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ABSTRACT

This thesis presents the results of a prototype implementation of

a simultaneous modular algorithm for flowsheet simulation and

optimization in an industrial simulator environment. The ASPEN PLUS

process simulation system was used as the basis for a research project

aimed at developing and evaluating a "two-tier" simultaneous modular

algorithm to converge and optimize flowsheets. A wide variety of unit

operation blocks have been converted to the new architecture with a

choice of linear and nonlinear reduced models. However, the main

emphasis of this work is in the use of nonlinear models.

The inside loop is solved using sequential quadratic programming

with a decomposition technique that reduces the optimization problem

to decision variable space. The outside loop is converged using direct

substitution or damped direct substitution (Wegstein method).

Initialization heuristics and methods for dealing with discontinuities

in the rigorous model equations were implemented to increase the

robustness and reliability of the new convergence methodology. A
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method to converge in the inside loop of the algorithm any type of

design specification equation was also developed and tested in the

simulator.

The performance of the system in solving a number of test problems

is presented. Substantially faster convergence was observed for

simulation problems with embedded recycle loops and design

specifications. Even greater efficiency relative to existing modular

simulators is expected for flowsheets with a higher degree of

complexity. Optimization of flowsheets with complex units such as plug

flow reactors may take less computational effort than that required

just to converge the flowsheet in a sequential modular simulator.

Nonlinear reduced models were found to give acceptable solutions for

most optimization problems. For the rigorous solution of general

optimization problems, a simultaneous modular algorithm that uses both

linear and nonlinear reduced models is proposed.

A scheme to integrate the "two-tier" algorithm at the flowsheet

level with the internal calculations in modules that use "two-tier"

methods has been successfully implemented, providing a method to

converge the flowsheet and the modules simultaneously. This results in

greater efficiency in the outside loop.

Thesis Supervisor: Dr. Lawrence B. Evans
Professor of Chemical Engineering



-4-

ACKNOWLEDGEMENTS

The list of people who directly or indirectly helped me accomplish

this academic goal would probably require more space than the doctoral

thesis itself. I am afraid I will have to be unfair and mention only a

few names in these pages. I hope I will have a chance in the future to

show my gratitude to all the others who will remain nameless for the

time being, but whose inspiration, help and support made this work

possible.

I would like to thank my academic advisor and thesis supervisor,

Prof. Lawrence B. Evans. Since the day I arrived to M.I.T. he has

guided me through every step of the complex process of doing graduate

level work. Thanks to his vision, I was able to grow in many

directions other than my research project. It was a pleasure to work

closely with a person who understands that the process of education

goes far beyond the development of new equations and the publication

of academic papers.

I would also like to thank Aspen Technology Inc. for letting me

use their computer facilities for my work, and for permitting me to

use the latest version of their simulator, ASPEN PLUS. But the

invaluable help from the "Aspen Team" is not confined to the use of

hardware and software. Dr. Joseph F. Boston and Dr. Herbert I. Britt

accepted to serve in my thesis committee and provided much needed

technical guidance in understanding their inside-out algorithms and

the complex computer programs that form the ASPEN PLUS simulator. Fred

Ziegler was always helpful when I failed to communicate with the

computer. Susan Kelleher made it possible to get this thesis printed



-5-

in the office word processor. I could go on and write the name of

every person in the staff, as everybody offered help and support

whenever I needed it. To all of them I offer my gratitude.

I would like to give special thanks to my fellow student Thomas P.

Kisala. He provided support, ideas and assistance at every stage of my

research. But most important, he proved to be a true friend. I would

also like to extend my appreciation to some of the people who offered

their friendship during the past years. They are Judy Wornat, Jaime

Benavides and Arturo Inda.

My stay in Boston would have been far less enjoyable without the

constant attention of my "Second Family". My deepest appreciation to

Mr. Simon Floss and Mrs. Janice Floss.



-6-

DEDICATED TO MY PARENTS

FERNANDO

AND

FRANCISCA MARGARITA

WITH ALL MY LOVE, RECOGNITION AND RESPECT

THEIR LOVE AND CONSTANT SUPPORT STAND BEHIND ALL MY ACHIEVEMENTS



-7-

TABLE OF CONTENTS

TITLE PAGE . . . . . . . . .

ABSTRACT.. ........ .

ACKNOWLEDGEMENT . . . . .

DEDICATION . . . . . . .* . .

TABLE OF CONTENTS . . . . . .

LIST OF TABLES . . . . . . . .

LIST OF FIGURES . 0 0 0 0 0 .

MOTIVATION FOR THIS WORK . . .

CHAPTER 1: INTRODUCTION . . .

1.1 The Process Simulation

p~age

. . . . . 0 . 0 0 . . . . . 0 . 0 1

. . . 0 . . . . 0 . . 0 0 0 0 0 2

. . . 0 . . . 0 . 0 0 . . . . 0 . 4

. . 0 . . 0 . . . . 0 . . . . 0 . 6

. . . . . . 0 . . . . . . . . . 0 7

. 0 . . 0 . . . . 0 0 0 0 0 . 0 0 11

. . . . . . . . . . . . . . 0 . 0 13

. 0 . . . . . . . . . . . . . . . 15

Problem

1.2 Solution of Process Simulation Problems

1.2.1 Equation Oriented Simulators . .

1.2.2 Sequential Modular Simulators . .

1.3 The Process Optimization Problem . . . .

1.4 Solution of Process Optimization Problems

. 0 0 0 0 0

.S . . 0 . . .0

1.5 Review of the Most Relevant Work in Process Optimization

1.5.1 Feasible Path Black-Box Methods * 0 * 0 0 . . 0 .

1.5.2 Feasible Path Sequential Modular Methods . * 0 0

1.5.3 Infeasible Path Sequential Modular Methods . . .

1.5.4 Infeasible Path Equation Oriented Methods . . . .

1.5.5 The Simultaneous Modular Concept . . . . * 0 . .

1.6 Objectives of this Work . . 0 . . .0 0 * 0 * 0 . . .

18

18

21

21

22

28

31

32

33

34

38

39

40

43

. . . . . . . . . . . . .*



-8-

page

CHAPTER 2: SIMULTANEOUS MODULAR CONVERGENCE CONCEPT . . . . . . 47

2.1 Linear and Nonlinear Simultaneous Modular Calculations . 47

2.2 The Outside Loop . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Outside Loop Variables . . . . . . . . . . . . . 51

2.2.2 Convergence of all the Stream Variables . . . . . 52

2.2.3 Convergence of Feed and Tear Stream Variables . . 55

2.2.4 Handling of Discontinuities . . . . . . . . . . . 56

2.2.5 Convergence of Outside Loop Variables . . . . . . 58

2.3 Integrated Calculations . . . . . . . . . . . . . . . . 65

CHAPTER 3: DEVELOPMENT OF A SIMULTANEOUS MODULAR SIMULATOR . . . 70

3.1 Architecture of Sequential Modular Simulators . . . . . 71

3.2 Calculation Control Program and Unit Operation Modules . 73

3.3 Computational Procedure . . . . . . . . . . . . . . . . 76

3.3.1 Initialization and Parameter Generation . . . . . 76

3.3.2 Reduced Problem Formulation and Solution . . . . 80

3.3.3 The Outside Loop Iterations . . . . . . . . . . . 86

3.4 ASPEN PLUS Implementation . . . . . . . . . . . . . . . 87

3.4.1 Steps in an ASPEN PLUS Simulation Run . . . . . . 87

3.4.2 The Input Translator and the Simulation Program . 91

3.4.3 Reduced Problem Formulation . . . . . . . . . . . 97

CHAPTER 4: REDUCED MODELS FOR UNIT OPERATIONS . . . . . . . . . 102

4.1 Required Characteristics of Reduced Models . . . . . . . 102

4.2 Linear Models . . . . . . . . . . . . . . . . . . . . . 107



-9-

4.3 Nonlinear Reduced Models for Process Units . . . . . . .

4.3.1 Reduced Model for Absorber Columns . . . . . . .

4.3.2 Reduced Model for Distillation Columns . . . . .

4.4 Reactor Models . . . . . . . . . . . . . . . . . . . . .

4.4.1 Reduced Model for Plug-Flow Reactors . . . . . .

CHAPTER 5: SIMULTANEOUS MODULAR SIMULATION RESULTS . . . . . .

5.1 Benchmark Problems - Description . . . . . . . . . . .

5.1.1 Problem 1 .. . . . . . . . . . . . . . . . . . .

5.1.2 Problem 2 . . . . . . . . . . . . . . . . . . .

5.1.3 Problem 3 . . . . . . . . . . . . . . . . . . .

5.2 Parameters Used in Simulation Runs . . . . . . . . . .

5.2.1 The Simultaneous Modular Runs . . . . . . . . . .

5.2.2 The Sequential Modular Runs . . . . . . . . . .

5.3 Performance of the Simultaneous Modular Simulator

5.3.1 Standard Simultaneous Modular Calculations

5.3.2 Integrated Simultaneous Modular Calculations .

CHAPTER 6: HANDLING OF DESIGN SPECIFICATIONS . . . . . . . . . .

6.1 Handling of Manipulated and Sampled Variables . . . . .

6.2 Adaptation of Reduced Models to Introduce Variables . .

6.3 Handling of Variables not Present in the Reduced Problem

6.4 Example Problems . . . . . . . . . . . . . . . . . . . .

CHAPTER 7: EXTENSION TO FLOWSHEET OPTIMIZATION PROBLEMS . .

7.1 Simultaneous Modular Process Optimization . . . . .

page

110

117

128

130

132

138

139

139

144

148

153

153

156

158

158

170

175

177

179

180

182

196

196

.



-10-

page

7.2 Necessary Conditions for Optimality and Reduced Problem
Requirements . . . . . . . . .. . .. . .... . . . .

7.3 Numerical Methods . . . . . . . . . . . . . . . . . .

7.3.1 Successive Quadratic Programming Algorithms . .

7.3.2 Locke-Edahl-Westerberg Algorithm and its
Implementation . . . . . . . . . . .

7.4 Example Problems . . . . . . . . . . . . . .

7.4.1 First Benchmark Optimization Problem

7.4.2 Second Benchmark Optimization Problem

7.4.3 Third Benchmark Optimization Problem

REFERENCES . . . . . . . . . . . . . . . . . . . . .

APPENDIX 1: Nonlinear Reduced Models Used . . . . .

. . . . . .

. . . . . .

. . . . . .

Al.1 Reduced Model for a Mixer .

Al.2 Reduced Model for a Stream Heater/Pressure Changer

Al.3 Reduced Model for a Stream Splitter . . . . . . ..

Al.4 Reduced Model for a Stoichiometric Reactor . . . .

APPENDIX 2: Listing of Optimization Subroutine . . . . . .

APPENDIX 3: Listing of the Section of the Sequence Monitor
Subroutine in ASPEN PLUS that Controls the
Simultaneous Modular Calculations . . . . . . .

