation (C.72), we have:

E(eax+ﬂZ) — ; (a+ﬁ)m+I5+—BLa (erf (Zmaﬂ: —m - (a + ﬂ) 2)

s Tz =01 ))

+ %60 +°—-az+ﬁme (1 +erf( min '(I)Tl ao 0'\/§>)
a —m — ko?
+ %eﬂm""z—ﬂz'fﬂZma: (1 _ erf (Zma:c U:;li g )) (C74)
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Appendix D

Software for Unit Commitment

D.1 Dynamic Programming Software

The programs used for solving unit commitment in this thesis all run on a UNIX
platform. The principal prograin used is titled uci2. This program uses enumerative
dynamic programming to solve the unit commitment problem and is run by the
command:

uci2 file

This command reads the problem data from file.dat and outputs the results to
tile.dym. uci2 uses the mean-reverting intercept model for the price process.

The input file has the format shown in Table D.1. This file may be created using
any standard text editor. The first line of the file contains the cost curve of generation.
The second line gives the fixed cost while the generator is not running. The third
line has the minimum up and down times for the generator. The fourth line gives
the startup and shutdown costs. The fifth line marks the upper and lower limits
of generation. The sixth line gives the price and load from the previous hour; this
information is needed for the price mcJel. The seventh line contains the price process
parameters. The eighth line gives the number of days (n4) and hours (n;) in the time
horizon. The subsequent lines gives the expected load and standard deviation of the
load estimate for each hour in the time horizon; there are a total of n, lines in this
section. Finally, the last line selects the discretization level of the price state. Note
that this quantity has units of the logarithm of price. The input file for the PJM
numerical example solved in this thesis is given in Figure D-1.

After uci2 is started, the program asks for the hour of the first decision, which
must be a number between 0 and n,. This number is equal to the hour for which
an optimal unit commitment decision is desired; note that the price for this hour is
ascumed to be unknown. The program then solves the unit commitment problem
for the specified data for a horizon of ngn, hours. The load data loops continuously
for each day in the horizon. If each day has different expected load data, then the
entire horizon should be entired as one “day” with each hour’s load profile explicitly
specified.
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0.317 0.788 7.05e-5 0.1612
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23830 996
22402 955
215631 925
21291 909
21374 903
22429 948
24562 1111
27274 1177
29123 1137
30396 1149
31462 1198
31989 1242
32089 1277
32252 1332
32275 1386
32145 1438
32138 1547
32024 1829
31448 1748
30982 1570
31216 1292
31092 1221
28937 1185
26167 1134
0.05

Figure D-1: Input file for PJM example.
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The initial price and load data specified in the input file may be overridden by
using the -b switch:

uci2 -b file

This option forces the initial price intercept value to be equal to its mean of b. The
-h switch provides help information on uci2:

uci2 -h | more
One error message which may appear is:
uci2: Discretization too small
If this occurs, there are two options:
e Set the discretization level to a higher value.

e If a more accurate solution is needed, then set the defined variables PSTATES
and STATES to larger values and recompile the program:

gcc uci2.c -1m -o uci2

PSTATES is the number of price levels needed for a range of 5 standard devi-
ations; STATES is the total number of states at the last stage in the planning
horizon.

The output file file.dym will look similar to the one below for the PJM example.
The first lines of the file give the “on” state and “off” state thresholds of the optimal
policy for each stage in the horizon. Following this section, the optimal cost-to-go
and optimal decision is enumerated for each state at the second and first stages of
the horizon.

24: 0.51 0.66
23: 0.31 0.46
22: 0.21 0.46
21: 0.21 0.41
20: 0.16 0.36
19: 0.11 0.31
18: 0.11 0.31
17: 0.11 0.31
16: 0.06 0.31
15: 0.06 0.31
14: 0.11 0.31
13: 0.11 0.31
12: 0.16 0.36
11: 0.21 0.46
10: 0.36 0.56
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0: -397.19 -402.40 -402.40 -391.28 -391.28
1 1 1 0 0

D.2 Ordinal Optimization Software

The ordinal optimization program for unit commitment ucool operates very similarly.
The command syntax is the same as for uci2:

ucool file

However, in addition to file.dat, which has the same format as described previously,
ucool also requires a file file.par, which contains the parameters for the ordinal
optimization. Figure D.2 shows the format for this file. Note that the third entry
is not rzlevant to the backwards iteration algorithm, and the fourth entry (current
generator state) uses the same values as described in Chapter 2. The parameter file
for the PJM problem is shown in Figure D.2. As with uci?2, the error:

ucool: Out of array space

means that either fewer policies per stage must be selected, or the program must be
recompiled with a larger value of NSTATES.

The output of the ordinal optimization algorithm is in file.oo. The output for
the PJM example is shown below. The first line gives the average simulated cost
for the “off” decision and its variance, followed by the simulated cost of the “on”
decision and its variance. The optimal decision is in parentheses. Next comes the
mean simulated difference between the two decisions, the variance of this difference,
and finally, the confidence level that the average difference is greater than (or less
than) zero. The variances in this line are all for one simulation; the variance of the
means is obtained by dividing by the number of simulations. The remaining lines in
the output file give the selected policy.

-394.30 131665.80 -408.09 133828.44 (1) 13.79 275.24 99.98J

1 --0.821.03
2 --1.08 1.99
3 -- 1.43 1.57
4 --1.07 1.81
5 --1.46 1.70
6 -- 1.56 2.00
7 --1.021.78
8 -- 0.69 1.05
9 -- 0.56 0.91

10 -- 0.22 0.39
11 -- 0.08 0.66
12 -- 0.07 0.17
13 -- 0.12 0.23
14 -- 0.26 0.49
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Table D.1: Format for input file (file.dat)

# policies/stage
# simulations/policy
# policies to select (ignored)

zo(1)
Sampling range of thresholds (lower upper)

Table D.2: Format for parameter file (file.par)

Figure D-2: Input parameters for PJM example.
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D.3 Reserve and Congestion DP Software

Finally, there are two developm.cntal program versions that include reserve and con-
gestion information. uci2rs includes reserve price data from file.rdt, in the format
of Table D.3. The first line gives respectively the probabilities of reserve calls and
a generator failure; the second line gives the parameters for the hypothetical reserve
price model. uci2con uses congestion limit probabilities specified in the file file.cdt,
with the format of Table D.4. The variable Py, is treated as an exogenous random
input independent of the price, which takes on discrete values with given probabili-
ties. The first line of file.cdt is the number of possible values of Pcy;n; each value is
enumerated along with its probability on the remaining lines. The files for the thesis

OO OO OO O OO O

.12
.07
.02
.20
.25
.05
.26
.08
.37
.55

O O O O OO O OO0 O

.48
.07
.35
.26
.27
.33
.34
.50
.46
.74

example are shown in Figures D-3 and D-4.
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Kgog

Table D.3: Format for reserve data file (file.rdt)

0.005 0.0001
0.7 0.25
Figure D-3: Input reserve data for PJM example.

Nclim

Vl Pl‘Ob(PCl,'m = Vl)

Vaciim PrOb(PClim = Vncum)

Table D.4: Format for congestion data file (file.cdt)

3
1000 0.8
7 0.1
5 0.1

Figure D-4: Input congestion data for PJM example.
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D.4 Source Code for uci2.c

/* Name: Eric Allen
Date: 12-2-97
Description: Program to implement the dynamic programming algorithm for
unit commitment for an individual power producer, using price process
model with load forecasts and exponential algorithm. Log of price is
modeled as a mean-reverting intercept.

*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<string.h>

#include"ucerr.h"
/* #include"ucl.h" =/

#define EPSILON 0.0000001
#define PI 3.14159265358979

#define MAXP 96
#define TSTEPS 10
#define STATES 10000
#define PSTATES 500
t#define ALT 3

double erf (double z) {

double term, temp, fact, sum;
int 1i;

if (z <= -3.5)
return (-1);

if (z >= 3.5)
return (1);

i=1;
fact = 1;
sum = Z;

do {
fact factxi;
temp = (2.0%i + 1);
term = pow(z, temp)/ temp / fact;
if (2 » (i/2) !'= i++)
sum -= term,
else
sum += term;
} while ((fabs(term) > EPSILON) && (i < 100));
return (2*sum/sqrt(PI));
}

/* Calculates the next state from the current state and control option.
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There are minup + mindn possible states. States 0, 1, ..., minup-1
correspond to the generator having been up 1, 2, ..., minap periods, while
states minup, minup+1, ..., minup+mindn-1 correspond to the generator
having been down 1, 2, ..., mindn periods. #*/

int nextst(int currst, int opt, int mup, int mdn) {
int n;

if (currst < mup)
if (opt == 0)
n = mup;
else if (currst < mup - 1)
n = currst + 1;

else
n = currst;
else
if (opt)
n =0;

else if (currst < mup + mdn - 1)
n = currst + 1;

else
n = currst;
return(n);
}
main(int argc, char »argv(])
{
double ca, cb, cc; /* cost curve coefficients =/
double coff; /* expected cost per stage while off */
int minup, mindn; /* Minimum on/off times */
double cup, cdn; /* Startup/shutdown costs */
double pmin, pmax; /* Minimum/maximum generation levels =/

double ex1d[MAXP], stdld[MAXP]; /#* Mean/variance of load forecast */

double ex, stdev; /* Mean/variance of price */

double expr; /* Expected price */

double extr, vtr, sq2; /* Mean/variance of truncated variable; sqrt(2) */
double exprod; /* Expected product of price and marginal cost */
double pmcmin, pmcmax; /* Marginal cost limits */

double 21, zu; /* 2Z- and Z+ (normalized limits) */

double Jk[2] [STATES]; /* cost-to-go function */

int uk([2] [STATES]; /* optimal control x/

double probmat[PSTATES]; /* Transition probabilities */

double *Jc, *J1, *Jtmp; /* current and next state cost-to-go */
int *uc, *ul, *utmp; /* current and next state control */

int index; /* index array to find state no. */

int state; /* state counter */

int hour; /* First hour in time horizon #*/
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double ecost[STATES]; /* Expected cost for one stage */

int lu; /% Minimizing control */
double lcost; /* Cost of minimizing control =/
double b0; /* Starting intercept =/

double eta, bbar, m, sigma; /* Price process parameters */

double disc; /#* Discretization level »/

int nstdsc; /* No. of discretized states */

int nsttot; /* Total number of price states */

int iref; /* Reference into price state array */
int stlim; /* Price state limit for given stage */

int i, j, k, k1, nd, np, nst, hlen, nalt, nopt, baseopt, curropt, tmp, bit;
int next0O, nextl; /* Next state for 0/1 choice of control */
double tmpd, tmpdl, tmpd2, tmpd3, tmpd4;

char check;

int prgopt = 0; /* Program options selected */
int dot; /* Length of filename (without extender) =/
char =*filename;
FILE =fp;
/* nd: number of days in horizon
np: number of periods per day
nst: number of states
nalt: number of control alternatives
nopt: number of control options available for a given state

baseopt: control alternative with no generator status changed
curropt: current control alternative being examined

hlen: length of horizon
bit: bit mask to calculate control alternative number
stlim: limit of number of price states at current stage

