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Abstract

The accumulation of DNA damage is thought to contribute to the physiological decay associated

with the aging process. Here, we report the results of a large-scale study examining longevity in

various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA

damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA

glycosylase (Aag/Mpg)-initiated base excision repair and O6-methylguanine DNA

methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the

laboratory mouse. We also uncovered important genetic interactions between Aag, which excises

a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm.

We show that Atm plays a role in mediating survival in the face of both spontaneous and induced

DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the

tumor spectrum in Atm−/− mice. Further, the reversal of spontaneous alkylation damage by Mgmt

interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since

these aging studies were performed without treatment with DNA damaging agents, our results
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indicate that the DNA damage that is generated endogenously accumulates with age, and that

DNA alkylation repair proteins play a role in influencing longevity.
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1 INTRODUCTION

Aging can be thought of as a progressive decline in function at the cellular, tissue, and

organismal level, possibly resulting from cumulative damage to important biomolecules [1].

The reasons why we age and modulators of the aging process have been intensively studied

for decades (reviewed in [1]). One predominant but recently contested school of thought [2,

3], is described in the mitochondrial free radical theory of aging. In 1956, Harman first

proposed that mitochondrially-generated reactive oxygen and nitrogen species (RONS),

along with other harmful environmental physical and chemical agents, result in

accumulating damage in numerous biomolecules critical for proper cell function [4]. Genetic

experiments in various model organisms have pinpointed a variety of genes and pathways

that influence how an organism ages (reviewed in [5–8]); however, it has become clear that

additional random events also play an important role in the determination of longevity. In

fact, the accumulation of unrepaired DNA damage causing decreased genomic integrity, has

long been proposed as a major source of stochastic changes that can influence aging

(reviewed in [9, 10]). Accordingly, animals with genetic deficiencies in double-strand-break

repair or telomere maintenance have much shorter lifespans than wild-type (WT) mice [11,

12]. Further demonstrating the importance of unrepaired DNA damage in aging, mice or

patients carrying mutations in the transcription-coupled branch of nucleotide excision repair

(NER) suffer from a premature onset of aging-related symptoms and consequent shortening

of lifespan, but interestingly, with the exception of skin cancers, the decreased longevity

occurs in the absence of increased cancer development (reviewed in [13, 14][10]).

Inactivating mutations that disrupt the maintenance of genome stability can decrease

longevity through either increasing cancer predisposition or causing more general premature

aging and progeroid-like characteristics (reviewed in [10, 15, 16]). Indeed, multiple

important DNA damage response proteins were originally identified through the

investigation of cancer-prone patients. Cancer-prone Li-Fraumeni and ataxia telangiectasia

(AT) patients exhibit germline mutations in two important DNA damage response proteins,

namely p53 and ataxia telangiectasia mutated (ATM), respectively [17]. p53 (i.e., Trp53) is

a stress sensor and transcription factor responsible for inducing cell cycle checkpoints,

apoptosis or senescence upon exposure to DNA damage, hypoxia, and oncogene activation

among other stimuli; p53 was originally identified as a tumor suppressor and is known as the

“guardian” of the genome [17–19]. p53 also appears to have additional roles in modulating

aging, independent of its role in tumor suppression, presumably related to its role in cellular

senescence [17, 20]. ATM, an integral DNA damage signaling protein, is a serine/threonine

protein kinase that is activated in response to double-strand DNA breaks; ATM’s activation
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initiates important signaling pathways, some of which involve p53, responsible for cell cycle

checkpoint activation, apoptosis and DNA repair (reviewed in [21]).

DNA is exposed to a wide-range of damaging agents, not only from exogenous, but also

from endogenous sources. DNA base alkylation is one common consequence of multiple

endogenous metabolic processes (reviewed in [22]). For example, alkylation can occur as a

consequence of the non-enzymatic transfer of methyl groups to DNA from the universal

methyl donor, S-adenosylmethionine. Additionally, RONS, inevitable byproducts of aerobic

metabolism and also an important component of the innate immune response, are highly

reactive chemical species that produce numerous types of DNA damage. Furthermore,

RONS can indirectly induce alkylation DNA damage as a result of lipid peroxidation

reactions that generate reactive alkylating agents that react to produce etheno (ε) and other

DNA base adducts [23–27]. Livers of aged animals exhibit an accumulation of ε adducts,

specifically εA, suggesting a possible role for these lipid peroxidation reactions in aging

organisms [28]. DNA base lesions are also increased under conditions of chronic

inflammation, and are believed to contribute to the increased risk of carcinogenesis observed

in patients with chronic inflammation [29–32]. Therefore, various types of alkylation

damage arise in cells as a function of normal metabolic functions, and the role of such

endogenous DNA damage in influencing longevity has yet to be determined.