APPENDIX 4: Listing of a Sample Simultaneous Modular Section
from an ASPEN PLUS Computation Module . . . . .

APPENDIX 5: Simulation Results of Benchmark Problems . . . . . .7

.

.

.

199

205

207

208

219

221

225

230

235

242

242

243

244

244

246

257

268

. . . . . .

. . . . . . . . . . . . . .a

279



-11-

LIST OF TABLES

page

2.2-1 Iteration History for Cavett's Problem 64

2.2-2 Iteration History for Cavett's Problem after
Temperatures of the Tear Streams are Eliminated
from the Outside Loop. 64

4.3.1-1 Degree of Freedom Analysis of Reduced Analytical
Absorber Model. 126

4.3.1-2 Degree of Freedom Analysis of Rigorous Model of an
Absorber Column. 127

5.1.3-1 Composition of Feed Stream (Stream Fl) for Problem 3. 152

5.3.1-1 Comparison of Simulation Time Equivalents for
Sequential Modular Simulator using Wegstein and
Broyden Methods, and for Simultaneous Modular
Calculations 159

5.3.1-2 CPU Time Distribution for Benchmark Problem 1. 162

5.3.1-3 CPU Time Distribution for Benchmark Problem 2. 162

5.3.1-4 CPU Time Distribution for Benchmark Problem 3,

Using Ideal Physical Properties. 163

5.3.1-5 CPU Time Distribution for Benchmark Problem 3,
Using Redlich-Kwong-Soave Equation-of-State for
Physical Properties. 163

5.3.1-6 CPU Time Distribution for Problem 3, Using Ideal
Physical Properties and Converging all the Stream
Variables in the Outside Loop. 166

5.3.1-7 Iteration History for Problem 1. 167

5.3.1-8 Iteration History for Problem 2. 167

5.3.1-9 Iteration History for Problem 3, Using Ideal
Physical Properties. 168

5.3.1-10 Iteration History for Problem 3, Using the Redlich-
Kwong-Soave Equation-of-State. 168

5.3.2-1 Iteration History for Problem 3, Using Ideal
Physical Properties. Integrated Calculations and
Completely Inside-Out Approach. 173



-12-

5.3.2-2 Iteration History for Problem 3, Using the Redlich-

Kwong-Soave Equation-of-State. Integrated Calcula-
tions and Completely Inside-Out Approach. 173

5.3.2-3 CPU Time Distribution for Problem 3, Using Ideal
Physical Properties. The Problem is Converged
Using a Completely Inside-Out Approach. 174

6.4-1 Simulation Time Equivalents for Solution of
Problems with Design Specifications. 189

6.4-2 Iteration History and Time Distribution for
Problem 1 with a Design Specification on Conversion. 193

6.4-3 Iteration History and Time Distribution for
Problem 1 with a Design Specification of Mole
Fraction. 194

6.4-4 Iteration History and Time Distribution for
Problem 1 with Two Design Specifications. 195

7.4.1-1 Iteration History and Time Distribution for the First
Optimization Problem. 224

7.4.2-1 Iteration History and Time Distribution for the
Second Optimization Benchmark Problem. 229

7.4.3-1 Iteration History for the Third Optimization
Benchmark Problem 232



-13-

LIST OF FIGURES

page

l.a Typical Flowsheet with Recycle Loop. 24

l.b Graphical Representation of the Sequential Modular
Convergence Approach 26

1.c Typical Flowsheet with a Design Specification Loop. 27

l.d Graphical Representation of the "Two-Tier" Simultaneous
Modular Algorithm. 42

2.a Graphical Representation of a Flowsheet Converged with
Simultaneous Modular Calculations, when all the Stream
Variables are converged in the Outside Loop. 53

2.b General Calculation Sequence for Simultaneous Modular
Algorithm. 59

2.c Schematic Representation of Cavett's Problem with
Tear Streams. 63

2.d Simultaneous Modular Calculations with Rigorous Models
wich are Converged with Inside-Out Algorithms. 68

2.e Graphical Representation of the Completely Inisde-
Out Approach. 69

3.a Example of Flowsheet with Two Recycles. 78

3.b Structure of the Jacobian of the Reduced Problem when
Stream Variables are Repeated in the Problem Formulation. 82

3.c Steps in an ASPEN PLUS Run. 89

3.d Steps in the ASPEN PLUS Input Translator. 90

3.e Sample Simulation Program Generated by ASPEN PLUS. 93

3.f Steps in the Simultaneous Modular Calculation
Sequencing Subroutine. 94

3.g Information Flow in Simultaneous Modular Simulator. 98

3.h Structure of the Jacobian of the Reduced Problem
Generated by the Simultaneous Modular Simulator. 99

4.a Diagram of an Absorber Column. 118

4.b Diagram of a Reduced Model for a Distillation Column. 129

5.a Flowsheet of Benchmark Problem 1. 142



-14-

page

5.b ASPEN PLUS Input File for Benchmark Problem 1. 143

5.c Flowsheet of Benchmark Problem 2. 146

5.d ASPEN PLUS Input File for Benchmark Problem 2. 147

5.e Flowsheet of Benchmark Problem 3. 150

5.f ASPEN PLUS Input File for Benchmark Problem 3. 151

6.a Plug-Flow Reactor Problem with Design Specification
on Conversion. 184

6.b Plug Flow Reactor Problem with Design Specification
on the Mole Fraction of G Entering the Reactor. 185

6.c Plug-Flow Reactor Problem with Two Specifications. 187

7.a Objective Function for First Optimization Problem. 222

7.b Flowsheet for Second Optimization Problem. 227



-15-

MOTIVATION FOR THIS WORK

Computer simulation of chemical processes has become an important

and widely used tool in the optimization of operating conditions of

existing chemical plants, and in the design of new ones. Millions of

dollars may be saved in yearly operating expenses simply by

identifying proper operating conditions and discovering potential

problems in a plant. Process simulation packages are designed

specifically for these tasks.

In a typical process simulation run systems of one thousand to

fifty thousand nonlinear equations are solved simultaneously. These

equations include thermodynamic relations, equipment describing

equations, flowsheet connectivity relationships and cost correlations.

These equations may be very poorly behaved and difficult to solve for

real systems. When a flowsheet is optimized, a similar system of

equations is solved while some process parameters are chosen so as to

maximize or minimize a given objective function. Given the complexity

of the problem and the high cost of computer time needed to solve it,

there is a strong incentive to develop efficient and robust solution

methods.

There are highly sophisticated software packages for process

simulation already commercially available. ASPEN PLUS [20], PROCESS

[12] and DESIGN/2000 [22] fall in this category. One common

characteristic of these simulators is that they rely on separate

modules to simulate each unit. Overall flowsheet convergence is

usually achieved by solving recycle and design specification loops
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with direct substitution based methods. This method of solution is

very reliable but not necessarily efficient. Furthermore, the more

general problem of flowsheet optimization is difficult to solve with

these packages. At the present time, PROCESS is the only simulator

that allows the user to optimize a flowsheet in a single run. However,

it uses an inefficient sequential modular methodology to accomplish

this, and real industrial problems may take a prohibitive amount of

computer time to solve.

At the research level, more efficient process simulators/

optimizers have been developed. The idea behind these packages is to

treat all the simulation equations simultaneously. Numerically

effective equation solving or optimization algorithms are then used to

solve the global problem. In this category we have software packages

developed mainly in universities such as SPEED-UP [23] and ASCEND II

[33]. There are many advantages to such an approach in terms of

efficiency of calculations; however, the present simulators require

very good initial guesses to insure convergence. Furthermore, a global

approach would have problems dealing with the complex state-of-the-art

physical property equations which are now widely used in process

simulation. Another disadvantage of the approach is that for

commercial applications a completely new simulator would have to be

developed. Such a development would require a substantial investment

of time and money, even if all the convergence problems were solved

already.

A "two-tier" simulator architecture that would combine features of

both modular and global simulators has been proposed. In past studies

of the simultaneous modular architecture flowsheet optimization



-17-

problems were solved using an amount of computer time comparable to

that needed to solve just the simulation problem. Thus, it seems

feasible to develop a next generation of process simulators/optimizers

based on this convergence scheme. This would make it possible for the

first time to use process optimization techniques routinely for

industrial applications. Furthermore, the efficiency and reliability

of the new simulator would be superior. However, there are still some

important issues that need to be addressed before resources are spent

developing an industrial simultaneous modular simulator. The objective

of this thesis is precisely to answer the most important unresolved

questions, which will be discussed in detail in Chapter 1.
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CHAPTER 1: INTRODUCTION.

1.1 The Process Simulation Problem.

A chemical process plant consists of a series of unit operations

connected by process streams. Each process unit may be modelled by a

set of describing equations, which include material and energy

balances, phase and chemical equilibrium relations and physical

property equations and correlations. The describing equations for a

particular unit contain inlet and outlet stream variables (such as

flow rates for each component, temperature, pressure and enthalpy),

equipment parameters, internal variables (for example, internal

composition and temperature profiles in staged columns) and

intermediate physical properties (such as activity coefficients,

equilibrium constants, entropy and density). These equations

ultimately relate the outlet stream variables to the values of the

inlet stream variables, for a given set of specified equipment

parameters.

The whole process is determined by the collection of the

describing equations of all the units plus the stream connectivity

relations. These equations may be represented in general form as:

(1.1-1) R' (1, p, w) =" 0

Where x represents the variables for all the streams in the process, 2

denotes the collection of the equipment parameters for all the units
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and w denotes the internal unit variables (including physical

properties). The term process simulation usually refers to the

solution of this system of equations.

The number of degrees of freedom in this system is simply the the

total number of variables and parameters minus the total number of

equations. In standard simulation problems the number of degrees of

freedom is equal to the number of process feed stream variables plus

the number of equipment parameters. Values of these variables must be

specified in order to solve the simulation problem determined by

Equations (1.1-1). Another way of looking at this problem is to

specify equations that determine the values of the feed variables and

equipment parameters:

(1.1-2) - value

Ifeed - value

It is possible to combine Equations (1.1-1) and (1.1-2) into a larger

set of flowsheet describing equations which has exactly zero degrees

of freedom:

(1.1-3) R''(x, , w) - 0

In many applications it is desirable to impose constraints on

process variables which are normally calculated by solving the

simulation problem (1.1-1). For example, the purities of certain

products or the temperature in some stream need to be fixed at a

specified value. These constraints, which are usually called design
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specifications, need to be satisfied in addition to the flowsheet

describing equations (1.1-3). Mathematically, the design

specifications take the form:

(1.1-4) H(x, 2, _w) - 0

For each design specification, one of the process feed stream

variables or one of the equipment parameters that would normally be

specified must be freed and determined. These freed variables are

usually called manipulated or decision variables. The general

simulation problem may therefore be represented mathematically by the

following system of equations:

(1.1-5) R(x, , w) - 0

H(x, R, w) - 0

G(x, ) >0

Where the flowsheet describing equations R contain all the equations

R'' defined in (1.1-3) minus the equations of the form (1.1-2) which

correspond to the decision variables. The inequality relations G

represent bounds on the decision variables. These bounds define the

region of operability of the process. For a well defined simulation

problem, the solution should satisfy these constraints. In the context

of this thesis, the term processss simulation will be applied to the

solution of the general system of simulation equations (1.1-5) which

includes design specifications.
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1.2 Solution of Process Simulation Problems.