*/
/* Process command line arguments */

if ((argc < 2) || (argc > 3))
error(argv[0], argv(0], 1); /* Syntax error */
if (argc == 3)
if (strlen(argv([i]) != 2)
error (argv([0), argv[0], 1); /* Syntax error */

else if (argv[1](0] !'= '-’)
error(argv[0]), argv[0], 1); /* Syntax error #*/
else {

switch(argv(1](1]) {
case ’'b’: prgopt = 1; break;
case 'h’: help(argv(0});
case ’o’: prgopt = 2; break;
default: error(argv[0], argv[C], 1); /* Syntax error */
}
tmp = 2;
}
else if (argv[1](0] == ’-’)
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if (strlen(argv[1]) != 2)
error(argv(0]), argv[0], 1); /+ Syntax error */
else if (argv [1][1] == ’h?)
help(argv([0]);
else
error(argv([0], argv(0], 1); /* Syntax error */
elee
tmp = 1;
dot = strlen(argv(tmp]);
filename = malloc((dot + 5)ssizeof(char));
if (filename == NULL)
error(argv(0], argv[0], 4); /* Out of memory */
strcpy(filename, argv[tmpl);

/* Load input data */

strcat(filename, ".dat");
fp = fopen(filename,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File not found */
fscanf (fp, "A1f %lf %lf", &ca, &cb, &cc);
fscanf (fp, "%1f", &coff);
fscanf (fp, "%d /d", &minup, &mindn);
fscanf (fp, "%1f %1f", &cup, &cdn);
fscanf (fp, "%1f %1f", &pmin, &pmax);
fscanf (fp, "U41lf %1f", &tmpd, &tmpdl);
fscanf (fp, "%1f %1f J1f /1f", %eta, &bbar, &m, &sigma);
b0 = log(tmpd) - m*tmpdi;
if (prgopt == 1)
b0 = bbar;
fscanf(fp, "/d %d", &nd, &np);
for (i = 0; i < np; i++)
fscanf(fp, "41f 41f", exld+i, stdld+i);
fscanf (fp, "/1f", &disc);
fclose(fp);

printf ("Enter hour of first decision (0-%d):",np);
scanf ("%d", &hour);

/* Initialize dynamic programming */

hlen = nd*np;
tmpd = stdld[0];
for (i = 1; i < np; i++)

if (tmpd < stdld[i])

tmpd = stdld[i];

stdev = sqrt(sigma*sigma + m*m*tmpd*tmpd) ;
nstdsc = ceil(3.5*sqrt(2)*stdev/disc);
nsttot = 2#nstdsc*(hlen+1) + 1;
iref = nstdsc*(hlen + 1);
nst = minup + mindn;
if (2#nstdsc+1 > PSTATES)

error (argv(0], "1", 6); /* Not enough states for discretization level */
if (nst*nsttot > STATES)
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error(argv(0], "1", 6); /* Not enough states for discretization level */

Jc = Jk[0]; J1 = Jk[1];

uc = uk[0]; ul = uk[1];

for (i = 0; i < nst*nsttot; i++)
J1[i]) = 0;

filename([dot) = ’\0’;
strcat(filename, ".dym");
fp = fopen(filename,"w");
if (fp == NULL)
error(argv[0], argv([2], 3); /* Unable to write to file =/
printf ("Performing dynamic programming . . .\n");
8q2 = sqrt(2);
pmcmin = 2+ca*pmin + cb;
pmcmax = 2*cas*pmax + cb;
stlim = nstdsc+hlen;

/* Dynamic Programming */

for (i = hlen; i >= 0; i--) {
for (j = -stlim; j <= stlim; j++) {
index = (i + hour) % np;
ex = exp(-eta)*(b0 + j*disc - bbar) + bbar + msexld[index];
stdev = sqrt(sigma*sigma + m*m*stdld[index]*stdid[index]);
expr = exp(ex + 0.5%stdev*stdev);
zl = (log(pmcmin) - ex)/stdev;
zu = (log(pmcmax) - ex)/stdev;
extr = pmcmin*(0.5 + 0.5%erf(z1/sq2)) + pmcmax*(0.5 - 0.5%erf(zu/sq2));
extr = extr + 0.5%expr*(erf((zu - stdev)/sq2)
- erf((zl - stdev)/sq2));
0.5%exp(2*ex+2xstdev*stdev) * (erf ((zu-2+stdev) /sq2)
- erf((zl-2*stdev)/sq2));
vtr = vtr + pmcminxpmcmin*(0.5 + 0.5*erf(zl/sq2));
vtr = vtr + pmcmax*pmcmax*(0.5 - 0.5%erf(zu/sq2)) -extrxextr;
exprod = 0.5%exp(2*ex+2+stdev*atdev)*(erf ({zu-2+stdev)/sq2)
- erf((zl-2+«stdev)/sq2));

vtr

_exprod = exprod
+ pmcmin*zxp(ex+0.5*stdevsstdev)*(0.5 + 0.5%erf((zl-stdev)/sq2));
exprod = exprod
+ pmcmax*exp(ex+0.5*%stdev¥stdev)*(0.5 - 0.5%erf((zu~stdev)/sq2));
ecost[j+iref] = (extrsextr + vtr - cb*cb + 2#cbrexpr
- 2*exprod)/(4*ca) + cc;
}
for (j = 0; j < mst; j++) {
nextl = nextst(j,1,minup,mindn);
next0 = nextst(j,0,minup,mindn);
for (k = -stlim; k <= stlim; k++) {
tmpd = stdev#*sj2;
ex = exp(-eta)*(b0 + k*disc - bbar) + bbar;
tmpdl = erf((b0 + (k - 0.5)*disc - ex)/tmpd);
tmpd2 = erf((b0 + (k + 0.5)*disc - ex)/tmpd);
probmat [nstdsc] = (tmpd2 - tmpdl)/2;
for (k1 = 1; k1 <= nstdsc; kil++) {
tmpd3 = erf((b0 + (k-k1-0.5)*disc - ex)/tmpd);
tmpd4 = erf((b0 + (k+k1+0.5)*disc - ex)/tmpd);
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probmat [nstdsc+k1]
probmat [nstdsc-k1]
tmpdl = tmpd3;
tmpd2 = tmpd4;

(tmpd4 - tmpd2)/2;
(tmpdl - tmpd3)/2;

}
if (j < minup) {
lu = 1;
lcost = ecost[k+iref];
for (k1 = -nstdsc; k1 <= nstdsc; ki++) {
index = nsttot*nextl + k1 + k + iref;
lcost += probmat[kil+nstdscl*Ji[index];
}
if (j == minup - 1) {
tmpd = coff + cdn;
for (k1 = -nstdsc; ki <= nstdsc; ki++) {
index = nsttot*next0 + k1 + k + iref;
tmpd += probmat[kil+nstdsc]*J1[index];
}
if (tmpd < lcost) {
lu = 0;
lcost = tmpd;
}
}
}
else {
lu = 0;
lcost = coff;
for (k1 = -nstdsc; ki <= nstdsc; kil++) {
index = nsttot*next( + kil + k + iref;
lcost += probmat({kl+nstdsc]*J1[index];
}
if (j == nst - 1) {
tmpd = ecost[k+iref] + cup;
for (k1 = -nstdsc; k1 <= nstdsc; kl++) {
index = nsttot*nextl + k1 + k + iref;
tmpd += probmat[kl+nstdsc]*J1[index];
}
if (tmpd < lcost) {
lu = 1;
lcost = tmpd;
}
}
}

index = nsttot*j + k + iref;
Jc[index] = lcost;
ucl[index] = 1lu;
}
}
if (i »=1) {
index = nsttot*(minup - 1) + iref;
fprintf (fp, "%3d: ", i);
if (uc[index-stlim] == 1)
fprintf (fp, "%3.2f # ", bO-(stlim+0.5)#disc);
else if (uc[index+stlim] == 0)
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fprintf (fp, "%3.2f # ", bO+(stlim+0.5)*disc);
else {
k =0;
k1l = stlim/2;
while ((uc[index+k] == 1) || (uc[index+k+1] == 0)) {
if (uc[index+k] == 0)

k += ki;
else
k -= ki;
k1 = k1/2;
if (k1 == 0)
ki =1;
}
fprintf (fp, "%3.2f ", bLO+(k+0.5)*disc);
}
index = nsttot*(minup + mindn - 1) + iref;
if (uc[index-stlim] == 1)
fprintf (fp, "%3.2f # ", bO~(stlim+0.5)*disc);
else if (uc[index+stlim] == 0)

fprintf (fp, "%3.2f # ", bO+(stlim+0.5)*disc);
else {
k = 0;
k1l = stlim/2;
while ((uclindex+k] == 1) || (uc[index+k+1] == 0)) {
if (uc[index+k] == 0)
k += ki;
else
k -= k1;
k1 = k1/2;
if (k1 == 0)
ki =1;
}
fprintf (fp, "%3.2f ", b0+(k+0.5)*disc);
}
fprintf (fp, "\n");
}
stlim -= nstdsc;
printf("%3d ... ", i);
if (1 == 1) {
fprintf (fp,"i2d: ",i);
for (j = 0; j < mst; j++) {
for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf (fp, "%7.2f ", Jc{index]);
if ((k+nstdsc) % 6 == §)

fprintf (fp, "\n ");
}
fprintf (fp,"\n ")y
}
fprintf (fp, "\n ");

for (j = 0; j < nst; j++) {
for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf(fp, "%10d ", uclindex]);
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if ((k+nstdsc) % 6 == 5)

fprintf(fp, "\n ");
;printf(fp,“\n ");
;rintf("\n(%d %d) ... ",stlim, abs(-nstdsc));
ztmp = Jc; Jc = J1; J1 = Jtmp;
utmp = uc; uc = uc; ul = utmp;

}
fprintf (fp,"%3d: ",0);
for (j = 0; j < nst; j++) {
fprintf(fp, "%7.2f ", J1[j*nsttot + iref]);
if (j 4 6 ==5)
fprintf (fp, "\n "),
}
fprintf (fp,"\n "),
for (j = 0; j < mst; j++) {
fprintf(fp, "%10d ", ul[j*nsttot + iref]);
if (j % 6 ==5)
fprintf (fp, "\n ");
}
fprintf (fp,"\n ");
printf("\n");
fclose(fp);
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D.5 Source Code for ucool.c

/* Name: Eric Allen
Date: 3-25-98
Description: Program to implement the dynamic programming algorithm for
unit commitment for an individual power producer, using price process
model with load forecasts. Log of price is
modeled as a mean-reverting intercept. This program has a simulation
engine and uses ordinal optimization.