The pathways primarily responsible for the repair of alkylated DNA base lesions are base

excision repair (BER) and direct reversal (reviewed in [33].) BER is initiated when a

damaged DNA base is recognized and excised by a DNA glycosylase; alkyladenine DNA

glycosylase (Aag, a.k.a Mpg) recognizes numerous alkylated DNA base lesions, including

3-methyladenine (3meA) and 7-methylguanine (7meG) in mammals. Aag also recognizes

many lesions induced by RONS and lipid peroxidation products including hypoxanthine and

εA respectively [34–36]. Other alkylated DNA bases are subject to direct reversal repair,

either by oxidative demethylation catalyzed by the AlkB homolog (Alkbh) family of

proteins (reviewed in [33]), or by the efficient transfer of the unwanted methyl group on O6-

methylguanine (O6MeG) lesions to a cysteine residue in the O6MeG DNA methyltransferase

(Mgmt) in a suicide reaction [37]. Unrepaired O6MeG lesions pair with thymine during

replication. The mismatch repair (MMR) pathway recognizes O6MeG:thymine (O6MeG:T)

mismatches and subsequent MMR processing plays an essential role in alkylation-induced

cytotoxicity. MutSα, a heterodimer of Msh2 and Msh6 MMR proteins, recognizes

O6MeG:T mispairs, and this recognition is required for the induction of apoptosis [38–40].

The MMR pathway then engages in futile cycles of Exonuclease 1 (Exo1)-mediated

excision and DNA polymerase resynthesis at O6MeG:T mismatches, with excision and

reinsertion of the thymine opposite O6MeG; this results in persistent strand breaks that

ultimately culminate in the formation of double-strand DNA breaks at collapsed replication

forks (reviewed in [33, 37]). This alkylation hypersensitivity observed in the absence of

Mgmt is dependent on the presence of a functional MMR pathway [40–43].

The contribution of endogenous DNA alkylation damage to longevity has not been

rigorously examined. It is well-documented that Mgmt expression protects mice from

tumors induced by treatment with exogenous alkylating agents and therefore prolongs

survival following treatment with alkylating agents [44–47]. Intriguingly, transgenic
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C3HeB/FeJ male mice overexpressing Mgmt are protected against spontaneous

hepatocellular carcinomas in a susceptible mouse strain [48], suggesting a role for O6MeG

lesions in spontaneous tumors in a predisposed background and perhaps enhanced overall

survival. It has been more challenging to investigate the role for BER in longevity due to the

embryonic lethality observed upon deletion of many BER proteins [49–51]. However,

studies in heterozygous mice have provided insight into the importance of BER proteins in

modulating survival; for example, Polb+/− mice exhibit an acceleration in the age-dependent

mortality rate as well as increased tumorigenesis [52]. Finally, we and others have illustrated

the importance of Mgmt- and Aag-initiated DNA repair in chronic inflammation-associated

cancer, a frequent aging-associated phenomenon; Aag−/− and Mgmt−/− mice are more

susceptible to chronic inflammation-associated colon carcinogenesis [31, 32, 53, 54].

However, the contribution of Aag and Mgmt to overall longevity was, heretofore, not

specifically investigated.

Here we exploit mouse model systems to determine whether DNA alkylation repair proteins

acting on spontaneous DNA damage contribute to aging and longevity. We performed a

large-scale study to assess whether two major DNA alkylation repair pathways, namely

Aag-initiated BER and Mgmt-mediated direct reversal, promote longevity. Supplemental

Table 1 lists the mouse genotypes used in this study. We compared the longevity of Aag−/−,

Mgmt−/− and Aag−/−/Mgmt−/− mice with that of WT mice. We also investigated putative

genetic interactions that Aag and Mgmt might have with the DNA damage response

pathways controlled by p53 and Atm. Finally, because the MMR pathway is an important

modulator of cellular responses to O MeG, we investigated possible genetic interactions

between Mgmt and MMR by examining Mgmt −/−/Msh6 −/− and Mgmt −/−/Exo1 −/− mice.

Together, our comprehensive study illustrates that the repair of spontaneous DNA base

damage, likely to be primarily alkylation damage, influences the longevity of mice, and

provides information about potential interactions between DNA alkylation repair proteins

and downstream DNA damage response mediators.