For most simulation problems of interest, the number of equations

to be solved simultaneously is usually of the order of one to fifty

thousand, and many of these equations are very nonlinear and poorly

behaved. In general, computer aided techniques are necessary to solve

simulation problems.

There exist already many process simulators which are capable of

simulating chemical plants with arbitrary configurations [19, 47].

Most process simulators may be classified as either sequential modular

or equation oriented. These two types of simulators differ in their

approach to generating and solving the system of simulation equations

to be solved in a simulation run. The basic concepts behind the

conception and operation of each type of simulator are discussed in

the rest of this section.

1.2.1 Equation Oriented Simulators.

An equation oriented simulator is based on the idea of formulating

and solving equations (1.1-5) explicitly as a single system of

equations. Efficient numerical techniques for solving large systems of

nonlinear equations are used to converge the simulation equations. In

particular, the Newton-Raphson method and Quasi-Newton techniques are

being used in existing equation oriented simulation packages [16, 19].

To improve the efficiency of the calculations needed to converge

the simulation equations, an equation oriented simulator should take

advantage of the sparsity and specific structure of the Jacobian
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matrix of the simulation equations. Quasi-Newton formulas of the type

described by Schubert [15, 49], and matrix decomposition techniques

developed specifically for sparse matrices with a block diagonal

structure [52] are being investigated with the goal of developing an

efficient and reliable simulator. Further improvements in the

efficiency of the calculations may be achieved through the development

of quasi-Newton formulas especially adapted to chemical engineering

applications [35].

Although a lot of research is being done in the area of equation

oriented simulation techniques, so far the methodology has found

little practical application [19, 23]. Existing equation oriented

simulators have problems dealing with the poor behavior of the

equations encountered in flowsheet models. Discontinuities and

multiple roots in the equations may result in numerical problems that

prevent convergence to the solution. For this reason, such simulators

require very good initial guesses to insure convergence. Furthermore,

a global approach would have problems dealing with the complex

state-of-the-art physical property equations which are now widely used

in process simulation. More experience in using this approach, and

better numerical techniques and initialization heuristics are needed

before a general purpose equation oriented simulator is developed.

1.2.2 Sequential Modular Simulators.

Each unit in the process may be modelled by a set of unit

describing equations. These equations may be solved for the internal

unit variables and the outlet stream variables given values of the
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inlet stream variables and equipment parameters. The idea in a

sequential modular simulator is to solve the equations for each unit

separately in a distinct computation block or module. A flowsheet may

be simulated by executing sequentially the blocks for the units

present in the flowsheet. This is to some extent analogous to the

actual plant operation, where process units are connected sequentially

to form the flowsheet.

Sequential modular simulators remain the most popular for

practical applications. The main advantages of sequential modular

simulators are related to the important issues of reliablity and

robustness of the calculations. Extensive work in the area of modeling

of individual units has provided very efficient and reliable

computation blocks for the majority of the process units. For complex

units, the blocks used in present simulators have been tailored to

solve the unit describing equations. These blocks take advantage of

very specific knowledge about the structure and behavior of the

equations present in the unit model. Another advantage of using

sequential modular simulators is that any problems found during the

execution of the simulation program may be related to the units where

these problems originated. Since information about the inlet streams

to the block is available, the source of the computational problem may

be easily isolated and solved.

In spite of the efficiency of block calculations in modular

simulators, the sequential modular methodology may be very inefficient

in converging flowsheets with embedded material or information recycle

loops. Let us take for example the flowsheet in Figure l.a, which

contains one recycle loop. Before the first block in the sequence can
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Figure 1.a: Typical Flowsheet with Recycle Loop.
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be executed (the mixer block), the values of the recycle stream

variables must be known. The way a sequential modular simulator

handles such a problem is by guessing values of the recycle streams

and iterating on these guesses until the recycle stream variables are

converged. Each iteration on the guessed stream involves the

sequential execution of the unit operation modules up to the block

that has the torn stream as an outlet. Updated values for the stream

variables are obtained when that module is executed. Based on the

difference between the guessed values and the updated values, a new

guess for the stream variables is computed using some convergence

method. The most common numerical methods used to converge the guessed

or "Tear" streams are direct substitution and the bounded Wegstein

method (accelerated direct substitution).

When there are multiple tear streams, each tear stream is

converged separately in a convergence loop. The convergence loops for

the tear streams are nested to achieve overall flowsheet convergence.

The sequential modular convergence procedure for the flowsheet

equations (1.1-3) is represented graphically in Figure l.b. It is

important to note that the unit describing equations must be solved in

each recycle stream convergence iteration. For complex flowsheets with

multiple recycles this method of convergence may be very inefficient.

The problem is compounded by the fact that design specifications are

treated as information recycle loops in sequential modular simulators.

If a design specification is added to the example flowsheet as shown

in Figure 1.c, an initial guess for the manipulated variable is used

to execute the modules in the design specification loop. The design

specification equation is then checked for convergence. If the
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equation is not satisfied, a new guess of the manipulated variable is

generated using a suitable numerical technique.

The most recent sequential modular simulators like ASPEN PLUS

allow the user to use more efficient numerical techniques such as

Broyden Quasi-Newton methods to achieve simultaneous convergence of

all the tear streams (including design specifications) [1, 36].

Although such techniques result in much faster flowsheet convergence,

other modular approaches such as the one described in this work have

proven much more effective and have less problems dealing with bounds

imposed on decision variables.

1.3 The Process Optimization Problem.

Process optimization involves the determination of certain process

operating conditions such that a given objective function (performance

function) is maximized or minimized subject to design and operating

constraints. Typical optimization objectives include maximization of

an economic return, maximization of a product flow rate, minimization

of energy consumed, etc.

For this problem, it may be necessary to add to the simulation

equations a series of equipment sizing and cost correlations needed to

calculate quantities used to evaluate the objective function. For

example, if the capital cost of the plant is to be minimized, cost

correlations to compute the capital cost of the units need to be

included in the problem formulation. These correlations relate the

cost of each unit to the process operating conditions, such as flow

rates, temperatures and pressures. Such cost equations and
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correlations introduce new variables and equations to the original

simulation problem. For example, the cost of a compressor may be a

function of the horsepower needed to compress the gas stream. The

horsepower may be computed from the inlet and outlet stream variables,

such as flowrates and pressures. Two new equations should then be

added to the problem,

horsepower - g(flowrates, pressures)

cost of compressor - g'(horsepower)

The cost of the compressor and the horsepower should be added to the

variable list of the original simulation problem. To simplify the

nomenclature, it will be assumed the the process variable vector x

also includes result variables that may be unrelated to the original

simulation problem but which are needed to evaluate the objective

function. These variables will be determined by some performance

equations of the form:

(1.3-1) C(x, , w) - 0

These equations are added to the original simulation problem equations

(1.1-3).

In optimization problems some feed stream variables and equipment

parameters are freed in order to provide the degrees of freedom which

are necessary to optimize the objective function. These variables,

known as decision variables, are defined in a similar way to the

decision variables for design constraints. In fact, both types of



-30-

decision variables become indistiguishable in general optimization

problems.

In terms of the nomenclature defined above, the process

optimization problem may be represented mathematically as follows:

(1.3-2) Maximize F(x, , _w)

subject to: R(x,p, w) , 0

H(x, 2, w) - 0

C(x, 2 w) - 0

G(x, 2, w) > 0

In this formulation, as in the general simulation problem formulation,

the flowsheet describing equations R include all the equations (1.1-3)

minus the equations of the form (1.1-2) for all the decision variables

(including those freed to meet design constraints in addition to the

ones freed for the optimization problem). The number of degrees of

freedom (decision variables) to be determined by the optimization

procedure is the total number of variables (including internal

variables and process parameters) minus the total number of equality

constraints (number of equations R, H and C).

It should be noted that the optimization problem formulation

(1.3-2) includes inequality constraints explicitly. These constraints

may take the form of any arbitrary function; however, the most common

inequality constraints found in practical problems are bounds on the

decision variables. The optimization algorithms used for flowsheeting

problems deal automatically with inequality constraints (see Section

7.3). Bounds also appear in simulation problems with design
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constraints; however, present day simulators do not usually deal

consistently with these bounds (see for example convergence section of

ASPEN PLUS User's Manual and FLOWTRAN User's Manual, Ref. 1 and 50).

1.4 Solution of Process Optimization Problems.

There are two broad classes of methods to solve process

optimization problems: Feasible path methods and infeasible path

methods. For feasible path methods, the simulation equations (equality

constraints of problem (1.3-2)) are satisfied for every intermediate

estimate of the decision variables in the path towards the optimal

solution. Thus, for feasible path methods a simulation problem needs

to be solved for every iteration of the optimization algorithm.

For infeasible path methods, the equality constraints are

satisfied only at the final optimal solution. All the variables in the

flowsheet are adjusted simultaneously in a direction that improves the

value of the objective function and comes closer to satisfying the

flowsheet describing equations. These methods solve the process

optimization problem and the simulation problem associated with it

(through the equality constraints) simultaneously.

In contrast to standard process simulation, general process

optimization techniques have not yet been developed to the point where

they may be used routinly in practical industrial-scale problems. Most

of the work performed in process optimization may still be considered

to be at the research level. The rest of this chapter is devoted to a

review of the most relevant research work carried out in this field.
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1.5 Review of the Most Relevant Previous Work in Process Optimization.

There has been a very large number of papers published in the

literature related to process flowsheet optimization. Most of the work

in this subject deals with the optimization of specific plants and may

not be generalized to general flowsheeting problems. It should be

noted that some of the work dealing with general process flowsheet

optimization also lacks generality because it is confined to

unrealistically simple models for process units (linear models, for

example). Other process optimization studies are limited to particular

combinations of process units (series of distillation columns, for

example). The work reviewed in this section was selected on the basis

of its possible extension to general flowsheeting problems.

To evaluate the performance of a process optimization algorithm

three different criteria will be used:

(1) Reliability and generality of the method.

(2) Number of "Simulation Time Equivalents", defined as the ratio

of the total computer time used in the optimization to the time

needed to converge a single flowsheet simulation problem.

(3) Total number of flowsheet passes.

In this context, the term flowsheet simulation refers to the

solution of the flowsheet describing equations (without design

specifications) by converging tear stream variables in a sequential

modular simulator. An iteration within a flowsheet simulation using a

modular system is defined as a flowsheet pass.
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It should be emphasized that the above criteria are independent of

the type of computer being used for the study. In terms of quantifying

the efficiency of the process optimization technique, the number of

simulation time equivalents is the most relevant measurement [8].