*/

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include<string.h>

#include"ucerroo.h"
/* #include"ucl.h" */

#define EPSILON 0.0000001
#define PI 3.14159265358979

#define MAXP 96
#define NSAMPLE 1CO

/* Return a pseudo-random number between O and 1 =/
double urnd(void) {

int u;

u = rand();

return (((double)u)/RAND_MAX);

}

/* Return a pseudo-random normal variable with mean O and variance 1
using the polar method */

double normrnd(void) {

static int state 0;
static double n2 0;
double ul, u2, vi, v2, s;

if (state) {

state = 0;
return(n2);
}
else {
do {
ul = urnd(); u2 = urnd();
vi = 2%ul - 1;
v2 = 2%u2 - 1;

s = vixvl + v2xv2;
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} whil

e ((s> 1) || (s ==0));

ul = sqrt(-2*log(s)/s);

n2 = u
state

1xv2;
=1;

return (ul*vi);

}
}

double erf

double t
int i;

if (z <=
return
if (z >=
return

do {
fact
temp
term
if (2
sum
else
sum
} while
return (

}

/* Calculates the next state from the current state
There are minup + mindn possible states.
correspond to the generator having been up 1, 2,

states

int nextst(int currst, int opt, int mup, int mdn) {

int n;

if (curr

(double z) {

erm, temp, fact, sum;

-3.5)
(-1);
3.5)
(1);

fact*i;

(2.0%i + 1);

pow(z, temp)/ temp. / fact;
* (i/2) '= it++)
-= term;

+= term;
((fabs(term) > EPSILON) && (i < 100));
2*sum/sqrt (PI));

and control option.

States 1, 2, ..., minup

., minup periods, while

-1, -2, ..., -mindn correspond to the generator
having been down 1, 2, ..., mindn periods. */

st > 0)

if (opt == 0)
n=-1;

else if (currst < mup)
n = currst + 1;

else
n = currst;
else
if (opt)
n=1,;
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else if (currst > -mdn)
n = currst - 1;

else
n = currst;
return(n);
}
main(int argc, char *argv([])
{
double ca, cb, cc; /* cost curve coefficients */
double coff; /* expected cost per stage while off */
int minup, mindn; /* Minimum on/off times %/
double cup, cdn; /* Startup/shutdown costs */
double pmin, pmax; /* Minimum/maximum generation levels */

double ex1d[MAXP], stdld[MAXP); /* Mean/variance of load forecast */
double sq2; /* sqrt(2) =/

double polup[NSAMPLE]; /* Thresholds of policy while up */
double poldn[NSAMPLE]; /* Thresholds of policy while down */

double thrup[MAXP], thrdn[MAXP); /* Up/down thresholds of current policy */

double horse[NSAMPLE]; /#* Simulated cost of policy */
double simsd[NSAMPLE]; /* Std. dev. of simulated cost */

int stateO; /* Initial state of simulation */

int decO; /* Initial decision in simulation */

int npol; /* Number of policies in sample (N) */

int nsim; /% Number of simulations per policy in sample */
int sel; /* No. of selected policies from sample (s) */
double smplo, smphi; /* Lower/upper bounds on policy sampling */

int index; /* index array to find state no. */

iat xstate; /* state counter */

int hour; /#* First hour in time horizon */

double tcost; /* Cost in simulation */

double pg; /* Generation level */

double pr, b; /* Price, intercept in simulation */

double bsim, prsim; /* Starting intercept/price in simulation */
double ss[NSAMPLE], ssq[NSAMPLE]; /* Sum, sum of squares */

double rdata[MAXP][2]; /* Random variables for simulation */
double bO; /* Starting intercept */

double eta, bbar, m, sigma; /* Price process parameters */

double eeta; /* Exponential of eta */

int i, j, k, k1, nd, np, nst, hlen, nalt, nopt, baseopt, curropt, tmp, bit;

int next0, nexti; /* Next state for 0/1 choice of control */
double tmpd, tmpdl, tmpd2, tmpd3, tmpd4, diff;
char check;
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int prgopt = 0; /* Program options selected */

int dot; /* Length of filename (without extender) */
char *filename;
FILE #*fp;
/* nd: number of days in horizon
np: number of periods per day
nst: number of states
nalt: number of control alternatives
nopt: number of control options available for a given state

baseopt: control alternative with no generator status changed
curropt: current control alternative being examined

hlen: length of horizon

bit: bit mask to calculate control alternative number

stlim: 1limit of number of price states at current stage
*/

/* Process command line arguments */

if ((argc < 2) |l (argc > 3))
error(argv(0], argv[0], 1); /* Syntax error #*/
if (argc == 3)
if (strlen(argv[i]) != 2)
error(argv[0], argv[0}, 1); /* Syntax error =/

else if (argv[1][0] != ’~?)
error(argv[0], argv(0], 1); /* Syntax error */
else {

switch(argv[1](1]) {
case 'b’: prgopt = 1; break;
case 'h’: help(argv([0]);
case '0o’: prgopt = 2; break;
default: error(argv[0], argv[0], 1); /* Syntax error */
}
tmp = 2;

}

else if (argv[1][0] == ’-?)

if (strlen(argv[1]) != 2)

error(argv{0], argv{0], 1); /* Syntax error */

else if (argv [1]([1]) == ’'h?’)
help(argv[0]);
else
error(argv[0], argv[0], 1); /* Syntax error */
else
tmp = 1;

dot = strlen(argv([tmpl);
filename = malloc((dot + 5)*sizeof(char));
if (filename == NULL)
error(argv(0], argv[0], 4); /* Out of memory */
strcpy(filename, argv(tmp]);

/* Load input data */

strcat(filename, ".dat");
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fp = fopen(filename,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File not found */
fscanf(fp, "/41f %1f Y1f", &ca, &cb, &cc);
fscanf (fp, "%1f", &coff);
fscanf(fp, "%d %d", &minup, &mindn);
fscanf (fp, "%41f %1f", &cup, Zcdn);
fsconf (fp, "%41f %1f", &pmin, &pmax);
fscanf (fp, "%1f 71f", &tmpd, &tmpdl);
fscanf(fp, "U1lf %1f %1f /1f", &eta, &bbar, &m, &sigma);
b0 = log(tmpd) - m*tmpdi;
if (prgopt == 1)
b0 = bbar;
eeta = exp(-eta);
fscanf (fp, "%d %d", &nd, &np);
for (i = 0; i < np; i++)
fscanf(fp, "ALf %1lf", exld+i, stdld+i);
fscanf (fp, "%1f", &tmpd); /* Read and discard discretization level */
fclose(ip);

filenameldot] = ’\0’;
strcat(filename, ".par");
fp = fopen(filename,"r");
if (fp == NULL)
error(argv{0], filename, 2); /* File not found */
fscanf (fp, "%d", &npol);
fscanf (fp, "%d", &nsim);
fscanf (fp, "%d", &sel);
fscanf (fp, "/d", &state0);
fscanf (fp, "%1f %1f", &smplo, &smphi);
fclose(£fp);
printf ("Enter hour of first decision (0-%d):",np);
scanf ("%d", &hour);

/* Initialize ordinal optimization */

hlen = nd#np;
if (hlen > MAXP)

error(argv[0], "1", 6); /* Not enough states for horizon length */
if (2*npol > NSAMPLE)

error(argv[0], "1", 6); /* Not enough space for policy sample */
filename[dot] = ’\0’;
strcat(filename, ".00");
fp = fopen(filename,"uw");
if (fp == NULL)

error(argv[0], argv[2], 3); /#* Unable to write to file =/
printf("Performing ordinal optimization . . .\n");
sq2 = sqrt(2);

/* Ordinal Optimization */
for (i = hlen - 1; i >= 0; i--) {

for (j = 0; j < npol; j++) {
ss[j] = 0; ssq[j]l = 0;
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tmpd = (smphi - smplo)*urnd() + smplo;
tmpdl = (smphi - smplo)*urnd() + smplo;
if (tmpd < tmpdl) {

polup{j] = tmpd;

poldn(j] = tmpdi;
}
else {

poldn[jl = tmpd;

polup(j] = tmpdil;
}

}
for (k1 = 0; k1 < 2*nsim; ki++) {
bsim = exp{-(i+1)*eta)*(b0 - bbar) + bbar
+ sigma*sqrt((1 - exp(-2*(i+1)*eta))/(1 - exp(-2*eta)))*normrnd();
b = bsim;
for (j = i; j < hlen; j++) {
index = (j + 1 + hour) % up;
b = (1 - eeta)sbbar + eeta*b + sigma*normrnd();
pr = exp(b + m*(exld[index] + stdld[index]*normrnd()));
rdata[j][0] = b;
rdata[j][1] = pr;
}
for (k = 0; k < npol; k++) {
thrup[i] = polup(k];
thrdn[i] = poldn[k];
xstate = minup;
if (k1 >= nsim)
xstate = -mindn;

/* Simulation engine x/

b = bsim;
tcost = 0;
for (j = i; j < hlen; j++) {
if (xstate > 0) {
if ((b < thrup[j]) && (xstate >= minup)) {
tcost += cdn;

xstate = -1;
}
else if (xstate < minup)
xstate++;
}
else {

if ((b > thrdn[j]) &% (xstate <= -mindn)) {
tcost += cup;
xstate = 1;

}

else if (xstate > -mindn)
xstate--;

}
b = rdata[j1[0];
pr = rdata[jl[1];
if (xstate > 0) {
pg = (pr - cb)/(2%ca);
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if (pg < pmin)

pg = pmin;
if (pg > pmax)
pg = pmax;
tcost += ca*pgspg + cb*pg + cc - pr*pg;
}
else

tcost = coif;
}
ss[k] += tcost;
s3q[k] += tcost*tcost;
}
s
for (k = 0; k < npol; k++) {
horse[k] = ss[k]/(2*nsim);
simsd[k] = (ssqlk] - ssa[k]*ss[k]/(2*nsim))/(2*nsim - 1);
}
tmp = 0;
tmpd = horse[0];
for (j = 1; j < npol; j++)
if (horse[j] < tmpd) {

tmp = j;
tmpd = horse[j];
}
thrup(i] = polup({tmp];
thrdn[i] = poldn[tmp];

}
for (j = 0; j <= 2; j++3 {
ss[j] = 0; ssql[j] = 0;
}
for (k1 = 0; k1 < nsim; ki1++) {
b = b0;
index = hour % np;
bsim = (1 - eeta)sbbar + eeta*b + sigma*normrnd();
prsim = exp(b + m*(exld[index] + stdld[index]*normrnd()));
b = bsim;
for (j = 0; j < hlen; j++) {
index = (j + 1 + hour) % np;
b = (1 - eeta)*bbar + eeta*b + sigma*normrnd();
pr = exp(b + m*(exld[index] + stdld[index]*normrnd()));
rdata{j][0] = b;
rdata[j]{1] = pr;
}
for (decO = 0; decO <= 1; JdecO++) {
xstate = state0;

/* Simulation engine at initial stage */

tcost = 0;
if (xstate > 0) {
if ((GecO == 0) && (xstate >= minup)) {
tcost += cdn;
xstate = -1;

}
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else if (xstate < minup)
xstate++;
}
else {
if ((decO == 1) && (xstate <= -mindn)) {
tcost += cup;
xstate = 1,

}
else if (xstate > -mindn)
xstate--;
}
b = bsim;

pr = prsim;

if (xstate > 0) {
pg = (pr - cb)/(2#ca);
if (pg < pmin)

pg = pmin;
if (pg > pmax)
Pg = pmax;
tcost += caspg*pg + cb*pg + cc - pr¥pg;
}
else

tcost += coff;
for (j = 0; j < hlen; j++) {
if (xstate > 0) {
if ((b < thrup(jl) && (xstate >= minup)) {
tcost += cdn;

xstate = -1;
}
else if (xstate < minup)
xstatet++;
}
else {

if ((b > thrdn[j]) &% (xstate <= -mindn)) {
tcost += cup;
xstate = 1;