2 RESULTS

2.1 Deficiency in alkylation repair alters long-term survival

Given that the endogenous generation of DNA damage is ubiquitous and continuous, we

determined whether repair of spontaneous DNA base damage, primarily alkylation damage,

contributes to longevity in mammals by assessing the long-term survival of mice deficient in

genes for the repair of alkylated DNA bases, i.e, Aag−/− and Mgmt−/− mice. Large cohorts of

WT, Aag−/−, Mgmt−/− and Aag−/−/Mgmt−/− mice were established and carefully monitored

for up to three years. Unlike mice deficient in NER [10, 14], none of the genotypes exhibited

any signs of premature aging. As mice became moribund, survival and histological data

were collected. Compared to WT mice, Aag−/− and Mgmt−/− mice exhibit a trend toward

decreased longevity, which did not reach statistical significance (Figure 1A). However, the

Aag−/−/Mgmt−/− animals display a significantly shorter life-span compared to WT (p=0.04);

the median survival of Aag−/−/Mgmt−/−mice was 89.5 weeks, more than 15 weeks shorter

than the median survival observed in WT mice (Figure 1A). These data indicate the

importance of repairing spontaneous DNA base lesions for attaining maximum longevity.
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The large-scale aging studies included detailed histopathological examination to identify

pathological features in the mice, including classification of any tumors, to determine

whether modulating DNA repair altered tumor incidence and/or tumor spectrum. In our

study, the most prevalent tumor type in WT, Aag−/−, Mgmt−/−, and Aag−/− /Mgmt−/− mice

was histiocytic sarcoma, a macrophage neoplasm and the most common tumor classification

in the C57Bl/6 strain [55]. We find that the absence of either Aag or Mgmt activity (or both)

did not significantly alter the tumor incidence or spectrum when compared to the WT mice

(Figure 1B); in other words, although the repair-deficient mice succumb earlier than WT, the

spectrum of disease and cause of death remains similar.

2.1 Influence of DNA damage response proteins on responses to endogenous DNA
alkylation damage

The p53 and Atm proteins are important stress mediators that respond to DNA damage.

Mice deficient in these proteins exhibit drastically reduced longevity, developing thymic

lymphoma within the first year of life [56, 57]. We sought to determine whether

accumulating unrepaired spontaneous DNA base damage (again, primarily alkylation

damage) may contribute to lymphomagenesis and diminished longevity in Atm−/− and

p53−/− mice. Although it is well established that Atm−/− mice exhibit significantly shortened

life spans [56, 58], detailed longevity, studies have not been reported for the C57Bl/6 strain

background. Figure 2A shows Kaplan-Meier survival curves for Atm−/− mice, both alone

and in combination with the Aag or Mgmt null alleles. Atm−/−, Aag−/−/Atm−/−, and

Mgmt−/−/Atm−/− mice all exhibit decreased survival when compared to the WT mice (all

pair-wise comparisons to wild type, p<0.0001). However, in contrast to previous studies in

mixed background mice, we find that Atm−/− C57Bl/6 mice survive significantly longer than

Atm−/− mixed background mice [56, 58]. In fact, in our aging study, 20% of Atm−/− C57Bl/6

mice survive longer than one year (Figure 2A), whereas most Atm−/− mice on a mixed

background succumbed to thymic lymphoma by 4.5 months [56, 58]. We find that the

addition of the Mgmt null allele does not significantly change the survival of Atm−/− animals

(p=0.3423), suggesting that endogenously formed O6MeG lesions are not determinants of

survival in Atm−/− mice. Surprisingly, Aag−/−/Atm−/− C57Bl/6 mice live significantly longer

than Atm −/− C57Bl/6 mice (pair-wise comparison between Atm−/− and Aag−/−/Atm−/−,

p=0.0193) (Figure 2A). These results indicate that, in contrast to Aag-mediated repair of

endogenous DNA base damage extending longevity, Aag activity in Atm−/− mice actually

decreases longevity. This counterintuitive finding is considered further in the discussion.

We also monitored disease incidence and tumor spectrum in the aged Atm−/−, Mgmt−/−/

Atm−/− or Aag−/−/Atm−/− mice; Figure 2B shows the incidence of spontaneous pathology.

WT, Mgmt−/− and Aag−/− mice exhibit a remarkably similar spectrum of tumors, but this

spectrum is significantly different from that in the Atm deficient genotypes (Atm−/−,

Mgmt−/−/Atm−/−, and Aag−/−/Atm−/−) that exhibit a predominance of lymphoma [56, 58];

94% of the Atm−/− mice in our study presented with lymphomas at the time of death.

Aag−/−/Atm−/− animals exhibit a decreased incidence of lymphoma (70%), and the overall

difference in tumor spectrum between Atm−/− and Aag−/−/Atm−/− mice is statistically

significant (p<0.016). This suggests that one mechanism by which Aag deficiency increases

longevity in Atm−/− animals may be by decreasing the development of aggressive
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lymphomas. Although Mgmt−/−/Atm−/− also display a decrease in lymphoma incidence

(71.5%), it did not alter the overall tumor spectrum (p=0.19) (Figure 2B) or longevity

(Figure 1B), suggesting that the tumors that arose instead of lymphoma in Mgmt−/−/Atm−/−

mice were as aggressive as lymphoma.