All the algorithms that have been developed may be classified in

five broad categories:

(1) Feasible Path Black-Box Methods.

(2) Feasible Path Sequential Modular Methods.

(3) Infeasible Path Sequential Modular Methods.

(4) Infeasible Path Equation Oriented Methods.

(5) Simultaneous Modular Methods.

Each one of these categories will be discussed separately in the

following sections.

1.5.1 Feasible Path Black-Box Methods.

These methods are characterized by their treatment of the process

as a "Black-Box", where no information about the flowsheet or the

units in the process is used to help determine the values of the

decision variables. Case study approaches to process optimization

using existing process simulators may be considered in this category.

The computational sequence in these methods is the following:

(1) Provide initial estimates of decision variables.

(2) Solve simulation equations, including design constraints

(Equations 1.1-5).
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(3) Evaluate objective function and inequality constraints.

(4) Test for convergence to optimal solution. If optimal solution

has been obtained then stop.

(5) Use nonlinear programming routine to obtain a new guess of the

decision variables.

(6) Go to Step 2.

Any process simulation package, sequential modular or equation

oriented, may be used to solve the simulation problems in Step 2.

However, most of the work carried out using this approach has been

with sequential modular simulators.

The results obtained by Gaddy [5, 38] may be considered typical

for this kind of approach. Simulation time equivalents of more than

100 were observed in most problems presented in these studies, making

the methodology undesirable for the solution of large scale problems.

In addition to the large amount of computer time used during the

solution of the problem, algorithmic difficulties could be encountered

if an infeasible simulation problem was formulated for an intermediate

value of the decision variables. This problem, and the large amount of

computer time needed to compute numerically gradients of the objective

function (a simulation problem would have to be reconverged for each

numerical perturbation) have forced the use of rather inefficient

pattern search or random search methods for the optimization problem.

1.5.2 Feasible Path Sequential Modular Methods.

These methods represent an improvement over the "Black-Box"
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methods described in the previous section. The idea is to use some

information about the flowsheet to generate the new estimates of the

decision variables. The first general algorithm of this type was

proposed by Hughes [25], and Parker [42] developed a specific

implementation. The computational sequence for the method developed by

Parker is as follows:

(1) Provide initial values for the decision variables.

(2) Solve the simulation equations, including design constraints.

(3) Generate an approximate set of equations to relate the outlet

stream variables to the inlet variables and equipment parameters

for each unit. This approximation is quadratic with respect to the

decision variables and linear with respect to the other stream

variables. The coefficients for the approximate equations are

computed by numerical perturbation around the computation modules

used to simulate each unit in the simulator.

(4) Generate a quadratic approximation to the objective function

taking into consideration all the cost and performance relations

which do not appear in the original simulation problem.

(5) Solve the nonlinear programming subproblem resulting from the

approximate objective function. The approximate unit equations and

the flowsheet connectivity relations were treated as equality

constraints. Obtain a new guess for the decision variables.

(6) Test convergence criterion of process optimization problem.

Stop if solution has been obtained.

(7) Go to Step 2.

Simulation time equivalents between 50 and 100 are typical for

problems solved using this algorithm.

Biegler [8] proposed two more efficient feasible path methods
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designed specifically for use in sequential modular simulators. These

algorithms deal directly with the tear stream equations for the

flowsheet. For a process with recycle streams, the simulation problem

will be converged when the following tear stream equations are

satisfied:

(1.5.2-1) T(t) - t - t 0

Here the vector t represents the variables in all the tear streams in

the process. As it was mentioned in Section 1.2.2, sequential modular

simulators guess values of the tear stream variables, and iterate

around the flowsheet to update the guessed values of these variables.

Equations (1.5.2-1) simply indicate that the updated values of the

tear stream variables are the same as the values obtained in the

previous iteration. Sequential modular feasible path methods require

that these equations are converged before an optimization step is

taken.

The methods proposed by Biegler work in the following way:

(1) Provide initial values for the decision variables.

(2) Solve the simulation equations not including design

specifications. This is equivalent to satisfying the tear stream

equations (1.5.2-1).

(3) Compute the partial derivatives of the tear stream equations

(T), design specifications (H) and objective function (F) with

respect to the tear stream variables t. This operation is carried

out by perturbing numerically each tear stream variable and

performing a sequential modular pass around the loop for each

derivative in the matrix.
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(4) Compute numerically the partial derivatives of the tear stream

equations (T), design specifications (H) and objective function

(F) with respect to the decision variables u.

(5a) For the first algorithm solve the optimization problem:

(1.5.2-2) Minimize F(u)

subject to H(t,u) - 0

G(t,u) 0

Since the tear stream equations are eliminated from the

optimization problem, the calculation of reduced gradients

(constrained derivatives) is required for its solution.

(5b) For the second algorithm, the following optimization problem

is solved:

(1.5.2-3) Minimize F(u)

subject to T(t,u) - 0

H(t,u) = 0

G(t,u) 0

Biegler used the Successive Quadratic Programming algorithm

developed by Wilson, Han and Powell (see Chapter 7) to solve the

optimization problems in step (5) of the algorithms. The results

presented by Biegler indicate that both methods require about 20 to 50

simulation time equivalents to find the optimal solution for a given

flowsheet. It should be noted that numerical derivatives with respect

to tear stream variables are necessary for the methods to converge.

The computation of derivatives and the flowsheet convergence
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computations during each optimization step are probably the most time

consuming calculations in the algorithm.

1.5.3 Infeasible Path Sequential Modular Methods.

Many methods of this type have been proposed in the past but have

not found a successful implementation [21, 30, 55]. A successful

algorithm developed by Biegler [8] shares many characteristics with

the feasible path methods discussed in the previous section. The

method consists of the following steps:

(1) Provide initial values for the decision variables.

(2) Compute the partial derivatives of the tear stream equations

(T), design specifications (H) and objective function (F) with

respect to the tear stream variables t. This operation is carried

out by perturbing numerically each tear stream variable and

performing a sequential modular pass around the loop for each

derivative in the matrix.

(3) Compute numerically the partial derivatives of the tear stream

equations (T), design specifications (H) and objective function

(F) with respect to the decision variables u.

(4) Solve the optimization problem:

(1.5.3-1) Minimize F(u)

subject to T(t,u) w 0

H(t,u) -= 0

G(t,u) 0
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Biegler also used Successive Quadratic Programming to solve this

optimization problem.

Note that this algorithm converges the tear stream equations at the

same time it finds the optimal solution to the problem.

In terms of efficiency, this method performs similarly to

Biegler's feasible path sequential modular methods presented before.

This method still requires the calculation of numerical derivatives

with respect to tear stream variables, and the time saved by not

converging the flowsheet at each optimization iteration is offset by

the extra number of iterations needed to obtain the optimal solution.

More research work is presently being conducted with the idea of

improving both feasible and infeasible path sequential modular

optimization methods [28].

1.5.4 Infeasible Path Equation Oriented Methods.

Equation oriented methods for process optimization use the same

principles as equation oriented methods in process simulation. The

optimization problem formulated in terms of all the flowsheet

variables (Equations 1.3-2) is solved directly using an advanced

nonlinear programming technique. Locke and Westerberg [33] have

already developed an equation oriented flowsheet optimizer which is

capable of finding the optimal solution to a flowsheeting problem in

less time than it takes to simulate the flowsheet with a modular

simulator. Even though this process optimization technique is

numerically very efficient, it has not found yet many industrial
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applications [19] due to its limitations in handling the large poorly

behaved problems which are typical in chemical engineering

applications. Discontinuities and multiple roots in the flowsheet

describing equations pose numerical difficulties in existing

optimization algorithms. A lot more research on this subject is needed

before a general purpose equation oriented process optimizer is

developed.

1.5.5 The Simultaneous Modular Concept.

The basic idea behind simultaneous modular simulation is the use

of two types of models for each individual process unit: rigorous and

simple. A rigorous model for a particular unit consists of the

describing equations along with algorithms designed to solve them and

compute outlet stream variables. These models are equivalent to the

ones used in existing sequential modular process simulators to

simulate individual units.

In the simultaneous modular approach, the rigorous models are

evaluated at a base point, but the solutions from these models are

used only to determine parameters of the corresponding reduced models.

The equations describing all the reduced models are solved

simultaneously with the connectivity and design specification

relations. A new base point is generated and new simple model

parameters are computed from the rigorous models. This "two-tier"

procedure is continued iteratively until the changes in the reduced

model parameters become sufficiently small to achieve convergence in

the process variables. The computational procedure is shown
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schematically in Figure l.d. The reduced problem is in effect a system

of simulation equations analogous to the one described in Section 1.1.

However, simple models are used to model the behavior of the units and

the thermodynamic properties of the streams. The solution of the

reduced problems constitutes an "inside loop" in the overall

convergence process. The inside loop provides values of certain

variables which are used to obtain new guesses of the process

variables, so that these variables are converged in an outside loop.

Thus, this solution scheme is analogous to the "Inside-Out" algorithm

proposed by Boston for the solution of single-stage flash problems

[10] and the simulation of distillation columns [9].

It is important to notice that the system of equations resulting

from all the simple models has some desirable characteristics:

(1) It is much smaller than the system of simulation equations

that describes the flowsheet rigorously.

(2) It is much better behaved than the rigorous system.

(3) It is extremely sparse.

This allows the use of efficient equation oriented solution techniques

which would be infeasible from a practical standpoint if they were

applied to the original problem.

As it was mentioned in Chapter 1, one of the disadvantages of

sequential modular simulators is that convergence may be slow when

complex flowsheets with multiple recycles (material and design

specifications) are simulated. The reason for this is that the method

is affected by the interactions among embedded recycle calculations.
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Equation oriented approaches, on the other hand, handle all the

recycle calculations simultaneously. The simultaneous modular approach

may be visualized as the iterative application of an equation oriented

convergence method where the reduced simulation problem is solved at

each step. The approach benefits from the desirable convergence

characteristics of efficient numerical methods; however, the

subproblems solved are much smaller and better behaved than the

original problem. At the same time, the simultaneous modular method

takes advantage of the efficient modular representations now available

for many process units.

In past studies of the simultaneous modular architecture, Pierucci

et al [44] reported an improved convergence performance over

sequential modular simulators for simulation problems with recycles.

Jirapongphan [27], and Stadtherr and Chen [53] were successful in

using this type of methodology to solve flowsheet optimization

problems using an amount of computer time comparable to that needed to

solve just the simulation problem. This suggests that general

flowsheet optimization problems could be solved is one to five

simulation time equivalents.