}

else if (xstate > -mindn)
xstate--;

}
b = rdatalj]{0];
pr = rdataljl[1];
if (xstate > 0) {
pg = (pr - cb)/(2%ca);
if (pg < pmin)
pg = pmin;
if (pg > pmax)
pg = pmax;
tcost += caxpgspg + cb*pg + cc - pr*pg;
}
else
tcost += coff;
}

ss[dec0] += tcost;
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ssqldec0] += tcost*tcost;

if (decO)

diff -= tcost;
else

diff = tcost;

}

ss[2] += diff;

8sq[2] += diff=diff;
}
for (decO = 0; decO <= 1; decO++) {

horse[dec0] = ss[dec0]/nsim;

if (nsim > 1)

simsd[dec0] = (ssql[dec0] - ss[decO)*ss[decO]/nsim)/(nsim - 1);

}
fprintf (fp, "%3.2f %3.2f ", horse[0], simsd[0]);
fprintf(fp, "%3.2f %3.2f ", horse(1], simsd[1]);
if (horse[0] < horse(1])

fprintf(fp, "(0) ");
else

fprintf (fp, "(1) ");
tmpd3 = ss{2]/naim;
if (nsim > 1)

tmpd4 = (ssq[2] - ss[2]+*ss[2]/nsim)/(nsim - 1);
tmpd = sqrt(tmpd4/nsim);
tmpdl = 0.5 + 0.5%erf(abs(tmpd3)/(tmpd*sq2));
fprintf(fp, "%3.2f %3.2f %3.2f%Y\n", tmpd3, tmpd4, tmpd1*100);
for (j = 0; j < hlen; j++)

iprintf(fp, " %d -- %3.2f %3.2f\n", j+1,

thrup(j], thrdn(jl);

fclose(fp);
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D.6 Source Code for uci2rs.c

/% Name: Eric Allen
Date: 3-24-98
Description: Program to implement the dynamic programming algoritkm for
unit commitment for an individual power producer, using price process
model with load forecasts and exponential algorithm. Log of price is
modeled as a mean-reverting intercept. Includes reserve market data.

*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<string.h>

#include"ucerr.h"
/* #include"ucl.h" */

#define EPSILON 0.0000001
#define PI 3.14159265358979

#define MAXP 96
#define TSTEPS 10
#define STATES 10000
#define PSTATES 500
#define ALT 3

double erf (double z) {

double term, temp, fact, sum;
int i;

if (z <= -3.5)
return (-1);
if (z >= 3.5)

return (1);

i=1;

fact = 1;

sum = Z;

do {
fact = fact=*i;
temp = (2.0*i + 1);
term = pow(z, temp)/ temp / fact;
if (2 % (1/2) '= i++)

sum -= term;

else

sum += term;
} while ((fabs(term) > EPSILON) && (i < 100));
return (2*sum/sqrt(PI));

}

/* Calculates the next state from the current state and control option.
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There are minup + mindn possible states. States 0, 1, ..., minup-1

correspond to the generator having been up 1, 2, ..., minup periods, while
states minup, minup+1, ..., minup+mindn-1 correspond to the generator
having been down 1, 2, ..., mindn periods. */

int nextst(int currst, int opt, int mup, int mdn) {

1

int n;

if (currst < mup)
if (opt == 0)
n = mup;
else if (currst < mup - 1)
n = currst + 1;

else
n = currst;
else
if (opt)
n = 0;

else if (currst < mup + mdn - 1)
n = currst + 1;

else
n = currst;
return(n) ;

main(int argc, char *argv([])

{

double ca, cb, cc; /* cost curve coefficients */

double coff; /* expected cost per stage while off */
int minup, mindn; /* Minimum on/off times */

double cup, cdn; /* Startup/shutdown costs */

double pmin, pmax; /* Minimum/maximum generation levels */

double ex1d[MAXP], stdld[MAXP]; /x Mean/variance of load forecast */

double ex, stdev; /* Mean/variance of price */

double expr; /* Expected price */

double extr, vtr, sq2; /* Mean/variance of truncated variable; sqrt(2) */
doublie exprod; /* Expected product of price and marginal cost */
double pmcmin, pmcmax; /* Marginal cost limits */

double zl, zu; /* Z- and Z+ (normalized limits) */

double Jk[2] [STATES]; /* cost-to-go function */

int uk(2] [STATES]; /* optimal control */

double probmat[PSTATES]; /* Transition probabilities */

double *Jc, *J1, *Jtmp; /* current and next state cost-to-go */
int *uc, *ul, *utmp; /* current and next state control */

int index; /* index array to find state no. */

int state; /* state counter */

int hour; /* First hour in time horizon */
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double ecost[STATES]; /* Expected cost for one stage */

int 1lu; /* Minimizing control */
double lcost; /* Cost of minimizing control =/
double b0; /* Starting intercept */

double eta, bbar, m, sigma; /* Price process parameters */

double disc; /* Discretization level x/

int nstdsc; /* No. of discretized states */

int nsttot; /* Total number of price states */

int iref; /* Reference into price state array */
int stlim; /* Price state limit for given stage */
double prr; /* Probability of reserve call */
double prf; /* Probability of generator failure */
double Kr, sigr; /* Reserve price constant, std. dev. */
double exexper; /* Expectation of e~ (e_R) */

int i, j, k, ki, hd, np, nst, hlen, nalt, nopt, baseopt, curropt, tmp, bit;
int next0, nextl; /* Next state for 0/1 choice of control */
double tmpd, tmpdl, tmpd2, tmpd3, tmpd4;

char check;

int prgopt = 0; /* Program options selected */
int dot; /* Length of filename (without extender) */
char *filename;
FILE *fp;
/* nd: number of days in horizon
np: number of periods per day
nst: number of states
nalt: number of control alternatives
nopt: number of control options available for a given state

baseopt: control alternative with no generator status changed
curropt: current control alternative being examined

hlen: length of horizon

bit: bit mask to calculate control alternative number

stlim: limit of number of price states at current stage
*/

/* Process command line arguments */

if ((argc < 2) || (argc > 3))
error(argv[0j, argv[0], 1); /* Syntax error */
if (argc == 3)
if (strlen(argv[1]) !'= 2)
error(argv([0], argv([0], 1); /* Syntax error */

else if (argv[1][0] != '-?)
error(argv[0], argv[0], 1); /#* Syntax error */
else {

switch(argv[11[1]) {

case ’'b’: prgopt = 1; break;
case ’h’: help(argv[0]);
case ’'o’: prgopt = 2; break;
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default: error(argv[0], argv[0], 1); /* Syntax error */
}
tmp = 2;
}
else if (argv[11[0] == ’-?)
if (strlen(argv([1]) '= 2)
error(argv[0], argv[0], 1); /* Syntax error */
else if (argv [1]1[1] == ’'h’)
help(argv(0]);
else
error (argv[0], argv[0], 1); /* Syntax error */
else
tmp = 1;
dot = strlen(argv(tmpl);
filename = malloc((dot + 5)*sizeof(char));
if (filename == NULL)
error (argv[0], argv[0], 4); /* Out of memory */
strcpy(filename, argv([tmp]);

/* Load input data %/

strcat(filename, ".dat");
fp = fopen(filename,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File not found */
fscanf (fp, "%1f Y1f %1lf", &ca, &cb, &cc);
fscanf(fp, "%1f", &coff);
fscanf (fp, "%d %d", &minup, &mindn);
fscanf (fp, "%1f %1f", &cup, &cdn);
fscanf (fp, "%1f %1f", &pmin, &pmax);
fscanf (fp, "¥1lf %1f", &tmpd, &tmpdi);
fscanf (fp, "Y%1lf %1f %1f %1lf", &eta, &bbar, &m, &sigma);
b0 = log(tmpd) - m*tmpdl;
if (prgopt == 1)
b0 = bbar;
fscanf (fp, "/d %d", &nd, &np);
for (i = 0; i < np; i++)
fscanf (fp, "%1f %1f", exld+i, stdld+i);
fscanf(fp, "%1lf", &disc);
fclose(fp);

filename[dot] = ’\0’;
strcat(filename, ".rdt");
fp = fopen(filenare,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File not found */
fzcanf (fp, "%1f J1f", &prr, &prf);
fscanf (fp, "%Lf %1f", &Kr, &sigr);
fclose(fp);

printf ("Enter hour of first decision (0-%d):",np);
scanf ("%d", &hour);

/* Initialize dynamic programming */
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hlen
tmpd
for (i

nd*np;

st

did[o];
1; i < np; i++)

if (tmpd < stdld[i])
tmpd = stdld(i];

stdev = sqrt(sigma*sigma + m*m*tmpd*tmpd);
nstdsc = ceil(3.5*sqrt(2)*stdev/disc);
nsttot = 2+nstdsc*(hlen+1) + 1;
iref = nstdsc*(hlen + 1);
nst = minup + mindn;
if (2*nstdsc+1 > PSTATES)

error(argv[0], "1", 6); /* Not enough states for discretization level */
if (nst*nsttot > STATES)

error (argv[0], "1", 6); /* Not enough states for discretization level */
Je = Jk[0]; J1 = Jk[1];
uc = uk[0]; ul = uk[1];
for (i = 0; i < nst*nsttot; i++)

J1[i] = 0;
filename[dot] = ’\0’;
strcat(filename, ".dym");
fp = fopen(filename,"w");
if (fp == NULL)

error(argv(0], argv(2], 3); /* Unable to write to file »/
printf("Performing dynamic programming . . .\n");
sq2 = sqrt(2); .

pmcmin = 2%ca*pmin + cb;
pmcmax = 2%ca*pmax + cb;
stlim = nstdsc*hlen;

/* Dynamic Programming */

for (i = hlen; i >= 0; i--) {

for (j = -stlim; j <= stlim; j++) {
index = (i + hour) % np;
ex = exp(-eta)*(b0 + j*xdisc - bbar) + bbar + m*exld[index];
stdev = sgrt(sigma*sigma + m*m*stdld[index]*stdld[index]);
expr = exp(ex + 0.5xstdevxstdev);
zl = (log(pmcmin) - ex)/stdev;
zu = (log(pmcmax) -~ ex)/stdev;
extr = pmcmin*(0.5 + 0.5%erf(zl/sq2)) + pmcmax*(0.5 - 0.5%erf (zu/sq2));

extr = extr + 0.5%expr*(erf((ze - stdev)/sq2)
- erf((zl - stdev)/sq2));
vtr = 0.5*exp(2+ex+2*stdev*stdev) * (erf ((zu-2+stdev)/sq2)
- erf((z1-2*stdev)/sq2));
vtr = vtr + pmcmin*pmcmin*(0.5 + 0.5%erf(z1/sq2));

vtr = vtr + pmcmax*pmcmax*(0.5 - 0.5*erf(zu/sq2)) -extrrextr;
exprod = 0.5%exp(2*ex+2*stdevxstdev)*(erf ((zu-2+stdev)/sq2)
- erf((z1-2*stdev)/sq2));

exprod = exprod

+ pmcmin*exp(ex+0.5*stdev*stdev)*(0.5 + 0.5%erf ((zl-stdev)/sq2));
exprod = exprod