Detailed survival studies have been published for p53−/− mice [57], and here we set out to

determine whether decreased repair of primarily alkylated DNA bases would affect

longevity in p53−/− mice. In stark contrast to the effect of combining Aag−/− or Mgmt−/−

with the Atm−/− genotype, we observe virtually identical survival in p53−/−, Aag−/−/p53−/−,

and Mgmt−/−/p53−/− mice; all three genotypes exhibited significant and similarly-decreased

survival compared to WT mice (p<0.0001) (Figure 3A). All p53 deficient genotypes

exhibited an altered tumor spectrum compared to WT mice, but there was no difference in

tumor spectrum between p53−/−, Aag−/−/p53−/−, and Mgmt−/−/p53−/− mice (Figure 3B).

2.3 Genetic interaction between Mgmt and the MMR pathway

Given the established link between Mgmt and MMR in modulating alkylation-induced

cytotoxicity [37, 40, 41, 59, 60], we investigated whether deficiency of both Mgmt and

MMR proteins may cooperate to alter longevity. The effect of eliminating mismatch

recognition and excisions steps of MMR in combination with Mgmt was investigated. As

described, Mgmt deficiency does not significantly alter long-term survival in vivo (Figure

1A). Figure 4A presents survival data for WT, Mgmt−/−, Msh6−/−, Exo1−/−, Mgmt−/−/

Msh6−/− and Mgmt−/−/Exo1−/− mice. Similar to previous reports, we observe significantly

decreased survival in Msh6−/− and Exo1−/−mice compared to WT mice (p<0.0001) [61, 62].

We observed a trend toward increased longevity in Mgmt−/−/Msh6−/−, which did not reach

statistical significance (pairwise comparison between Msh6−/−and Mgmt−/− Msh6−/−,

p<0.3388). Similarly, the trend toward increased survival in Mgmt−/−/Exo1−/− versus

Exo1−/− mice did not reach statistical significance (pairwise comparison between

Exo1−/−and Mgmt−/− Exo1−/−, p=0.1352) (Figure 4A). We infer that Mgmt substrates do not

significantly impact whole-animal survival, even in the absence of functional MMR.

Although a genetic interaction was observed between Mgmt and Msh6 or Exo1 in terms of

mediating alkylation cytotoxicity upon treatment with exogenous alkylating agents in vivo

[63], this does not appear to translate to effects from endogenous alkylation arising in vivo.

Detailed histological examination of the aged animals showed that the trends toward

increased survival were accompanied by differences in pathology. Figure 4B shows the

incidence of spontaneous pathology in animals with combinations of the Mgmt null allele

with either Msh6 or Exo1 null alleles, namely Mgmt−/−, Msh6−/−, Exo1−/−, Mgmt−/−/

Msh6−/−, and Mgmt−/−/Exo1−/− mice. The majority of the MMR defective animals exhibit

lymphomas at the time of death; 70% of Msh6−/−animals and 70.5% of Exo1−/− animals

present with lymphoma, consistent with the published literature (Figure 4B) [61, 62]. The

additional inactivation of the Mgmt gene does not significantly alter the tumor spectrum in

Msh6 mutant background; 73% of Mgmt−/−/Msh6−/− mice develop lymphoma (Figure 4B).

Remarkably, Mgmt deficiency results in a greater than 50% reduction in the incidence of

lymphoma in Exo1−/− mice; 70.5% in Exo1−/− mice develop lymphoma whereas only 31%

of Mgmt−/− /Exo1−/− mice present with this pathology. The reduction of lymphoma in
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Mgmt−/− /Exo1−/− mice coincides with a two-fold increase in histiocytic sarcoma, the

predominant pathology observed in Mgmt−/− mice. The change in tumor spectrum between

the Exo1−/− and the Mgmt−/−/Exo1−/− is significant (p=0.03).