1.6 Objectives of this Work.

It seems feasible to develop a next generation of process

simulators/optimizers based on the simultaneous modular convergence

scheme. However, there are still some important issues that need to be

addressed before resources are spent developing a commercial
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simultaneous modular simulator. The objective of this thesis is

precisely to answer the most important unresolved questions:

(1) The first issue to be considered is related to the development

of the simultaneous modular simulator itself. Jirapongphan [27]

carried out his studies using ad-hoc modifications of a simulator

already available, FLOWTRAN. His objective was to demonstrate the

feasibility of the concept; however, at the end there was no

general purpose simultaneous modular simulator that could be

expanded to solve new problems. Stadtherr and Chen [53] on the

other hand, developed a general purpose simultaneous modular

simulator from first principles. At an industrial level, this type

of development would be expensive. Since the unit operation

modules used in existing sequential modular simulators are also

needed in the new architecture, the more reasonable approach to

the problem is to take an existing simulator as starting point.

This strategy would also make it very simple for the new simulator

to initialize the calculations with sequential modular passes, as

the architecture would easily allow this type of calculations.

Furthermore, the effort to change an existing sequential modular

simulator to a simultaneous modular architecture is relatively

small compared to that needed to develop a new simulator. Chapter

3 of this thesis describes in detail how a general purpose

simultaneous modular simulator was created starting from the

existing simulator ASPEN PLUS. The main issues regarding this

conversion are treated in a general way so that the results may be

applied to other sequential modular simulators.

(2) Another issue related to the implementation of the

simultaneous modular concept is that of integration of the overall

convergence strategy with the algorithms already available in the

modules. An integrated simultaneous modular simulator could reduce

the computation time needed when the modules are executed in the

outside loop. The idea of integration is presented as part of the

general description of the algorithm in Chapter 2.
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(3) The main feature of the proposed "two-tier" approach is the

use of reduced models for unit operations. The factors involved in

the development of these reduced models are discussed in Chapter

4, and some nonlinear reduced models for key unit operations are

proposed.

(4) A key aspect of this study is a comparison of the performance

of the new simultaneous modular simulator versus that of the

original sequential modular simulator. The performance of the new

simulator is affected by many parameters, such as: degree of

integration of calculations (see objective (2)); tolerances;

inside and outside-loop convergence strategies; initialization of

calculations, and heuristics used to deal with discontinuities.

The issues regarding the efficiency of calculations are discussed

in Chapter 2. Performance comparisons between the sequential

modular and the simultaneous modular versions of ASPEN PLUS are

presented in Chapter 5.

(5) The original development of the simultaneous modular concept

was based on the assumption that all the variables needed for

design specification equations are explicit in the reduced problem

[27]. A general purpose simulator must be able to handle design

specifications based on variables that would normally be avoided

in the inside loop. For example, internal variables in a staged

column and transport properties of a stream are usually not of

interest to users nor are they needed in reduced models for units.

For this reason, such variables would be excluded from the inside

loop. A general procedure is thus needed to solve problems with

design specifications, including the general case where the

variables of interest do not appear in the reduced models. This

problem is discussed in detail in Chapter 6.

(6) In realistic problems, discontinuities such as phase changes

will be present in the rigorous model equations. Methods to deal

with such discontinuities should be derived in order to have a
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robust simultaneous modular simulator. Some heuristics developed

for this purpose are described in Chapter 2.

(7) The extension of the simultaneous modular approach to

optimizaton has already been tested with promising results [27,

53]. The present study focuses mainly in the use of nonlinear

reduced models for unit operations. The first issue to be

considered is the efficiency of computations as compered to the

newly developed sequential modular optimization algorithms. The

possibility of convergence to suboptimal solutions when nonlinear

models are used is studied in detail and possible solutions to

this problem are proposed. Topics related to optimization are

discussed in Chapter 7.
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CHAPTER 2: SIMULTANEOUS MODULAR CONVERGENCE CONCEPT

In Chapter 1, some basic concepts of process simulation were

discussed and the most relevant work carried out in this area was

reviewed. The idea of a simultaneous modular process simulator was

introduced in Chapter 1. The present chapter is devoted to a

discussion of the main issues related to the efficiency of

simultaneous modular calculations. To simplify the discussion of the

most relevant issues, this chapter is limited to applications in

process simulation. The extension to flowsheet optimization will be

discussed in chapter 7. However, the reader should keep in mind that

the items discussed in this chapter are also relevant when the more

general optimization problem is solved.

The first section of the chapter is devoted to an explanation of

some theoretical aspects related to the use of linear and nonlinear

reduced models in simultaneous modular calculations. Section 2.2

focuses on the convergence of the outside loop. Two modes of

implementation are identified, and the advantages and disadvantages of

each one of these choices are discussed. Finally, section 2.3 is

devoted to the concept of integrated calculations in the simulator.

This is a new idea that may result in more efficient implementations

of nonlinear simultanteous modular calculations.

2.1 Linear and Nonlinear Simultaneous Modular Calculations.

Jirapongphan [27] differentiated between what he considered two



-48-

different implementations of the concept: linear simultaneous modular

and nonlinear simultaneous modular. In our view, these two approaches

differ only in the choice of reduced models used to represent the

blocks. In both cases the computational procedure is exactly the same.

However, the efficiency of the overall convergence scheme will improve

when better reduced models are used for the highly nonlinear functions

found typically in flowsheeting calculations.

Let us first look at the use of linear reduced models in detail.

In the most general form, the linear equations used to model each unit

may be expressed as:

(2.1-1) X - Ax + b

Where x and y are inlet and outlet stream variables, respectively; A

is the linear coefficient matrix and b is the residue vector. The

first "two-tier" algorithm involving linear models was developed by

Rosen [46]. In his work, Rosen used the split fraction linear models

proposed previously by Vela [58]. In the split fraction model, the

linear coefficient matrix A is diagonal with a iiy /x, and the

residue vector is zero.

Other types of linear models have been used with better

convergence results than those obtained with the split fraction model.

Naphtali [41] proposed a gradient type model. In this model each

element of the coefficient matrix, aij, is the derivative of the

ith output variable, yi, with respect to the jth input variable,

x . The elements of the coefficient matrix may be computed

numerically by finite difference as:
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(2.1-2) aj j - -

ij ax x9'
i j j

To carry out the finite difference approximation, each input variable

x must be perturbed to x in order to obtain the corresponding

values of the output variables y'. This requires multiple executions

of the rigorous unit model. For the units where it is satisfactory to

approximate the linear coefficient matrix with its diagonal elements

only, all the input variables may be perturbed at the same time [27].

In this case, the rigorous model only needs to be reexecuted once. It

should be noted that successive solutions of the rigorous models

during perturbation steps are not nearly as expensive to carry out as

the first solution. Since the base solution constitutes an excellent

initial guess, very few iterations are needed to converge the model

equations when only small perturbations to the input variables are

considered.

In general, the output variables from any unit operation block may

be written as a nonlinear function of the input variables,

(2.1-3) Y M f(x)

At the solution of the simulation problem, the residue function for

each block is exactly zero

(2.1-4) r(y,x) = y - f(x)

Jirapongphan shows in his thesis [27] that the use of gradient type
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linear models in a simultaneous modular algorithm is equivalent to

finding the roots of the residue functions using Newton's method.

These equations would also satisfy the connectivity relations and the

design constraints imposed on the process.

Simulators that use a linear simultaneous modular approach have

been used in the past, some of them with industrial applications (see

for example reference 26). However, the equations encountered in

rigorous flowsheet calculations are usually highly nonlinear. Linear

approximations are generally poor when the solution to the reduced

problem is far from the base point where the linear coefficients are

generated. A more sophisticated approach is to use nonlinear reduced

equations based on approximate engineering models of the process

units. This will increase the range of extrapolation of the reduced

equations. However, the nonlinearity of the equations makes the

solution of the reduced problems more difficult than for the linear

case. Pierucci [44] and Jirapongphan [27] found that in spite of the

extra computations needed to solve the inside loops in the "two-tier"

algorithm, the nonlinear models increased the overall efficiency of

the method. Fewer outside loop iterations are needed to converge

(optimize in Jirapongphan's work) the flowsheet. Therefore, the number

of rigorous calculations is substantially reduced.

The present study focuses on the use of nonlinear models in the

simultaneous modular approach. A discussion of the characteristics of

reduced models is presented in Chapter 4, along with some proposed

models for complex units commonly encountered in flowsheets. In

complex optimization problems a switch from nonlinear to linear models

may be necessary to achieve convergence to the optimal solution. This
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case, where linear models may play an important role in the

simultaneous modular framework, will be studied in Chapter 7.

2.2 The Outside Loop.

In the past section, the "two-tier" simultaneous modular approach

was described as an algorithm consisting of two loops that need to be

converged: An inside loop and an outside loop. The inside loop is

converged at each outside loop iteration to obtain a better

approximation to the outside loop variables. Sections 3.3.2 and 7.1,

and all of Chapter 4 are devoted to the formulation and solution of

the reduced problem in the inside loop. This section deals exclusively

with the main issues related to outside loop convergence.

2.2.1 Outside Loop Variables.

Boston and Britt [10] interpret their "Inside-out" algorithm for

single stage flash calculations as a method that uses simple model

parameters as iteration variables instead of process variables. The

advantage of this change of iteration variables is that well chosen

reduced model parameters are less dependent on process conditions than

the original process variables. For this reason, they explicitly

converge the reduced model parameters in the outside loop [3],

defining outside loop tolerances and obtaining new guesses in terms of

these parameters. Since the values of the process variables predicted

in the inside loop depend only upon the values of the reduced model
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parameters, convergence of these parameters automatically assures

convergence of the original variables.

In dealing with global flowsheet convergence it is much simpler to

look at the process variables than it is to look at the model

parameters. A convergence scheme in terms of process variables is

easier to implement than a convergence scheme in terms of parameters.

Furthermore, tolerances in terms of reduced model parameters are very

difficult to define when several different unit operation blocks are

involved.

There is a choice of process variables to be converged in the

outside loop. Either all the variables present in the inside loop are

considered, or only the variables associated with feed and tear

streams along with the internal unit variables. Each one of these

choices will be discussed in detail in the next two subsections.

2.2.2 Convergence of all the Stream Variables.

The idea of keeping all the stream variables in the outside loop

is to have a set of totally independent base points to compute reduced

model parameters for the blocks. The stream and unit variables are

translated directly from the inside loop to all the streams and

variables in the flowsheet. Each rigorous computation block is then

executed independently from the others, based upon the inlet stream

values guessed from the last inside loop iteration. This may be

interpreted as a strategy where all the streams in the flowsheet are

torn and converged simultaneously in the outside loop, as shown

graphically in Figure 2.a.
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Figure 2.a: Graphical Representation of a Flowsheet Converged with
Simultaneous Modular Calculations, when all the Stream
Variables are converged in the Outside Loop.
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There are several important advantages to using this approach. The

most obvious one is that the algorithm becomes completely independent

of the structure of the flowsheet. Once the algorithm is initialized,

no information about the topology of the flowsheet (tear streams,

calculation sequence, recycle structure) is needed to continue the

calculations. Each block is independent of the rest of the process, so

that rigorous block calculations in the outside loop may be carried

out in any order.