+ pmcmax*exp(ex+0.5*stdev*stdev)*(0.5 - 0.5*erf ((zu-stdev)/sq2));
exexper = exp(0.5*sigr*sigr);
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ecost[j+iref] = (1 - prf)*(1 - prr)*((extr*extr + vtr - cbxcb
+ 2%cb#expr - 2xexprod)/(4%xca) + cc)
+ prf*(exprod*(1 - exp(Kr)*exexper) - cb*expr)/(2+ca);
ex = ex + Kr;
stdev = sqrt(stdevstdev + sigr*sigr);
expr = exp(ex + 0.5*stdev*stdev);
extr = pmcmin*(0.5 + 0.5%erf(z1/sq2)) + pmcmax*(0.5 - 0.5%erf(zu/sq2));

extr = extr + 0.5%expr*(erf((zu - stdev)/sq2)
- erf((zl - stdev)/sq2));
vtr = 0.5%exp(2*ex+2xstdev*stdev)*(erf ((zu-2+stdev)/sq2)

- erf{(zl-2*stdev)/sq2));
vtr = vtr + pmcmin#pmcmin*(0.5 + 0.5%erf(z1/sq2));
vtr = vtr + pmcmax*pmcmax*(0.5 - 0.5%erf(zu/sq2)) -extr*extr;
exprod = 0.5%exp(2*ex+2*stdev*stdev) *(erf ((zu-2+stdev)/sq2)
- erf((zl-2xstdev)/sq2));
exprod = exprod
+ pmcmin*exp(ex+0.5*%stdevkstdev)*(0.5 + 0.5*erf ((zl-stdev)/sq2));
exprod = exprod
+ pmcmax*exp(ex+0.5*stdev*stdev)*(0.5 - 0.5%erf((zu-stdev)/sq2));
ecost[j+iref] = ecost[j+iref] + (1 - prf)*prr*((extr*extr + vtr
~ cbxcb + 2%cb*expr - 2*exprod)/(4%ca) + cc)
+ prfx(cbxexpr)/(2+%ca);
}
stdev = sqrt(sigma*sigma + m*m+stdld[index]*stdld[index]);
for (j = 0; j < nst; j++) {
nextl = nextst(j,1,minup,mindn);
next0 = nextst(j,0,minup,mindn);
for (k = -stlim; k <= stlim; k++) {
tmpd = stdev*sq2;
ex = exp(-eta)*(b0 + k*disc - bbar) + bbar;
tmpdl = erf((b0 + (k - 0.5)*disc - ex)/tmpd);
tmpd2 = erf((b0 + (k + 0.5)*disc - ex)/tmpd);
probmat [nstdsc] = (tmpd2 - tmpdl)/2;
for (k1 = 1; k1 <= nstdsc; kl++) {
tmpd3 = erf((b0 + (k-k1-0.5)*disc - ex)/tmpd);
tmpd4 = erf((b0 + (k+k1+0.5)*disc - ex)/tmpd);
probmat [nstdsc+ki] = (tmpd4 - tmpd2)/2;
probmat [nstdsc-k1] = (tmpdl - tmpd3)/2;
tmpdl = tmpd3;
tmpd2 = tmpd4;
}
if (j < minup) {
lu = 1;
lcost = ecost[k+iref];
for (k1 = -nstdsc; k1 <= nstdsc; kil++) {
index = nsttot*nextl + k1 + k + iref;
lcost += probmat[ki+nstdsc]*J1[index];

if (j == minup - 1) {
tmpd = coff + cdn;
for (k1 = -nstdsc; k1 <= nstdsc; kl++) {
index = nsttot*next0 + k1 + k + iref;
tmpd += probmat[kil+nstdsc]*J1[index];
}
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if (tmpd < lcost) {

lu = 0;
lcost = tmpd;
}
}
}
else {
lu = 0;
lcost = coff;
for {kl1 = -nstdsc; k1l <= nstdsc; ki++) {
index = nsttot*next0 + ki1 + k + iref;
lcost += probmat[kil+nstdsc]*J1[index];
}
if (j == nst - 1) {
tmpd = ecost[k+iref] + cup;
for (k1 = -nstdsc; k1 <= nstdsc; ki++) {
index = nsttot*nextl + k1 + k + iref;
tmpd += probmat[ki+nstdsc]l*J1[index];
}
if (tmpd < lcost) {
lu = 1;
lcost = tmpd;
}
}
}

index = nsttot*j + k + iref;
Jc[index] = lcost;
uc[index] = 1lu;
}
}
stlim -= nstdsc;
printf("%3d ... ", i);
if (1 ==1) {
fprintf(fp,"%3d: ",i);
for (j = 0; j < mnst; j++) {
for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf(fp, "%7.2f ", Jc[index]);
if ((k+nstdsc) %, 6 == 5)

fprintf(fp, "\n ");
}
fprintf(fp,"\n ");
}
fprintf(fp, "\n ");

for (j = 0; j < mst; j++) {
for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf(fp, "%10d ", uclindex]);

if ((k+nstdsc) % 6 == 5)
fprintf(fp, "\n ");
}
fprintf(fp,"\n ");
}
printf("\n(%d %d) ... ",stlim, abs(-nstdsc));
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}

Jtmp = Jc; Jc

utmp = uc; uc
}
fprintf(fp,"%3d: ",0);
for (j = 0; j < mst; j++) {

fprintf(fp, "%7.2f ", Ji1[j*nsttot + iref]);

if (j % 6 == 5)

fprintf(fp, "\n "y,

Ji; J1
uc; ul

Jtmp;
utmp;

}
fprintf (fp,"\n ")
for (j = 0; j < nst; j++) {
fprintf(fp, "%10d ", ul[j*nsttot + iref]);
if (j % 6 == 5)
fprintf (fp, “\n "),
}
fprintf(fp,"\n ");
printf("\n");
fclose(fp);
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D.7 Source Code for uci2con.c

/* Name: Eric Allen
Date: 3-24-98
Description: Program to implement the dyramic programming algorithm for
unit commitment for an individual power producer, using price process
model with load forecasts and exponential algorithm. Log of price is
modeled as a mean-reverting intercept. Simple congestion model is
included.

*/

#include<stdio.h>
t#tinclude<math.h>
#include<stdlib.h>
#include<string.h>

#include"ucerr.h"
/* #include"ucl.h" */

#define EPSILON 0.0000001
#define PI 3.14159265358979

#define MAXP 96
#define TSTEPS 10
#define STATES 10000
#define PSTATES 500
#define ALT 3

double erf (double z) {
double term, temp, fact, sum;
int i;

if (z <= -3.5)
return (-1);

if (z >= 3.5)
return (1);

i=1;
fact = 1;
sum = Zz;
do {
fact = fact*i;
temp = (2.0%i + 1);
term = pow(z, temp)/ temp / fact;
if (2 % (i/2) 1= i+4)
sum -= term;
else

sum += term;
} while ((fabs(term) > EPSILON) && (i < 100));
return (2*sum/sqrt(PI));
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/* Calculates the next state from the current state and control option.
There are minup + mindn possible states. States 0, 1, ..., minup-1
correspond to the generator having been up 1, 2, ..., minup periods, while

states minup, minup+i,
having been down 1, 2,

., minup+mindn-1 correspond to the generator
., mindn periods. */

int nextst(int currst, int opt, int mup, int mdn) {

}

{

int n;

if (currst < mup)
if (opt == 0)
n = mup;

else if (currst < mup - 1)

n = currst + 1;

else
n = currst;
else
if (opt)
n=20;

else if (currst < mup + mdn - 1)

n = currst + 1;

else
n = currst;
return(n) ;

double ca, cb, cc; /%
double coff; /*
int minup, mindn;

double cup, cdn;

double pmin, pmax;

main(int argc, char *argv([])

cost curve coefficients »/

expected cost per stage while off */

/* Minimum on/off times x/

/* Startup/shutdown costs */

/* Minimum/maximum generation levels */

double ex1d[MAXP], stdld[MAXP]; /* Mean/variance of load forecast */

double ex, stdev;
double expr;

double extr, vtr, sq2;
double exprod;

double pmcmin, pmcmax;
double zl, zu;

/* Mean/variance of price */

/* Expected price #/

/* Mean/variance of truncated variable; sqrt(2) */
/* Expected product of price and marginal cost */
/* Marginal cost limits */

/* Z- and Z+ (normalized limits) */

double clim[MAXP], plim[MAXP]; /#* Congestion limits and probabilities */

double uplim;
int numlim;

double Jk[2] [STATES];
int uk[2] [STATES];
double probmat [PSTATES];

double *Jc, *J1, *Jtmp;
int *uc, *ul, *utmp;

/* Upper generation limit (with cong.) */
/* Number of possible values of P_Clim */

/* cost-to-go function =/
/* optimal control */

/* Transition probabilities */

/* current and next state cost-to-go */
/* current and next state control */
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int index; /* index array to find state no. */

int state; /* state counter */

int hour; /* First hour in time horizon */

double ecost[STATES]; /* Expected cost for one stage */
int 1lu; /* Minimizing control =/

double lcost; /* Cost of minimizing control */
double bO; /* Starting intercept =/

double eta, bbar, m, sigma; /* Price process parameters */

double disc; /* Discretization level */

int nstdsc; /* No. of discretized states */

int nsttot; /* Total number of price states */

int iref; /* Reference into price state array */
int stlim; /* Price state limit for given stage */

int i, j, k, k1, nd, np, nst, hlen, nalt, nopt, baseopt, curropt, tmp, bit;
int next0, nextl; /* Next state for 0/1 choice of control */
double tmpd, tmpdl, tmpd2, tmpd3, tmpd4;

char check;

int prgopt = 0; /* Program options selected */
int dot; /* Length of filename (without extender) */
char *filename;
FILE =fp;
/* nd: number of days in horizon
np: number of periods per day
nst: number of states
nalt: number of control alternatives
nopt: number of control options available for a given state

baseopt: control alternative with no generator status changed
curropt: current control alternative being examined

hlen: length of horizon
bit: bit mask to calculate control alternative number
stlim: limit of number of price states at current stage

*/
/* Process command line arguments */

if ((argc < 2) || (argec > 3))
error(argv[0], argv[0], 1); /* Syntax error */
if (argc == 3)
if (strlen(argv(1]) != 2)
error(argv{0], argv[0], 1); /* Syntax error */

else if (argv([1]([0] != ’'-’)
error(argv[0], argv[0], 1); /* Svatax error */
else {

switch(argv[1](1]) {

case ’b’: prgopt = 1; break;
case ’h’: help(argv([0]);
case ’'o’: prgopt = 2; break;
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default: error(argv(0], argv[0], 1); /* Syntax error =/
}
tmp = Z;
}
else if (argv[1][0] == ’-?)
if (strlen(argv(1]) != 2)
error (argv[0], argv[0], 1); /* Syntax error */
else if (argv [11[1] == ’'h’)
help(argv[0]);
else
error (argv[0], argv[0], 1); /* Syntax error */
else
tm 1;
dot = strlen(argv(tmp]);
filename = malloc((dot + 5)*sizeof(char));
if (filename == NULL)
error(argv[0], argv(0], 4); /* Out of memory */
strcpy(filename, argv[tmpl);