2.4 The contribution of Atm to cellular responses following exogenous DNA alkylation
damage

Aag deficiency resulted in a counter-intuitive increase in longevity in Atm−/− deficient mice,

accompanied by alterations in the tumor spectrum (Figures 2A and 2B). To further examine

this genetic interaction between Atm and Aag, we used the tractable bone marrow (BM) ex

vivo clonogenic survival assay to determine whether, as seems to be the case for endogenous

DNA damage, Atm modulates Aag-mediated alkylation-induced cytotoxicity. BM cells were

treated ex vivo with the alkylating agent methyl methane sulfonate (MMS) and then plated

on semisolid media to allow formation of hematopoietic myeloid progenitor colonies. MMS

is an SN2 alkylating agent that induces predominantly 7MeG and 3MeA DNA lesions,

known Aag substrates [34]. Consistent with a previous report [64], we show here that Aag−/−

BM cells are resistant to MMS (Figure 5). This is consistent with multiple recent reports

showing that initiation of BER by DNA glycosylases generates repair intermediates (AP-

sites, and single-strand breaks (SSBs)) that, if accumulate due to downstream BER enzymes

being limited, are more toxic than the original DNA base lesions (reviewed in [33]). This is

supported by evidence indicating that alkylation sensitivity is dependent on Aag-initiated

BER both in cultured cells and in animals [65–67]. Interestingly, Atm−/− BM cells display

increased MMS sensitivity in comparison to all other genotypes, indicating that Atm

signaling is an important mediator of MMS-mediated toxicity. The increased sensitivity

observed in Atm−/− BM cells is almost totally suppressed in Aag−/−/Atm−/− BM cells,

suggesting that much of the alkylation sensitivity observed in the Atm−/− cells is due to Aag-

initiated BER of MMS-induced base damage followed by the accumulation of toxic BER

intermediates that are ultimately sensed by Atm (Figure 5A). Together, these ex vivo assays

illustrate that Atm is an integral modulator of toxicity induced by Aag-initiated BER, and

pinpoints a role for the Atm DNA damage response protein in signaling downstream of toxic

BER intermediates.

We also assessed the contribution of Atm to O6meG-mediated cytotoxicity following

exposure to the SN1 alkylating agent, N-methyl-N-nitrosourea (MNU), which generates

toxic and mutagenic O6MeG, in addition to 7meG and 3meA DNA base lesions. Ex vivo

clonogenic survival assays were performed with BM from WT, Mgmt−/−, Atm−/− and

Mgmt−/−/Atm−/−mice. In contrast to MMS, Atm−/− BM cells exhibit no difference in MNU

sensitivity compared to WT cells at the doses used (Figure 5B), presumably because both

WT and Atm−/− cells express Mgmt to reverse the toxic

O6meG lesions. Accordingly, Mgmt−/− cells exhibit increased sensitivity to MNU compared

to both WT and Atm−/− cells. Strikingly, we observe a massively synergistic interaction

between Mgmt and Atm; Mgmt−/−/Atm−/− cells exhibit dramatically increased sensitivity to

MNU when compared to Mgmt−/− or Atm−/− cells (Figure 5B). We infer that when O6MeG

base lesions are unrepaired (as in the Mgmt−/− cells), Atm plays a pivotal role in modulating

the toxicity induced by MMR processing of DNA containing O6MeG DNA lesions.
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3 DISCUSSION

Here we describe a large-scale aging study of numerous mouse models defective in several

DNA repair genes and DNA damage response genes (Supplemental Table 1). Essential for a

study of this magnitude, all animals were backcrossed to the C57Bl/6 genetic background

for at least 10 generations to ensure that any differences observed could not be attributed to

differences in strain background.

Accumulating toxic and mutagenic damage in mitochondrial and nuclear DNA is known to

affect the aging process in model organisms [68–71]. We show here that endogenously

damaged DNA bases that are substrates for two DNA alkylation repair pathways contribute

to long-term survival; mice deficient in both Aag and Mgmt activity exhibit decreased life-

span that is statistically significant. The accumulation of unrepaired DNA damage and

mutations associated with aging may simply arise due to long-term exposure to endogenous

metabolites that damage DNA, and may be exacerbated by an age-related decline in the

DNA repair capacity. The capacity to perform BER, NER and double-strand break (DSB)

repair have, in fact, all been shown to decline with age (reviewed in [72–74]). Further,

studies in mice indicate that certain tissues or anatomical sites may be more susceptible to

such age-related DNA repair decline [69] perhaps due to differing exposure to RONS [75,

76]. All of these possibilities are not necessarily mutually exclusive and likely cooperate as

contributing factors in influencing longevity. Indeed, in the worst case scenario, aging

tissues could have both decreased DNA repair and DNA damage responses accompanied by

increased levels of endogenous metabolites that damage DNA.