A less obvious advantage of this outside loop formulation is

related to the concept of integrated simultaneous modular calculations

(see Section 2.3). Integrated calculations may prove important in

increasing the efficiency of the outside loop calculations by

simplifying calculations inside the rigorous computation blocks. This

approach results in unconverged solutions from the rigorous modules.

Therefore, the rigorous modules need to be executed independently to

avoid the propagation of errors from one block to another. The

discussion on integrated calculations in Section 2.3 is based on the

assumption that all the stream variables are converged in the outside

loop.

The main disadvantage of converging all the stream variables in

the outside loop is that flash calculations (enthalpy and phase

equilibrium calculations) need to be performed on every process stream

of the flowsheet every time a new outside loop iteration starts (see

Section 3.3.3). This is a lot more work than that required to reflash

only feed and tear streams, as would be the case if only these streams

were converged in the outside loop.
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2.2.3 Convergence of Feed and Tear Stream Variables.

The number of variables converged in the outside loop may be

substantially reduced when only feed and tear streams are manipulated

at that level. In this approach, only the stream variables related to

feed and tear streams are translated from the inside loop to the

outside loop. Once these streams are reinitialized with updated

variables, the rigorous computation blocks are executed one after

another following a feasible calculation sequence. The new values for

all the other stream variables are computed as outputs from the

rigorous computation modules. Thus, a sequential modular pass is

executed at the beginning of each outside loop iteration, not only to

compute new simple model parameters, but also to calculate the new

guesses for the variables in streams other than the feed and tear

streams.

The above strategy may be interpreted as a very sophisticated

convergence algorithm for the tear streams in a sequential modular

simulator. The algorithm requires a tear set and a feasible

calculation sequence; thus, an analysis of the flowsheet is needed to

implement this sequential modular method. Furthermore, the choice of

tear streams may have an effect on the number of outside loop

iterations needed to converge the flowsheet.

The main advantages of this approach are related to the great

reduction in the number of manipulated variables in the outside loop.

Less streams need to be flashed during the inside-outside loop

transition (usually about ten percent of the total number of streams).

This may result in cheaper outside loop iterations, although this
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advantage may be easily offset by the potential savings resulting from

integrated calculations (see Section 2.3). Another potential advantage

related to the smaller number of manipulated variables is the

possibility of using more sophisticated numerical methods to converge

the outside loop (see Section 2.2.5). For example, Broyden's

quasi-Newton method may be used to converge the outside loop. The cost

of updating the Broyden matrix during each outside loop iteration

could be too high if all the stream variables were taken into account.

However, the problem becomes more manageable when only tear and feed

streams are considered.

Comparing the two choices of outside loop variables discussed

above, our experience is that both approaches result in very similar

convergence paths. For all the example problems presented in this

thesis, the number of outside loop iterations needed to converge the

flowsheet were very similar, regardless of the choice of outside loop

variables (using direct substitution to converge the outside loop).

This result agrees with the observation reported by Kluzik [29].

2.2.4 Handling of Discontinuities.

It was mentioned in Section 2.2.1 that no sequential modular

passes on the flowsheet are needed by the simultaneous modular

algorithm if all the stream variables are considered in the outside

loop. However, sequential modular passes may be used to help

convergence even if they are not needed at each outside loop

iteration. One important use of sequential modular passes is in the

initialization of the algorithm (see Section 3.3.1). Another situation
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where sequential modular passes may be used to improve the "two-tier"

algorithm is the case of discontinuities.

Let us take for example the flash drum if Figure 2.a. During

convergence of the inside loop, the vapor fraction in the flash may

reach a value of zero or one, changing the output of the flash drum

from two phases to one phase. If during the next inside loop iteration

the vapor fraction does not move again in the direction of the two

phase region, the inside loop will then converge to a solution

containing only one phase (convergence will be achieved in the next

iteration because the bounds on the value of the vapor fraction will

result in a step size equal to zero. See convergence algorithm in

Chapter 7). If this is the real solution to the problem, the algorithm

will then continue normally. However, if the real solution is not only

one phase leaving the flash, the simultaneous modular algorithm will

fail to find the real solution. The reduced equations generated after

the next outside loop update will be one phase equations, which will

not allow the possibility of having two phases in the flash drum.

One possible solution to this problem is to execute some

sequential modular passes on the flowsheet before the phase change is

accepted in the outside loop. This will drive the solution in the

right direction (either to the one phase region or to the two phase

region) before the next reduced problem is formulated. In our

implementation, two sequential modular passes are executed

automatically every time the inside loop converges because of a

discontinuity. The next outside loop iteration is then carried out

normally.

This heuristic rule used to handle discontinuities such as phase
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changes is based on the built in ability of the modules in the

sequential modular simulator to deal with the problem. Equation

oriented methods cannot handle such numerical problems. For this

reason, it is the outside loop (with rigorous computation modules)

that drives the algorithm to the right region in search of the

solution. The introduction of a discontinuity in the inside loop would

create the same problems observed in equation oriented simulators

since this part of the two-tier method is solved globally.

2.2.5 Convergence of Outside Loop Variables.

The computational procedure shown in Figure l.d suggests that the

values of the variables obtained from the inside loop are used

directly as the next base point for the outside loop. This is

equivalent to using direct substitution to converge the outside loop.

Even though direct substitution is a natural choice of method, almost

any numerical procedure suitable for equation solving could also be

used. A more general computational procedure for the outside loop is

represented by the diagram in Figure 2.b. The convergence test is

applied after the inside loop is converged by comparing the previous

base point Xk with the new inside loop prediction F(Xk). If the

difference (Xk - F(Xk)) is not converged within a tolerance, a new

base point is guessed based on the previous iteration history; that is,

Xk+l - G(XkF(Xk),...)(2.2.5-1)
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Figure 2.b: General Calculation Sequence for Simultaneous Modular
Algorithm.
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The method used to obtain the new base point may be simple direct

substitution:

(2.2.5-2) Xk+l w F(Xk),

Wegstein extrapolation or damping:

(2.2.5-3) Xk+l - qXk + (1-q)F(Xk)o

with q computed as a function of Xk Xk-1, F(Xk) and F(X_).

A more sophisticated convergence method would be a quasi-Newton

algorithm such as Broyden:

(2.2.5-4) Xk+l = - HF(Xk),

where H is an approximation to the inverse Jacobian of the functions

converged in the outside loop (A complete discussion of these

numerical methods may be found in the literature, see for example

reference 17).

The first two methods, direct substitution and bounded Wegstein,

were implemented in the simulator developed for this work. In general,

it was found that direct substitution was adequate for most of the

problems tested. Some form of damping (a bounded Wegstein procedure

applied to all or some subset of variables that showed oscillations

during the convergence procedure) proved very useful in reducing the

number of outside loop iterations needed to converge the flowsheet

when poor reduced models were used in the inside loop.
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For the flowsheet to be converged, every single variable

manipulated in the outside loop must be converged within a given

tolerance. For this reason, it seems more appropriate to check

convergence of each outside loop variable separately, rather than

looking only at the norm of the residuals. If all the variables are to

be converged to within the same tolerance, the tolerance should be

either defined in relative terms, or applied to scaled values of the

variables. This is necessary in order to take into consideration the

large difference in magnitude between flowsheet variables.

The way the method has been defined, convergence of the outside

loop is checked before the rigorous models are executed in the outside

loop for the next iteration. It should be noted that the rigorous

models must be executed one last time after the outside loop is

converged. This procedure allows for the calculation of flowsheet

variables that do not appear in the inside loop (internal unit

variables, complex stream variables, etc.). This last execution of the

rigorous models also allows an increase in the efficiency of the

method if the last rigorous model evaluation is carried out in a

sequential modular pass.

The idea behind this last sequential modular pass is to loosen the

outside loop convergence tolerance on variables that will be computed

rigorously by the modules after convergence is achieved. Let us take

for example a flash drum where the temperature and the pressure are

specified. The heat duty will be calculated rigorously every time the

rigorous computation block is executed in the outside loop. This duty

will be exact regardless of the value computed in the inside loop,

which is the one checked for convergence purposes. Thus, as long as
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the inlet stream variables are converged, the right value of the heat

duty will be computed when the rigorous model is executed. Therefore,

convergence of this variable in the outside loop is irrelevant.

Cavett's problem [14] may be used to illustrate this concept (see

flowsheet in Figure 2.c, a complete description of the problem may be

found in Section 5.3). Table 2.2-1 shows the iteration history for

simultaneous modular calculations, where only the two tear streams are

considered in the outside loop. The outside loop is converged to a

tolerance of 10-3 in the scaled variables using direct substitution,

and it takes 11 outside loop iterations (with a total of 20 inside

loop iterations) to achieve convergence. If the calculations are

analyzed in detail, we observe that after the third outside loop

iteration, the only unconverged outside loop variables are the

temperatures of the tear streams, which oscillate from one outside

loop iteration to the next. However, it is easy to see that if the

flow rates of the tear streams are converged, the correct values of

the temperatures of the tear streams will be computed if a sequential

modular pass is carried out. Thus, the outside loop iterations may be

stopped after the flowrates are converged, regardless of the error in

temperatures. Table 2.2-2 shows the iteration history for the same

problem but with the temperatures of the tear streams scaled to be two

orders of magnitude smaller than the other variables (so that the

computed variables always satisfy the outside loop tolerance). In this

case, the flowsheet is converged in 4 outside loop iterations (with a

total of 11 inside loop iterations).
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Figure 2.c: Schematic Representation of Cavett's Problem showing
Tear Streams.
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NUMBER OF ITERATIONS

Outside Loop
1
2
3
4
5
6
7
8
9

10
11

Inside Loop
5
2
2
2
2
2

total - 20

Table 2.2-1 .Iteration History for Cavett's Problem, Number of

Inside loop Iterations for each Outside Loop Iteration. Inside

-4 -3
loop tolerance is 10 . Outside Loop Tolerance is 10 on

scaled variables. Outside loop converged using direct substitution.

NUMBER OF ITE

Outside Loop
1
2
3
4

RATIONS

Inside Loop
5
2
2
2

total - 11

Table 2.2-2 Iteration History for Cavett's problem (number of

inside loop iterations for each outside loop iteration) after

temperatures of the tear streams were eliminated from the outside
-4

loop. Inside loop tolerance is 10 * Outside loop tolerance is

10-. Outside loop converged using direct substitution.
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2.3 Integrated Calculations.

As it was mentioned before, the "two-tier" simultaneous modular

concept may be viewed as a generalization to the flowsheet level of

the "Inside-out" algorithm proposed by Boston [9] for equilibrium

separation devices. Inside-out algorithms also use two types of models

at two levels of convergence: simple models in an inside loop, and

rigorous models in an outside loop. When such an algorithm is used at

the module level, the knowledge of the unit operation being modelled

may be exploited to derive efficient convergence procedures for each

loop, specific to the unit. At the flowsheet level, however, two-tier

algorithms need to be very flexible in order to accomodate different

flowsheet configurations.