/* Load input data */

strcat(filename, ".dat");
fp = fopen(filename,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File not found */
fscanf (fp, "%1lf %ALf %1f", &ca, &cb, &cc);
fscanf (fp, "Ulf", &coff);
fscanf (fp, "%d %d", &minup, &mindn);
fscanf(fp, "%1f %1lf", &cup, kcdn);
fscanf(fp, "%1lf %1f", &pmin, &pmax);
fscanf (fp, "Y1f %1f", &Ltmpd, &tmpdl);
fscanf (fp, "%1f %1f %1lf %1f", &eta, kbbar, &m, &sigma);
b0 = log(tmpd) - m*tmpdl;
if (prgopt == 1)
b0 = bbar;
fscanf(fp, "%d %d", &nd, &np);
for (i = 0; i < np; i++)
fscanf(fp, "%1lf %1lf", exld+i, stdld+i);
fscanf (fp, "/1f", &disc);
fclose(fp);

filename[dot] = ’\0’;
strcat(filename, ".cdt");
fp = fopen(filename,"r");
if (fp == NULL)
error(argv[0], filename, 2); /* File nct found */
fscanf (fp, "%d", &numlim);
for (i = 0; i < numlim; i++)
fscanf (fp, "%1f %1lf", clim+i, plim+i);
fclose(fp);

printf ("Enter hour of first decision (0-%d):",np);
scanf ("%d4", &hour);
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/* Initialize dynamic programming */

hlen = nd*np;
tmpd = stdld[0];
for (i = 1; i < np; i++)

if (tmpd < stdld[i])

tmpd = stdld[i];

stdev = sqrt(sigma*sigma + m*m*tmpd*tmpd) ;
nstdsc = ceil(3.5+*sqrt(2)*stdev/disc);
nsttot = 2#nstdscx(hlen+1l) + 1;
iref = nstdsc*(hlen + 1);
nst = minup + mindn;
if (2#nstdsc+1 > PSTATES)

error(argv[0], "1", 6); /* Not enough states for discretization level */
if (nst*nsttot > STATES)

error(argv[0], "1", 6); /* Not enough states for discretization level */
Jec = Jk[0]; J1 = Jk[i];
uc = uk[0]; ul = uk[1];
for (i = 0; i < nst*nsttot; i++)

J1[i]) = 0;
filename[dot] = ’\0’;
strcat(filename, ".dym");
fp = fopen(filename,"w");
if (fp == NULL)

error(argv[0], argv[2], 3); /* Unable to write to file x/
printf{"Performing dynamic programming . . .\n");
sq2 = sqrt(2);
pmcmin = 2*ca*pmin + cb;
pmcmax = 2*ca*pmax + cb;
stlim = nstdscx*hlen;

/* Dynamic Programming */

for (i = hlen; i >= 0; i--) {
for (j = -stlim; j <= stlim; j++) {
index = (i + hour) % np;
ecost[j+iref] = 0;
for (k = 0; k < numlim; k++) {
ex = exp(-eta)*(b0 + j*disc - bbar) + bbar + m*exld[index];
stdev = sqrt(sigmaxsigma + m*m*stdld[index]*stdld[index]);
expr = exp(ex + 0.5*stdev*stdev);
2zl = (log(pmcmin) - ex)/stdev;
uplim = pmcmax;
if (clim(k] < pmax)
uplim = 2%ca*clim[k] + cb;
zu = (log(uplim) - ex)/stdev;
extr = pmcmin*(0.5 + 0.5%erf(z1/s8q2))
+ uplim*(0.5 - 0.5*erf(zu/sq2));
extr = extr + 0.5%expr*(erf((zu - stdev)/sq2)
- erf((zl - stdev)/sq2));

vtr = 0.5%exp(2*ex+2+*stdevsstdev)(erf ((zu-2+stdev)/sq2)

- erf((zl1-2«stdev)/sq2));
vtr = vtr + pmcmin*pmcmin*(0.5 + 0.5%erf(z1/sq2));
vtr = vtr + uplim*uplim*(0.5 - 0.5%erf(zu/sq2)) -extr=extr;
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exprod = 0.5%exp(2*ex+2*stdevsstdev)*(erf ((zv-2xstdev)/sq2)
- erf((zl-2+stdev)/sq2));
exprod = exprod
+ pmcmin*exp(ex+0.5*stdev*stdev)*(0.5 + 0.5%erf ((zl-stdev)/sq2));
exprod = exprod
+ uplim*exp(ex+0.5*stdev*stdev)*(0.5 - 0.5%erf ((zu-stdev)/sq2));
ecost[j+iref] = ecost[j+iref]
+ plim(k]*((extr#*extr + vtr - cb#cb + 2%cb*expr
- 2xexprod)/(4xca) + cc);
}
}
for (j = 0; j < mst; j++) {
nextl = nextst(j,1,minup,mindn);
next0 = nextst(j,0,minup,mindn);
for (k = -stlim; k <= stlim; k++) {
tmpd = stdev#*sq2;
ex = exp(-eta)*(b0 + kxdisc - bbar) + bbar;
tmpdl = erf((b0 + (k - 0.5)*disc - ex)/tmpd);
tmpd2 = erf((b0 + (k + 0.5)*disc - ex)/tmpd);
probmat [nstdsc] = (tmpd2 - tmpd1)/2;
for (k1 = 1; k1 <= nstdsc; ki++) {
tmpd3 = erf((b0 + (k-k1-0.5)*disc - ex)/tmpd); *
tmpd4 = erf((b0 + (k+k1+0.5)*disc - ex)/tmpd);
probmat [nstdsc+k1] = (tmpd4 - tmpd2)/2;
probmat [nstdsc-k1] = (tmpdl - tmpd3)/2;
tmpdl = tmpd3;
tmpd2 = tmpd4;
}
if (j < minup) {
1u = 1;
lcost = ecost[k+iref];
for (k1 = -nstdsc; ki <= nstdsc; kl++) {
index = nsttot*nextl + k1 + k + iref;
lcost += probmat[kil+nstdsc]*J1[index];

}
if (j == minup - 1) {
tmpd = coff + cdn;
for (ki = -nstdsc; k1 <= nstdsc; kil++) {
index = nsttot*next0 + k1 + k + iref;
tmpd += probmat[kil+nstdsc]*J1[index];

}
if (tmpd < lcost) {
lu = 0;
lcost = tmpd;
}
}
}
else {
lu = 0;
lcost = coff;
for (k1 = -nstdec; k1l <= nstdsc; kl++) {
index = nsttot*next0 + k1 + k + iref;
lcost += probmat[kil+nstdsc]*J1[index];
}
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if (j == nst - 1) {
tmpd = ecost[k+iref] + cup;
for (k1 = -nstdsc; k1 <= nstdsc; ki++) {
index = nsttot*nextl + k1 + k + iref;
tmpd += probmat[ki+nstdsc]*J1i[index];

}
if (tmpd < lcost) {
lu = 1;
lcost = tmpd;
}
}

}

index = nsttotsxj + k + iref;
Jc[index] = lcost;
ucfindex) = 1lu;

}
}
stlim -= nstdsc;
printf("%3d ... ", i);
if (i ==1) {

fprintf (fp,"%3d: ",i);
for (j = 0; j < mst; j++) {
for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf(fp, "%7.2f ", Jc[index]);
if ((k+nstdsc) % 6 == 5)

fprintf(fp, "\n ");
}
fprintf(fp,”"\n ")
}
{printf(fp, "\n ");

for (j = 0; j < mst; j++) {

for (k = -nstdsc; k <= nstdsc; k++) {
index = j*nsttot + k + iref;
fprintf(fp, "%10d ", uclindex]);
if ((k+nstdsc) % 6 == 5)

fprintf(fp, "\n ");
}
fprintf (fp,"\n ");

-~

’
printf("\n(%d %d) ... ",stlim, abs(-nstdsc));
}
Jtmp = Jc; Jc
utmp = uc; uc
].
fprintf(fp,"%3d: ",0);
for (j = 0; j < mst; j++) {
fprintf (fp, "%7.2f ", J1[j*nsttot + iref]);
if (j % 6 == 5)
fprintf(fp, "\n ");

Ji; J1
uc; ul

Jtmp;
utmp;

!
nou
n

}
fprintf(fp,”"\n ");
for (j = 0; j < mst; j++) {
fprintf(fp, "%10d ", ui[j*nstrot + iref]);
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it (3 % 6 == 5)
tprintf(fp, "\n ")
}
tprintf(fp,"\n ");
printf ("\n");
fclose(fp);
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D.8 Source Code for ucerr.h

/* This function is the error processing rcutine. It receives pointers to
the strings containing the program name and file name and an error code.
The error codes are:

Syntax error

File not found

Unable to write to file

Out of memory

Input .dat file format error
Discretization too fine

OO e WN -

*/
void error(char *prgname, char *fname, int code) {

switch(code) {

case 1: printf ("Usage: %s [-option] file\n", prgname);
printf ("Type ’%s -h | more’ for complete help\n\n", prgname);
break;

case 2: printf ("%s: Unable to find %s\n", prgname, fname);
break;

case 3: printf ("Ys: Unable to open %s\n", prgname, fname);
break;

case 4: printf ("Ys: Out of. memory\n", prgname);
break;

case 6: printf ("%s: Discretization too small\n", prgname);
break;

}

exit (EXIT_FAILURE);

}

/* This subroutine prints the help message, actuated by option ’-h’ */
void help(char *prgname) {

printf ("Usage: %e L-option] file\n\n", prgname);

printf ("%s is the unit commitment scheduling program. The input data\n",
prgname) ;

printf ("is contained in ’file.dat’ and the output is contained in \n");

printf ("’file.dym’. The available options, only one of which may be\n");

printf ("selected, are:\n\n");

printf (* -b Set initial price intercept to its mean value\n\n");
printZ (" -h Print help message\n\n");
exit (EXIT_SUCCESS);
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D.9

Source Code for ucerroo.h

/* This function is the error processing routine. It receives pointers to
the strings containing the program name and file name and an error code.
The error codes are:

O b WN -

*/

Syntax error

File not found

Unable to write to file

Out of memory

Input .dat file format error
Discretization too fine

void error(char sprgname, char »fname, int code) {

suitch(code) {

case 1:

printf ("Usage: %s [-cption] file\n", prgname);

printf ("Type ’%s -h | more’ for complete help\n\n", prgname);
break;

case 2:

printf ("%s: Unable to find %s\n", prgname, fuame);

break;

case 3:

printf ("/s: Unable to open %s\n", prgname, fname);

break;

case 4:

printf ("/%s: Out of memory\n", prgname);

break;

case 6:

printi ("%s: Out of array space\n", prgname);

break;

}

exit (EXIT_FAILURE);

}

/* This subroutine prints the help message, actuated by option ’-h’ */

void help(char *prgname) {

printf
printf

printf
printf
printf
printf
printf

("Usage: %s [-option] file\n\n", prgname);

("%s is the unit commitment scheduling program. The input data\n",
prgname) ;

("is contained in ’file.dat’ and ’file.par’ and the output is\n");

("contained in ’file.oo’. The available options, only one of\n");
("which may be selected, are:\n\n");

(" -b Set initial price intercept to its mean value\n\n");

(" -h Print help message\n\n");

exit (EXIT_SUCCESS) ;
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Appendix E

Dynamic Programming Applied to
Regulated Unit Commitment

The theory of dynamic programming can also be applied to the stochastic unit com-
mitment problem in a regulated environment. This appendix illustrates some methods
for computing the expected cost per stage for this problem. As compared to previous
work noted in Chapter 2, this appendix considers the total load as a random quantity
and also takes into account possible generator failures. Power levels for each generator
are determined by optimal power flow.