We and others have demonstrated that for certain cell types Aag-mediated initiation of BER

can lead to cell death, and that Aag deficiency can actually be protective [65, 66]. Here, we

find that Aag deficiency protects Atm−/− mice both in terms of increasing overall longevity

and in reducing the development of lymphoma; this protection is consistent with a role for

Aag in generating toxic BER intermediates that trigger the DNA damage response

orchestrated by Atm. Further, Aag deficiency provided protection against MMS-induced

toxicity in Atm−/− BM cells, ex vivo. Together, this indicates that Atm is required for

protection against Aag-mediated alkylation-induced toxicity, and that endogenously-

generated Aag substrates can influence organismal longevity. This may not be surprising

given that Aag acts on a wide range of endogenously-generated base lesions including

7meG, 3meA, deaminated adenine, oxidized guanine and etheno-base lesions [26, 34, 77,

78]. A link between Atm and BER has been implicated in numerous reports [79–81], but the

data here provide in vivo evidence that Atm plays a key role in protecting against the

detrimental effects of Aag-mediated BER intermediate formation at sites of spontaneous

DNA base damage.

Interestingly, although ATM is known to phosphorylate, stabilize and activate p53 [82],

there is no change in survival in Aag−/−/p53−/− mice, in contrast to enhanced survival in

Aag−/−/Atm−/− mice. The protection in Aag−/−/Atm−/− mice compared to Aag−/−/p53−/− mice

may be explained by the numerous p53-independent functions of Atm [82]. Alternatively, it

has been shown previously that Aag physically interacts with and represses p53 [83];
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therefore genetic deletion of both Aag and p53 would be epistatic and not alter overall

survival compared to p53−/− mice.

Mgmt deficiency does not affect survival or tumor spectrum in Atm−/− mice. However, a

clear genetic interaction between Mgmt and Atm was observed in the ex vivo BM

clonogenic survival assays. Predictably, Mgmt−/− BM cells exhibit alkylation

hypersensitivity but surprisingly, Mgmt−/−/Atm−/− BM cells exhibit a synergistic increase in

alkylation sensitivity. We propose that in the absence of Mgmt, futile cycling of MMR at

O6meG:T mispairs results in the generation of DSBs that activate Atm [83–86]. Without

Atm and Mgmt, MMR-mediated futile cycling continues without the Atm-mediated

signaling pathways, further exacerbating cell death. Together, this illustrates that Atm

contributes to the cellular response to O6meG induced by exogenous alkylating agents, but

implies that spontaneous O6meG lesions are not relevant in the development of morbidity in

Atm−/−/Mgmt−/− mice, although it is possible that the decreased lifespan of Atm−/− mice

precludes any potential cumulative detrimental effects of endogenous O6meG lesions in

Atm−/−/Mgmt−/− mice.

It is intriguing that Mgmt deficiency protected Exo1−/− mice against the development of

lymphoma; instead Mgmt−/−/Exo1−/− mice developed histiocytic sarcoma, the prevalent

disease in C57Bl/6 mice. Although Mgmt−/−/Exo1−/− mice exhibited decreased incidence of

lymphoma, there was only a trend toward increased longevity, indicating that the protection

against lymphoma and the overall shift in tumor spectrum did not prolong lifespan. Mgmt−/−

mice develop histiocytic sarcoma at an average latency of 25.5 months, whereas in Mgmt−/−/

Exo1−/− mice, the onset of histiocytic sarcoma is significantly earlier (p=0.0035), with an

average latency of 21.7 months. Although Mgmt deficiency altered tumor penetrance in

Exo1−/− mice, this was not observed in Msh6−/− mice. Msh6 deficiency results in a strong

predisposition to lymphomagenesis, which occurs significantly earlier than in Exo1−/− mice

(p=0.0002). The constitutive MMR deficiency (CMMRD) cancer syndrome in humans

substantiates the role for Msh6 in preventing hematological malignancies and other cancers

[87–89] and reinforces the finding that Msh6 deficiency is a strong inducer of lymphoma in

mice [61]. EXO1 deficiency is not causative of CMMRD, but EXO1 mutations have been

found in diffuse B-cell lymphoma [87]. The strong association between MSH6 mutations

and lymphoma may explain why Mgmt deficiency was insufficient to change tumor

spectrum in Msh6−/− mice, whereas Mgmt−/−/Exo1−/− mice exhibited a shift in tumor

spectrum towards histiocytic sarcoma.

Although the link between accumulating DNA damage and aging has been clearly

established, the consequences of lifestyle interventions that increase longevity and their role

on altering DNA repair capacity remain unresolved. One proven strategy demonstrated to

enhance longevity is calorie restriction (CR); the consequence of CR on DNA repair remains

controversial. CR has been shown to reduce the age-dependent decline in non-homologous

end joining activity [90], whereas other studies show a decrease in DNA repair transcript

levels following CR [91]. Additionally, it is well-known that habitual endurance exercise

improves health-span [92, 93], and although endurance exercise is associated with an

increase in oxidative DNA damage [94], exercise-induced RONS are thought to induce

DNA repair and other molecular systems to cope with increased RONS damage [95–98].
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Finally, resveratrol, a polyphenol found in red wine and an activator of the NAD-dependent

deacetylase sirtuin-1 (Sirt1), has been hypothesised to increase longevity. Resveratrol

increases the formation of APE/XRCC1 complex during BER [99], but also reduces the

activity or expression of other DNA repair proteins [100, 101]. These few examples

underscore the fact that much remains to be learned regarding the relationship between DNA

repair and lifestyle interventions that may modulate longevity.