For a flowsheet containing unit operations modelled by inside-out

methods, a simultaneous modular simulator would include a two-tier

algorithm at the flowsheet level, and other more specialized two-tier

algorithms to converge the modules. Thus, it is possible to talk about

inside loops with simple models, and outside loops with rigorous

models within the outside loop iterations used for global convergence.

This computational scheme is represented in Figure 2.d.

A logical step would be to integrate the inside-out algorithms in

the modules with the global simultaneous modular architecture of the

simulator. Two degrees of integration are considered in this study:

(1) An Integrated Simultaneous Modular Simulator: where one or two

iterations are carried out at the module level outside loops.

Reduced model parameters are then calculated from the unconverged

solution in the block.
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(2) A Completely Inside-Out Simulator: where rigorous block

calculations are reduced to the first parameter generation step in

the local inside-out algorithm. The inside loops in the blocks are

never converged. Thus, the rigorous computation blocks become just

simple model parameter generators for the global inside loop. The

computational scheme for this type of architecture is shown in

Figure 2.e.

Both implementations require that the reduced models for the units at

the flowsheet level be the simple models used in the two-tier

algorithms at the unit level.

The "Integrated Simultaneous Modular" approach may be viewed as a

modification of the standard simultaneous modular concept where

certain rigorous block calculations in the outside loop have a very

loose tolerance. The "Completely Inside-Out" concept, however, is a

new idea in process simulation. Here, the modules and the flowsheet

are converged simultaneously, saving a large number of potentially

expensive rigorous block computations.

The main advantages of integrated calculations are:

(1) Rigorous block calculations are not needed in the outside loop.

(2) The reduced models already developed for inside-out algorithms

to simulate complex separation units are also exploited at the

flowsheet level. (Models for such units as complex distillation

columns, extractors, three phase distillation, etc.). These

reduced models are usually efficient and very well suited for the

unit.

(3) The reduced model parameters generated automatically by the

modules for internal calculations are also used at the flowsheet

level.
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(4) The reduced models are already implemented in the existing

modules. Some of the original code may be used directly for

reduced model formulation at the flowsheet level.

One possible disadvantage of integrated calculations is that more

outside loop iterations may be needed to converge the flowsheet,

compared to the standard implementation of the approach. However, this

problem was not observed in the example problems solved in this work,

suggesting that integrated calculations may be far more efficient than

standard two-tier algorithms. A set of example problems solved with

standard and integrated calculations is presented in Chapter 5, where

the different implementations of the simultaneous modular concept are

compared with sequential modular calculations.
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CHAPTER 3: DEVELOPMENT OF A SIMULTANEOUS MODULAR SIMULATOR.

The feasibility of the "two-tier" simultaneous modular concept in

process simulation and optimization has already been demonstrated in

past studies (see Chapter 2). One common weakness in past studies is

the lack of capabilities of the simultaneous modular simulator

developed to test the method. Jirapongphan [27] used ad-hoc

modifications of the FLOWTRAN simulator to run his sample problems.

The sequence of computations were controlled by means of two FLOWTRAN

control blocks (equivalent to design specification blocks in other

simulators). FLOWTRAN cost blocks were used to interface the unit

operation modules, the reduced model parameter generators and the

matrix generators with the rest of the simulator. For any given run in

this simulator the user had to specify all the new blocks in the input

file, and then use FORTRAN statements mixed among the FLOWTRAN input

lines to direct the calculations. As a result of these preparations,

each run had to be tailored differently, making it very difficult to

solve any given problem. Furthermore, the user defined computational

procedures depended upon the types of reduced models used, linear or

nonlinear. Thus, comparative problem solving was even more difficult

to perform.

If Jirapongphan's ad-hoc runs represent one extreme in the

development of a simultaneous modular simulator, the other extreme

would be to develop an entirely new simulator designed specifically to

perform computations with the proposed architecture. This the the
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approach used by Stadtherr and Chen [53], and by Gorczynski et al

[26]. The advantages of designing a new simulator are clear: ease of

use; efficient calculations; potential reductions in overhead, and an

open ended general purpose simulator (once the simulator is

functional). However, the effort required to develop a new simulator

is probably too great to make this idea attractive for anything more

than a research oriented package.

The approach chosen in this study is the middle point between the

two extremes mentioned above. The idea is to take an existing general

purpose sequential modular simulator, design and implement an open

ended general purpose simultaneous modular simulator. This should be

accomplished with a minimum of modifications to the original software.

If this approach proves to be feasible, it would then be possible to

achieve significant improvements in the performance of existing

simulators at a relatively low cost.

The rest of this chapter is thus devoted to a description of the

architecture of sequential modular simulators and the changes needed

to allow them to perform simultaneous modular calculations. The

specific work performed on the ASPEN PLUS process simulator will be

discussed as an example.

3.1 Architecture of Sequential Modular Simulators.

The main idea behind sequential modular simulators is the use of

separate building-block subroutines or modules to simulate individual

process units. Each module is capable of computing the outlet stream

variables from the particular unit given values of the inlet stream
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variables and the necessary equipment parameters. Once the outlet

streams are known, they may serve as inlet streams to the following

modules. The modules are then executed sequentially one after another.

For acyclic flowsheets, the simulation problem is solved when each

module is executed once. However, flowsheets usually contain recycle

loops; that is, cycles for which too few stream variables are known to

allow the equations for each unit to be solved independently. To solve

a recycle problem with a sequential modular approach, the system must

be made acyclic by "tearing" streams in the recycle loops. A tear

stream is a stream for which stream variable values are guessed

initially. Based upon the tear stream guesses, information is passed

from module to module until new values of the tear stream variables

are computed. Numerical algorithms such as direct substitution,

bounded Wegstein or Broyden quasi-Newton [59] are then used to

generate new guesses for the tear streams. This procedure is repeated

until the tear stream variables are converged within a given tolerance.

In older simulators the user was usually responsible for choosing

appropriate tear streams, generating a feasible sequence of

calculations for the modules in the flowsheet, and defining special

blocks to converge the tear streams. This situation, however, has

changed during recent years. Present day commercial simulators like

PROCESS [12] and ASPEN PLUS [1] are capable of performing an analysis

of the flowsheet structure. Stream tearing and calculation sequencing

are carried out automatically, so that for most problems, convergence

of the flowsheet is now transparent to the user. We would like to

achieve the same degree of user friendliness with the new simulator.

Even though simultaneous modular simulators use a totally
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different concept to converge a flowsheet with recycles, it may still

be useful to exploit the results of the sequential modular flowsheet

analysis in the new architecture. This point will be discussed in

detail in section 3.3 of this chapter.

3.2 Calculation Control Program and Unit Operation Modules.

Regardless of the complexity of the executive system of the

package, the core of a sequential modular simulator is a calculation

control program. This program decides which module or convergence

routine should be called next, and then executes the appropriate

subroutine calls. In the simplest case, the user may have to prepare

the main control program that performs these functions, as is done in

some classroom simulators [18]. In commercial simulators, the control

program is either generated by the simulator itself tailored to the

problem at hand, or is already available in a form that may be used to

solve any problem. In every case, it is the calculation control

program that determines the architecture of the simulator.

The reason for Jirapongphan's awkward implementation of the

simultaneous modular architecture in FLOWTRAN is that he did not

modify the control program directly. Instead, control of calculations

was performed by a system of subroutines (blocks) outside the main

control program. For the implementation in this work, it was decided

to let the main control program guide the simultaneous modular

calculations directly. To accomplish this objective, the tasks

assigned to the control program had to be changed.
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In a sequential modular simulator the control program executes

three main functions:

(1) Initialize inlet and tear streams.

(2) Decide which module needs to be executed next. This is done

based on the given calculation sequence and the degree of nesting

of the loops to be converged.

(3) Check for convergence of each loop (i.e status of the

convergence blocks).

The new functions assigned to the control program would be as follows:

(1) Initialize inlet and tear streams.

(2) Initialize calculations by carrying out sequential modular

passes.

(3) Direct the rigorous computation blocks to generate reduced

model parameters for the inside loop.

(4) Control the generation of information needed to converge the

inside loop (Jacobian of reduced equations, gradient of objective

function, residuals, etc.).

(5) Control solution of the reduced problem in the inside loop.

(6) Check convergence of the outside loop. If this loop is

unconverged, then the variables must be translated from the inside

loop to the outside loop.

(7) Repeat steps (3), (4), (5) and (6) until the outside loop is

converged.

When the lists of old tasks and new tasks assigned to the main

control program are compared, it seems that very extensive

modifications to the original code would be needed to accomplish the



-75-

conversion. However, this is not really true. Most of the steps

described above are almost equivalent because they employ the same

calculation control.

In the new simulator the modules are required to perform other

functions in addition to the solution of output variables given

inputs. These added functions are:

(1) Reduced model parameter generation from base case solution.

(2) Generation of the Jacobian matrix of the reduced equations.

(3) Evaluation of the residuals of the reduced equations.

These functions may have to be performed separately or in combination,

depending upon the stage of solution of the problem. As a module is

executed by the main control program, a flag may be passed to indicate

which of the above functions needs to be executed during the pass.

In sequential modular passes, the appropriate modules are executed

according to a preestablished calculation sequence. For the parameter

generation steps, the modules also need to be executed in the same

sequence to obtain the base solution for each unit. The generation of

parameters may be executed directly by the module after the rigorous

model is executed. Most of the information needed to converge the

inside loop (mainly matrices and vectors that need to be generated)

may be obtained from programs added to the original unit operation

modules. This way it would be possible to generate this information by

executing the modules in the same order as in sequential modular

passes.
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3.3 Computational Procedure.

The main steps of the computational procedure in simultaneous

modular calculations were discussed in Section 2.1 . These steps are

closely related to the tasks assigned to the main control program. In

this section, each step of the computational procedure will be

discussed in detail.

3.3.1 Initialization and Parameter Generation.

The term initialization may be used at two levels. Any sequential

modular simulator needs to compute the thermodynamic condition of the

inlet streams, and to initialize tear streams and internal block

variables. However, initialization of the sequential modular method in

this context refers to the process of finding an initial guess for the

outside loop variables. A suitable base point needs to be computed for

each module before reduced model parameters are generated for the

inside loop. In principle any arbitrary base point for each unit could

be used to start the calculations. However, the original sequential

modular architecture of the simulator may be used to carry out a

number of sequential modular passes on the flowsheet. This procedure

leads to more reasonable base points.

The newest commercial simulators, ASPEN PLUS and PROCESS, carry

out flowsheet analysis using sophisticated tearing and sequencing

algorithms [1, 12, 40],. As a result of this analysis a good

calculation sequence is already known and may be used in the

initialization passes. The more basic initialization procedures needed
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for the sequential modular passes, tear stream guesses and enthalpy

and phase equilibrium calculations for the inlet streams (inlet stream

flashes), also need to be performed by the original simulator;

therefore, they need not be changed in the new version.