E.1 Unit Commitment with a Finite Horizon

For the unit commitment problem, the control decision consists of choosing which
generators will be run in order to meet the load and reserve requirements during
that stage. The system state vector simply indicates how long each generator has
been continuously on or off; this information poses constraints on the control decision
in the form of minimum on and off times and possibly maximum run times for each
generator. Scheduled maintenance outages for certain units may also limit the control
choices available at some stages. We will use the same convention as [6]; if z (i) > 0,
then generator i has been up for z,(:) stages; otherwise, generator i has been down
for —zy (i) stages. The state transition equation is [6]:

. max(1, z(z) + 1 Dug() =1
Zen (i) = { min(—(—l,:ck((z) - 1)) : ukgz; =0 (E.1)
Of course, the real and reactive power demand at each bus at any time is not
known in advance and must be treated as a random variable. The availability of any
generator and transmission line is also unknown, as there is always the possibility
that a component might fail. The optimal unit commitment decision is to minimize
the total expected cost over all stages in the presence of these uncertain quantities
[5]. Note that previous DP formulations of unit commitment [6] have treated all
quantities as known; here we allow for the presence of unknown variables, changing
the DP problem from a deterministic problem to a stochastic one.
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E.2 Solution of Optimal Power Flow

Recall that the unit commitment cost requires the calculation of the optimal power
flow injections for a random demand. In this section, we will perform the analytic
evaluation of the optimal power flow minimization in equation (2.15).

Throughout this thesis, we will assume that the cost of generation is a quadratic
function of the power output:

CG,'(PG,') = a,-Pcz;‘- + b,'PG,' + ¢; (EQ)

Furthermore, we denote by G, the set of generators which are turned on for the
control choice u = [u(1)u(2) - - -u(Ng)|T.

In calculating the optimal power flow, we first consider a simplified system with no
generation limits, losses, or congestion. We will then examine how these constraints
modify the solution to the simplified problem.

E.2.1 Uncongested, Lossless Optimal Power Flow without
Generation Limits
For this case, with quadratic cost curves, an exact analytic solution can be obtained.

We first note that the only constraint equation for the system is that total power
generated equals total demand:

N
PL=Y Pn=> P (E.3)
i=1 1EGu

while the objective is to minimize the total generation cost ¥;c¢,, cci(FPg:). Following
[37], the Lagrangian (L) is:

L= Z CG,'(PG,') + /\(PL — Z Pg;) (E.4)

i€Gu i€EGu

Substituting for the cost function, we have:

L= Z (a,-Pcz;,- + b; Pg; + C,) + A(PL - Z PG,') (E5)
1i€EGu 1€Gu

Taking partial derivatives and setting them equal to zero, we find:

oL
— =P — Pgi=0 (E.6)
2 iezG':u
oL
aPG,- = 20.,'PG,' + bi -2=0 (E7)

The optimum is the solution point of the preceding system of m + 1 equations, where
m is the number of active generators for control u. The unknowns are Pg;) for A and
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all ¢ from 1 to m, where Pg(; is the output power for the ith generator in Gy. In
matrix form, the optimal power flow problem is [17]:

[ 22, 0 0 -1][ Psy —b,
0 202 0 -1 PG(Q) —b2
P Lo : : (E.8)
0 0 2a,, —1 P'c;(m) —-bm

11 1 0 [{ A | P

Because of the special form of the matrix, it can be inverted in O(n?) operations.The
resulting solution for Pg; is a linear function of the demand:

Pgi = e PL + ex; (E.9)
This result is very useful since it means that for a given configuration of active gener-
ators, a complete optimal power flow solution can be obtained by a single calculation
of O(n?) operations. The e;; and ey; coefficients from this calculation can then be
stored and used to determine the optimal generation level for any value of load de-
mand. Of course, the generation cannot be negative; a negative Pg; means that the
marginal cost for that generator at zero is too high and therefore the generator should
not be run for the given load value.

E.3 Expected Value of the Generation Cost

The dynamic programming procedure requires the calculation of the expected value
of the generation cost. There are two basic random quantities to be considered:
the power at the loads and the availability of generators and transmission lines. To
calculate the expected cost, we will deal with these quantities separately.

E.3.1 Expected Cost over Load Power

For now, we will take as a given that the active generators will not fail. Assuming
that the expected value and variance of the load are known (or can be estimated),
it is a straightforward procedure to derive the expected value of the generation cost.
Substituting equation (E.9) into the cost functions, the total generation cost becomes:

E CG,'(PG,-) = Z [a,vef,-Pf + (20,’61,‘62,’ + b,-el,-)PL + a,-egi + bieq; + Ci] (EIO)
i€EGu 1EGu
Taking the expected value with respect to the random variable Pj:
g {z CG,'(PG,-)} = Z [a.-e?,-g{Pf} + (2(1,‘61,'62,‘ + b,-el,-)g{PL}
i€Gu 1€EGu
+ azed; + bieg; + Ci] (E.11)
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To compute E{P?}, note that if the standard deviation of Py, is o, then the variance
1s:

0’?‘ = g{(PL - -FL)Q} (E.l?)

where P, = E{P.}. Expanding the squared term and applying the expectation
operator to each individual term:

o2 = E{P?} - 2P,E{P,} + P, (E.13)
Py, P
since Py, is a constant and not a random variable. Finally, solving for E{P}}:
E{P}} =P, +0} (E.14)
L
We now substitute this result back into equation (E.11) to obtain:

E{ > CGi(PGi)} = ) [aieff_P-i + (2aierien + bie) Py

P i€Gu 1€Gu

+ asel; + bieg; + ¢; + a.-e'f,-ai] (E.15)

For simplicity, equation (E.15) may be written as:

II;Z { Z cGi(PGi)} = (Clu) = eCz[u]ﬁi + 601[u]ﬁ[, + ecofu) (E.16)
1€Gu
with the definitions:
ecau) = Y, Gi€; (E.17)
i€EGu
eciu = D (2aierezi + biex) (E.18)
i€EGu
€cofu) = Z (a,-eg,- + b,-eg.- +c¢; + a,-efioi (Elg)
i€Gu

E.3.2 Expected Cost over Generation Failures

We will now modify the expected generation cost to account for the possibility of
generator outages. We ignore line outages for now; for a lossless system without
congestion, line outages will not affect the ability to serve any load unless all of the
lines connecting a bus fail simultaneously, which in general is highly improbable. We
also assume that demand and generator failures are independent random variables.
In order to precisely calculate the expected cost accounting for generator avail-
ability, we need to perform an optimal power flow calculation for every subset of
generators from the set of active generators. For n generators, there are 2" subsets,
so clearly a complete calculation is not practical. We will instead perform the optimal
power flow calculation only for systems with at most I; generators failed; /; will be
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referred to as the failure level. We will approximate the cost of failures by modeling
each failure as occuring at the beginning of the stage, immediately following the con-
trol decision. Using this model, the expected generation cost during a single stage by

A

using comiroi u is:

{
Cu = (Clu) H(l-Pﬁ)+XI: > ((Cluf.l)"'ZTk)prk II (-pp)

i€Gu i=1 J:i€Gu keJ keJ ke(GunJ)
NL
+omr Y AL (E.20)
i=1
The symbol:

2

I'nes

is for a combinatorial sum. The set I takes on all subsets of S that have n elements;
the number of terms in the summation is (,31), where s is the number of elements in
S. Ncu is the number of generators that are on for control u. pyi is the probability
that generator 7 will fail during one stage; p,«r is the probability that more than ! I
generators will fail during a single stage; this probability is computed as:

Ncu

pmr=1-Y Y TJlex JI (-pp) (E.21)

‘i=lg+1J14€Gu ke]  ke(Gund)

The complementary set J is the set of all generators which are not in J. The con-
troi uy; is equal to u except that the generators in the set J are to be turned off.
Mathematically:
. 0 :1€eJ
uf_;(z)—- { u(z) : Z¢J (E.22)

Equation (E.20) looks horribly complicated, but it simply states that the expected
one-stage cost (not including generator startup or shutdown costs) is calculated by
multiplying the probability of a specific set of generators failing (the product terms)
by the sum of the shutdown costs for the set of generators and the expected cost per
stage given that that particular set of generators is down and the other generators
are up (the quantity (Clus;)). This quantity is summed over all sets of possible
failures of at most !; generators. Failures of more than [ f generators are approximated
by simply assuming that no load is served, so that all loads must receive the pre-
specified insurance payment. Equation (E.20) is based on the law of alternatives
from probability theory [38].

If interruptible service contracts are present, then the calculation of (Cluy;) is
made by finding the mean and variance of the total load that is not interrupted when
the generators in J fail. Recall that the rationing of a load is associated with a subset
of all possible combinations of generator failures.
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Appendix F

Bellman’s Equation for the Unit
Commitment Problem

This appendix examines a simplified unit commitment problem in a regulated envi-
ronment. In contrast to previous work (see Chapter 2), an infinite horizon formulation
is developed and a solution satisfying Bellman'’s equation is determined.

F.1 Unit Commitment with an Infinite Horizon

Because a long finite horizon requires a large amount of calculation time, an infinite
horizon formulation is more practical. We will use an average cost per stage criterion,
which simplifies the derivation and allows us to make intuitive guesses of the solution.

In this chapter, we will use binary nuinbers to enumerate the control choices. In
this method, the ith bit is the control for generator i + 1. Mathematically:

u= Y 27! (F.1)

1€EGu

We will first consider a simplified situation and then add the more complicated details
of the unit commitment problem.

F.2 Simplified Unit Commitment

In the simplified problem, we assume that the load remains constant during each
stage, and the probability distribution of the load is identical for all stages. Each
time stage will represent one hour. We also ignore the minimum up and down times
for each generator, so that if a generator fails during a time period, it can be started
up again at the beginning of the next time step. We further assume that the control
decision need not be made in advance; the control is selected at the beginning of each
stage with knowledge of which generators are currently running. In this situation,
any control may be used at any time, and the state vector only needs to indicate
whether each generator was up or down at the end of the last stage. Therefore, we
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will use the same binary notation to represent the state vector as was used for the
control vector (bit ¢ = 1 means generator i + 1 was up, bit ¢ = 0 means generator
i+ 1 was down). Furthermore, if z is the state, then G; is the set of generators that
were up at the end of the previous stage.