Significant progress has been made regarding the pathways and factors that modulate

longevity [1, 102, 103], and yet many questions remain unanswered. Several theories of

aging have been proposed including: the mitochondrial free radical theory of aging, telomere

attrition, mitochondrial dysfunction, and more recently, the functional decline of stem cells

(aging theories reviewed in [104–106]). It is likely that many of the proposed mechanisms of

aging interact with each other to influence the longevity of an organism. Here, using long-

term lifespan studies in DNA repair- and DNA damage-response deficient mouse models,

we establish that the repair of DNA base alkylation damage arising from endogenous

sources is at least one contributing factor to longevity.

4 METHODS

4.1 Mice

The Aag−/− mice [107] and Mgmt−/− mice [108] have been described. Trp53−/− mice

(B6.129S2-Trp53tm1Tyj, former name C57BL/6J-Trp53tm1Tyj) and Atm−/− mice (129S6/

SvEvTac-Atmtm1Awb/J) were purchased from The Jackson Laboratory (Bar Harbor, Maine,

USA). Exo1−/− and Msh6−/− mice have been described previously [61, 62]. All mice were

backcrossed at least 10 times to the C57BL/6 background. Mice were fed standard diet ad

libitum and housed in an AAALAC accredited facility. Animals were sacrificed by CO2

asphyxiation. All animal procedures were approved by the MIT Committee on Animal Care.

4.2 Longevity studies

Mice were allowed to age and observed for development of disease and subject to full

necropsy when diseased or deceased. Tissues were fixed in Bouin’s fixative, paraffin

embedded, sectioned at 5 µm and stained with haematoxylin and eosin (H&E). Tissues

harvested include: brain, eyes, salivary gland, thymus, heart, lung, liver, kidney, spleen,

intestine, reproductive organs, and femur. All H&E stained slides were analyzed blind by a

pathologist (R.T.B) for the cause of death as well as for identification of any tumors/lesions.

Examples of lesions classified as other include: dermatitis, cystic endometrium/uterus,

emphysema, kidney disease and osteoarthritis.

4.3 Bone marrow clonogenic survival assay

BM clonogenic survival assays were performed as described in [64]. Briefly, cells were

harvested from the femurs of mice, treated ex vivo with MMS (Sigma-Aldrich Co, St. Louis,

MO) or MNU (Sigma-Aldrich Co, St. Louis, MO) and plated in methylcellulose-containing

media (Stem Cell Technologies, Vancouver, BC, Canada), and plated in duplicate. After

approximately 2 weeks, colonies containing > 50 cells were scored. Experiments were

performed at least three times.
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4.4 Statistical analysis

GraphPad Prism was used to generate Kaplan-Meier plots for survival and to calculate

significance using Log-rank (Mantel-Cox) test. Fisher’s exact, programmed in R, was used

to establish whether the differences in tumor spectra between genotypes were significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Jonathan Brasher for help in the initial stages of this project. We thank Axel Nohturfft for
assistance in writing the R code for the Fisher’s exact test. We thank Dr. Edelman for the Exo1−/− and Msh6−/−

mice. We acknowledge The Hope Babette Tang Histology Facility at MIT’s David H. Koch Institute for Integrative
Cancer Research, especially Alicia Caron (NCI P30-CA14051). LDS is an ACS Research Professor and the
research was supported by NIH grants R01-CA075576, R01-ES022872, R01-CA149261, and P30-ES002109.

Abbreviations

3meA 3-methyladenine

Aag/Mpg alkyladenine glycosylase

AP abasic

Atm ataxia telangiectasia mutated

BER base excision repair

BM bone marrow

CR calorie restriction

Exo1 exonuclease 1

Mgmt O6MeG DNA methyltransferase
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Highlights

Large-scale mouse aging study examines role for DNA repair and DNA damage

response.

Repair of endogenous alkylation damage plays a role in determining longevity.