With these simplifications, Bellman’s equation may be written for the problem as:

N+h) = min|Cut 3 S+ 3 Ti+h'w) [0 -pp)
JE€(GuNGy) F€E(GuNG;) JEGy

Ngu

+3 2 ) [Ien II (-pp) (F.2)

n=1 J:neG. k€J  ke(GunT)

where C, is the expected cost per stage from the previous chanter. The notation for
equation (F.2) corresponds directly to the previous chapter, the only difference being
that the control is shown as a scalar instead of a vector. Additionally:

h*(0) =0 (F.3)

meaning that state n in Section 4.4 is here state 0, since there is always positive
probability that all generators may fail during one stage (fortunately, this probability
is extremely low!). Equation (F.2) is derived by noting that the expected cost for one
stage using control u from state ¢ is:

9, u)=Cu+ Y. Si+ S T; (F.4)

jE(GunEi) jE(EunG.‘)

The product terms represent the probability of one specific combination of generator
outages, while the summation is taken over all possible combinations of generators.

Equation (F.2) looks very complicated, but it is straightforward to write for any
given problem. To illustrate this, we will write Bellman’s equation for a simple two
generator system. In this case, there are 4 (22) possible states controls. Bellman'’s
equation then becomes the system:

AT+ h‘(O) = min [Ca + Sl + Sz + (1 - pﬂ)(l - pﬂ)h'(3) +Pf1(1 - pp)h"(?)
+p,2(1 - pn)h‘(l), Co+ S, + (1 — pﬁ)h‘(2),
Ci+ S+ (1 - pﬂ)h"(l), Co] (F5)

A"+ k(1) = min[Cs+ Sz + (1 — pp)(1 = pr2)h*(3) + ppi(1 — pr2) 7 (2)
+p;2(1 - pﬂ)h‘(l), Co+ S+ T + (1 - p,g)h'(?),
Cl + (1 - pfl)h‘(l), Co + T1] (F6)

M+ h*(2) = min[C3+ 81+ (1 —pn)(1—pp)h*(3)+pn(1 —pp)h*(2)
+ps2(1 — pp)h*(1), C2 + (1 — pp2)h*(2),
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Ci+S5+T+(1 —pﬂ)h'(l), Co+T2] (F.7)

A +h(3) = min[C3+ (1 —pp)(1 - p2)h*(3) +pn(l - p2)h*(2)
+p;2(1 - pn)h‘(l), Co+T) + (1 - pn)h'(2),
Ci+ T+ (1-pn)h’(1), Co+ T, + T3] (F.8)

Since the object is to minimize the average cost per stage, it is reasonable to
speculate that the optimal control u* is:

u” = arg min [Cu + > S,-p,,] (F.9)

J€Gu

since the quantity inside the minimization is the average cost that would result from a
policy of using control u for every state. In fact, we will prove that u* in equation (F.9)
is normally the optimal policy, with a few limitations. Specifically, u* is always the
optimal policy in certain states, and u* is the optimal policy for all states under
certain conditions.

We first prove the second half of this last statement. We now assume that u* is the
optimal policy for all states. With this assumption, h*(z) is derived from Bellman’s
equation as:

h*(1) =g(5,u*) - A"+ 2 (F.10)
The quantity Z is equal to:
Ngu
z=k'w) [ Q-pp)+3> > R@p)lee II (-pp) (F1)
JEG,» n=1 J:n€G,- keJ kE(G,-NT)

Since we have assumed that u* is optimal, the optimal average cost is:

N =Cy+ Y, SiPy (F.12)
jeGu'
Si.ice h*(0) = 0, we can solve for Z:

Z =\ —g(0,u") (F.13)

To find ¢(0,u*), note that G; = 0; therefore, the summation of T} is zero. We thus
can write Z as:

Z= 3 (P;-1)S; (F.14)
J€G,-

Having found Z, we can now write h*(7) as:

@) =- Y. Si+ Y, T, (F.15)

J€(GinG,.) JE(GiNG+)
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Now, we will show that equations (F.12) and (F.15) satisfy Bellman’s Equation,
proving that they are the unique solution and that u* is indeed the optimal policy for
all states. We first consider Bellman’s Equation for the case G; C G,.. Under this

condition, equation (F.15) becomes:
h*(i) = —

25

JEG;

Substituting h*(7) into equation (F.2), we have:

A*+h'(i) =

min
u

jE(Gu nai)

> S+

je(GunGu')

(_

I1

ke(GunJ)

JG(EU nGI)

> T

JE(GuNG,.)

2

JE(GuNG,-NT)

NGu

+2 X

n=1 J:neG,

: prk

keJ

Sj+

(1- Pfk)}

This last equation is derived by noting that:

h*(upg) = h*(uw)+ ). S;—

JE(ING,.)

>

J€(JNG,

Cy + Z SJ'+ Z TJ

|

JE€(GuNG,-NT)

IT (1 —py;

Jj€EGy

2

T;

T;

-)

By rearranging the summations in equation (F.17), we obtain:

A"+ h*(i) = min | C, +

Z S_-,"l'

jG(Guﬂa‘)

X T

J€(GunG;)

Ngu

(1 —py5) Z Z H Dfk

n=0 J:ne(Gu—{j}) keJ
[

2

JE(GuNG,»)

>, T

je(GﬂnEu')

S;

Ngu

SRS TOHD D DI | §.7

n=0 J:n€(Gy —{j}) keJ

+

We can simplify equation (F.19) by noting that:

Ngu

> > I 21

n=0 J:n€(Gy,—{j}) k€J

II

ke((GunT)-{35})
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ke((GunJ)~{3})

II

ke((Gund)~{5})

(1 —psx)

(F.16)

)

|

(F.17)

(F.18)

(1 —pyx)

-

(1-psx)

(F.19)
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since each term of the summation is the probability of one specific combination of
generators failing (excluding generator j). The summation includes all such com-
binations, which are mutually exclusive outcomes; therefore, the summation is 1.
Equation (F.19) is now reduced to:

A"+h(i) = min|C, + Z:_ S; + _z: T;
J€(GunGj) J€(GuNGy)

+ Y Sile-1)+ Y Ti(l-pgy)| (F21)
JE(GuNG,.) JE(GuNG,)

For u = u*, the quantity inside the brackets of equation (F.21) is equal to:

Cu-+ Y SiPri— Y. S;

J€G,- JEG;

Since we are considering the case G; C G-, the summations of the T; terms are zero
for u = v*. For any u # u*, the quantity being minimized in equation (F.21) is lower

bounded by:
Cut D SiPri— 2. 5

since the first T; summation is nonnegative, and:

> Silpri-1)< > Silpii-D+ Y Ti(l-pyy) (F.22)

J€EGu JE(GuNG,-) FE(GuNG,»)

because 0 < py; < 1. Therefore, in view of equation (F.9), equation (F.21) must be
minimized for u = u*, and equations (F.12) and (F.15) agree with equation (F.21).

For the two generator case, if u* = 3, then h*(1) = —S), h*(2) = -5, h*(3) =
~8,— 8,3, and A* = C3+ps1S) -+ ps2S2. In this case, all states i satisfy G; C Gu-, and
therefore these values will satisfy Bellman’s equation, equations (F.5) through (F.8).
To see this, note that:

(1-pn)(A—pr2)h* (3)+ps1(1—pp2)h* (2) +pp2(l —pn)h* (1) = —S1 = S2+ps151+pj2Se

(F.23)

If instead u* = 1, then h*(1) = =S, h*(2) == T, h*(3) = =51 + T, and \* =
C; + ps1S1. In this case:

(1-pn)(1—pp2)h*(3)+p1(1=pp2)h* (2)+pp2(1-ps1)R* (1) = =Si+Ta+pnS1—pp2T

(F.24)

In this case, Bellman’s equation will be satisfied only if:
Cz - Cl - pﬂS] - pszz >0 (F25)
Cy—C, — pjoz >0 (F26)
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A, = Cu + Z pij,- - Cy ~ Z pijj (F.?.?)

JEG, JEG,.

G + ¥ Si+ Y T4 > Silpg; = 1) + > Ti(1 - pyj)

JE(G.NG;) J€(GunG;) JE(GuNG,.) J€(GuNG,.)
>Cut ¥ o5y > T+ Y Si(pr; — 1) (F.28)
J€(G,-NG;) J€(G,-nG;) J€G,.

This Inequality may be rewritten using A,:

A, - > Sipy+ > S+ > T- >S5

J€(GuNG,.) * JE(GuNG,) J€(@una) J€(Gung,.)
Y Ti-p,)- >S5 > i+ 3 S>0
JE€(GuNG,.) J€(G,-nG;) J&(G,-NnG;) JEG,.
(F.29)
The S Summmations and 7 Summations can be Tearranged to give
A= X Spu+ X §- X S+ XS
JE(GuNG,.) JE(GuNGinG,.) JE(CuNGinG,.) J€(G,-NG,)
EE T B S <
J€(GungG,.) je(EunG,-nGu. ) JE(GunG:ingG,.) JE(GunG,.)
(F.30)
The second and third summations of S5 and T; may be combined into
J€(GunG,.) J&(GuNGinG,,. ) je(E.‘nE.nGu. )
=X T+ X T+ X Ti>o (F.31)
JE(GuNG,.) JE([CunGinG,.) JE(GuNGNT,.)

Finally, the Summations over identical setg may be combined, giving:

Av— ¥ (Si+T5)py, + > (Si+T;)+ > (5;'+7}')>0(F-32)
)

JE(GuNG,. J€(GuNG;nG,.) je(EunG.-nGu- )
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The last two summations in equation (F.32) are nonnegative, and for a given control
u, there exists at least one state i for which these summations are zero (specifically,
i = u). Therefore, these summations are superfluous and can be neglected:

Av— ) (S;+Tj)ps >0 (F.33)
je(GunEu')

since equation (F.32) will hold if equation (F.33) is true. If equation (F.33) is satisfied
for all 4 and all u # u*, then u* is the optimal control for all states.

If G; C G,-, then G; N Gy- = G,-, and therefore in equation (F.32), any term
which appears in the first summation must also have a corresponding term in the
second. Since 0 < py; < 1, the sum of these two corresponding terms must be
positive, and therefore equation (F.32) is always satisfied for G; C G-. This results
means that u* will always be the optimal control for these particular states, a result
we proved earlier.

Notice that equation (F.33) for a two-generator system with u* =1, 1 = 2,3 and
u = 2, 3 is identical to the conditions we derived earlier in equations (F.25) and (F.26).
Equations (F.32) and (F.33) are of interest for states i such that G; € G,-, since in
these states, u* is not optimal unless these conditions are satisfied. These states are
situations where a generator not needed for the optimal control u* are up at the
beginning of the stage. If the per stage cost C, for a control using this generator
is low, but the startup cost for the generator is high, then it is optimal to keep the
generator running until it fails because we derive the benefits of the generator (low
per stage cost) without the heavy penalty (high startup cost). The high startup cost
precludes the generator from being chosen for u*. Notice that in this situation, the
state will eventually enter the subset of states that satisfy G; C G,- with probability
1, and then remain in this subset. This occurs because the generators not included
in u* will eventually fail, and they will not be restarted. The period of time before
the state enters this subset contributes zero to the average cost.
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