Atm plays a key role in protecting against detrimental effects of Aag-mediated BER.
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Figure 1. DNA alkylation repair contributes to longevity
A) Survival curves of wild type (black lines, n=37), Aag−/− (red line, n=29), Mgmt−/− (blue

line, n=50) and Aag−/− Mgmt−/− (purple line, n=31). Pair-wise comparisons: Aag−/− to wild

type, p=0.1003; Mgmt−/− to wild type, p=0.4752; Aag−/− Mgmt−/− to wild type, p=0.04, all

Log-rank (Mantel-Cox) test. B) Histopathological classification of pathologies found in WT

(n=18), Aag−/− (n=24), Mgmt−/− (n=35), and Aag−/− Mgmt−/− (n=31) mice.
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Figure 2. Atm plays a role in the response to endogenous/spontaneous DNA alkylation damage
A) Survival curves of wild type (black lines, n=37), Atm−/− (green line, n=19), Aag−/−

Atm−/− (green/red line, n=22) and Mgmt−/− Atm−/− (cyan line, n=21). All pair-wise

comparisons to wild type, p<0.0001. Pair-wise comparison between Atm−/− and Aag−/−

Atm−/−, p=0.0193, and between Atm−/− and Mgmt−/− Atm−/−, p=0.3423, all comparisons

Log-rank (Mantel-Cox) test. B) Aag deficiency protects against lymphoma in Atm−/−

animals. Graph shows the incidence of age-related pathologies observed in Aag and Atm
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genotypic combinations. Wild-type (n=18); Aag−/− (n=24); Mgmt−/− (n=35); Atm−/− (n=15);

Mgmt−/− Atm−/− (n=7); Aag−/− Atm−/− (n=10).
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Figure 3. Aag and Mgmt mutations do not affect longevity of p53 mutant animals
A) Survival curves of wild type (black lines, n=37), p53−/− (light green line, n=21), Aag−/−

p53−/− (light red line, n=42), and Mgmt−/− p53−/− (light blue line, n=18). All pair-wise

comparisons to wild type, p<0.0001, Log-rank (Mantel-Cox) test. B) Aag or Mgmt

deficiency does not shift tumor spectrum in p53−/− mice. Graph shows the incidence of age-

related pathologies observed in Aag and p53 genotypic combinations. Wild-type (n=18);

p53−/− (n=8); Aag−/− p53−/− (n=14); Mgmt−/− p53−/− (n=9).
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Figure 4. Interaction between Mgmt deficiency and the mismatch repair pathway
Survival curves of wild type (black lines, n=37), Mgmt−/− (blue line, n=50), Exo1−/− (purple

line, n=19), Mgmt−/− Exo1−/− (dashed lilac line, n=30), Msh6−/− (orange line, n=10), and

Mgmt−/− Msh6−/− (dashed light orange line, n=19). Pair-wise comparison between Mgmt−/−

and Mgmt−/− Exo1−/−, p=0.0008 and between Mgmt−/− and Mgmt−/− Msh6−/−, p<0.0001,

Log-rank (Mantel-Cox) test. B) The Mgmt null mutation leads to a decrease in the incidence

of lymphomas in Exo1−/− animals but not in Msh6−/− animals. Wild-type (n=18); Mgmt−/−
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(n=33), Exo1−/− (n=17), Msh6−/− (n=10), Mgmt−/− Msh6−/− (n=19), Mgmt−/− Exo1−/−

(n=29).
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Figure 5. Atm and Aag interact in response to induced alkylation damage
A) Ex vivo alkylation sensitivity of BM cells to methyl methanesulfonate (MMS). BM cells

were derived from wild type (closed squares), Aag−/− (closed triangle), Atm−/− (open

squares) and Aag−/− Atm−/− (open triangle) mice. Experiments were done a minimum of

three times each, data are mean ± SEM.. B) Synergistic interaction between Mgmt and Atm

in response to MNU treatment. Ex vivo alkylation sensitivity of BM cells to methyl

nitrosourea (MNU). BM cells were derived from wild type (closed squares), Mgmt−/−
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(closed circles), Atm−/− (open squares) and Mgmt−/− Atm−/− (open circles) mice.

Experiments were done a minimum of three times each, data are mean ± SEM.

Meira et al. Page 26

DNA Repair (Amst). Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Meira et al. Page 27

Table 1

Median survival of all mice, median survival of mice with tumors, and tumor penetrance in aging study.

Genotype

Median
Survival,

weeks

Median
Survival
(tumor),

weeks
% tumor at
termination

Wildtype 106 98 61.1

Aag−/− 94 99 54.2

Mgmt−/− 99.5 103.5 57.1

Atm−/− 29 35 100

p53−/− 20 21.5 100

Exo1−/− 81 82.3 94.1

Msh6−/− 26.5 25 100

Aag−/−Mgmt−/− 89.5 94.5 58

Aag−/−Atm−/− 44 63 90

Aag−/−p53−/− 20 22 92.8

Mgmt−/−Atm−/− 40 49 100

Mgmt−/−p53−/− 20.5 22 100

Mgmt−/−Exo1−/− 91.5 92 96.5

Mgmt−/−Msh6−/− 45 45 100
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