There is one difference between the normal sequential modular

passes executed by the original simulator and the initialization

passes in the new simulator. This difference arises in the handling of

nested loops. In a normal sequential modular pass, loops nested inside

other loops need to be converged before the calculation sequence

continues in the outer loops. Thus, for for a calculation sequence of

the form shown in Figure 3.a, the modules would be executed in the

following order:

A (B C F, B C F, ... ) D E

For the case where only a feasible base point for the simultaneous

modular algorithm is needed, convergence of the inner loops is usually

not required. Therefore, a sequential modular initialization pass may

be simplified to the form:

A B C F D E

Rigorous sequential modular initialization passes may be executed for

cases where a good initial guess is necessary to converge the

calculations. This option would be equivalent to using the sequential

modular simulator to start convergence far from the solution, and then

switching to simultaneous modular calculations close to the solution.
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A B C D E

%tear

fF

Figure 3.a: Example of Flowsheet with Two Recycles.
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From the point of view of execution, both types of passes use the

same tear streams and follow the same preestablished calculation

sequence. The only difference is that for the initialization passes,

the convergence blocks used to converge the different tear streams are

ignored. This is an important advantage of the new architecture, only

a feasible calculation sequence is required from the flowsheet

analysis step. Nested loops and convergence blocks are not needed at

any stage of the calculations.

The number of passes needed to initialize the calculations varies

from problem to problem, and may be considered a convergence parameter

set by the user. Stadtherr and Chen [53] report that for their

problems up to five passes are sometimes necessary to get a good

initial point. For the work done in this thesis it was found that two

initialization passes were almost always enough.

The first reduced model parameter generation step may be executed

directly during the last sequential modular initialization pass. The

modules may generate directly the reduced model parameters after the

rigorous solution is obtained for each module. For the cases where

some blocks have zero flow going through them at the time when the

reduced model parameters are generated, a small flow rate may be

arbirarily assumed in order to get values for the reduced model

parameters. For example, a flash block whose rigorous solution

indicates a vapor fraction of zero may be assumed to have a vapor

fraction of 0.05 (only when reduced model parameters are generated).

This way, the blocks that follow the vapor stream will have a small

flow going thorugh them during the parameter generation stage.
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3.3.2 Reduced Problem Formulation and Solution.

The inside loop of the simultaneous modular procedure starts after

the reduced model parameters are generated. This part of the

calculations should be performed in equation oriented fashion, that

is, efficient numerical methods should be used to solve simultaneously

the reduced problem in the inside loop. The reduced problem is the

simultaneous solution of the system of reduced flowsheet equations if

simulation calculations are to be performed. Alternatively, for

optimization, the reduced problem would be a highly constrained

optimization problem, where the reduced flowsheet equations are

treated as equality constraints (see Chapter 7). In both cases, the

flowsheet describing equations generated in the inside loop take the

form of equations (1.1-5). The feed stream variables and the operating

parameters are specified by equations of the form (1.1-2). The

numerical methods used to solve the reduced problem (Newton-Raphson

for simulation and Successive Quadratic Programming for optimization)

require basically the same numerical information: the Jacobian matrix

and the residuals of the reduced flowsheet equations. Since the idea

of the method is to solve the inside loop problem globally, the

vectors and matrices that characterize the problem must include all

the equations in the flowsheet, and not just the reduced equations for

a single module.

There are three types of flowsheet describing equations in the

reduced problem: the equations that model the unit operations, the

connectivity relations and the design specification equations. The

information related to the equations that describe the units may be
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generated by calling the modules in the same sequence as during the

initialization passes, but instructing the modules not to perform

rigorous calculations. The objective is to generate the global

information by putting together in large arrays the information from

each module. All the information needed to characterize the equations

that describe the units will be generated when all the modules have

been executed once.

There are two ways to treat the connectivity equations in a

flowsheet. The first way, used by Jirapongphan [27] , is to duplicate

each process stream in the reduced variable list. The objective is to

make the equations for a given unit basically independent of the other

units by using separate stream variables. The connectivity of the

flowsheet is then expressed in terms of network relationships, where

the outputs from certain units are equated to the inputs of other

units. This approach has the advantage of preserving a nearly block

diagonal structure of the reduced problem Jacobian matrix, as shown in

Figure 3.b. The main disadvantage of this idea is that the total

number of variables (and equations) is almost twice the number of the

real process variables because of the duplication of stream variables.

The second approach is that suggested by Stadtherr and Chen [53].

Stream variables are represented only once. The connectivity equations

are generated implicitly as the equations for a given unit are related

to the appropriate stream variables, whether these variables are

associated with a stream coming from another unit or with a stream

going to another part of the process. This approach results in a

smaller system of equations than the first approach suggested.

However, the system of equations is less structured. Thus, keeping
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Figure 3.b: Structure of the Jacobian of the Reduced Problem when
Stream Variables are repeated in the Problem Formulation.

unit
dusenibing
equations

itowsheet connectivity equationz
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track of the structure during matrix generation steps is more

complicated. The work carried out by Stadtherr and Chen suggests that

the second approach results in more efficient calculations, and for

this reason it was chosen in this work (see Section 3.4.3).

The design specification equations may have any arbitrary form

given by the user. This makes their handling a particularly difficult

problem in the development of a general purpose simultaneous modular

simulator. Given the complexity of this problem, a whole chapter of

this thesis is devoted to this subject (see Chapter 6). In the

following paragraphs some general implementation aspects will be

pointed out.

In present commercial simulators the user is given much

flexibility in defining design specifications. The equations may be so

complex that any number of user defined subroutines may be needed just

to evaluate the residuals [1]. Since the form of the design

specification equations is not known a priori, the most logical way to

handle them is to have separate subroutines to evaluate the residuals.

These subroutines should be called directly by the main control

program, so that the residuals or the numerical derivatives may be

generated when needed.

There are two types of variables associated with each design

specification: the variables that appear in the equation itself, and

the variables which are "freed" to satisfy the new equation (keeping

the number of degrees of freedom). Both types of variables need to be

identified in terms of the reduced problem variables during the

initialization procedure. The information that identifies the freed

variables should be passed to the modules during the inside loop
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iterations. The equations that would normally fix the values of these

variables need not be generated. For example, if a flash calculation

with temperature and pressure is specified by the user, and the

temperature is to be varied to achieve a specification, then the

equation that fixes the flash temperature to the input value should

not be generated.

The last part of the reduced problem that needs to be

characterized is the objective function to be maximized or minimized

in optimization problems. The objective function may be handled in

exactly the same way as the design specifications. The form of the

objective function is also arbitrarily defined by the user. Thus, the

simplest way to handle it is to generate a subroutine to evaluate the

value of the function, and to call this subroutine from the main

control program. The gradient of the objective function may be

generated numerically once the variables that appear in the function

are identified in terms of the inside loop variables. There are also

decision or "freed" variables associated with the optimization

problem. The information that identifies these variables also needs to

be passed to the modules in order to avoid generating the equations

that would fix their values.

In a general implementation, the simulation problem becomes just a

special case of the more general optimization problem. The algorithm

used to solve the optimization problem may also be used to solve the

system of equations found in simulation problems (see Chapter 7).

Thus, only one constrained optimization algorithm is needed to solve

any reduced problem, simulation or optimization. Similarly, the

decision variables associated with design specifications, and those
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associated with the optimization problem are really indistiguishable

in the inside loop. For this reason, they are handled in the same way,

both at the problem definition and at the numerical solution levels.

There is one last important issue concerning the reduced problem:

the choice of inside loop variables. The internal block variables

associated with the unit operations will depend upon the reduced

models used to describe the units. For the nonlinear flash model used

in this study, heat duty, vapor fraction and the base equilibrium

constant are flash variables that need to be included in the inside

loop (see Section 4.3). Alternatively, a linear reduced model may only

require the heat duty as an internal variable (see section 4.2). An

important idea in the development of the inside loop is the

elimination of the internal unit variables which are not essential to

achieve convergence. As a result of this, most of the variables

present in the inside loop are stream variables.

The streams in the inside loop do not have to carry all the

information normally calculated for a stream in a simulator. A stream

may be characterized knowing only the flowrate of each component and

two variables to describe its thermodynamic condition. All the stream

information needed for the reduced models in the units may be obtained

from these variables. There are two obvious choices of variables to

characterize the thermodynamic condition of a stream: pressure and

temperature, and pressure and enthalpy. The use of the first pair of

variables makes the enthalpy balance equations for the units

nonlinear, as enthalpy equations need to be added to the reduced

models. However, all the flash calculations needed through the

computational procedure are simple pressure-temperature flashes. The



-86-

second pair of variables results in linear enthalpy balances accross

the units, but requires more complex pressure-duty flashes for other

calculations. We feel that both choices of variables are possible in a

practical implementation of the algorithm (see next section).

3.3.3 The Outside Loop Iterations.

Once the inside loop is converged, new values of the process

variables will be available. Convergence of the outside loop must be

checked at this point. One way to check convergence is to calculate

the difference between the computed inside loop variables during two

consecutive outside loop iterations. A tolerance may be defined in

terms of the maximum difference of the scaled variables or in terms of

the norm of the differences of all the scaled variables.

New guesses for the outside loop variables may be computed by any

suitable convergence method, such as direct substitution or bounded

Wegstein. The new values of the stream and unit variables should be

placed in the stream and equipment parameter vectors originally

available in the sequential modular simulator. The process streams

then need to be reinitialized in order to find all the information

required for the rigorous calculations. Finally, a new rigorous base

solution is computed by executing each module again. From this

solution, new reduced model parameters may be computed to start the

next inside loop iteration.

The transition from the inside loop to the outside loop is carried

out by placing the updated inside loop variables in the appropiate

locations of the original sequential modular simulator. Since the
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stream vectors used in rigorous calculations carry more variables than

those in the inside loop, the process streams need to be

reinitialized. Depending upon the particular implementation of the

method, either all the streams of the process or only inlet and tear

streams will be flashed (see Section 2.2). And the type of flash

calculations required to reinitialize the streams will depend upon the

variables carried in the inside loop (see section 3.3.2). For this

work, the user is given the choice between converging all the streams

or only tear streams in the outside loop. The second option is

preferred for nonintegrated calculations (see Section 2.3), and

therefore is used as default. For the streams in the inside loop,

temperature and pressure were chosen to represent thermodynamic

condition. This choice of variables allows for simpler

pressure-temperature flashes during the transition from the outside

loop to the inside loop.

3.4 ASPEN PLUS Implementation.

In order to understand the procedure needed to convert the

simulator ASPEN PLUS to a simultaneous modular architecture, it is

first necessary to explain how this simulator works.

3.4.1 Steps in an ASPEN PLUS Simulation Run.

The steps involved in an ASPEN PLUS simulation are shown in Figure

3.c. The starting point is an input file written in ASPEN PLUS input

language that describes the flowsheet to be simulated (sample input
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files may be found in Chapter 5. The ASPEN PLUS input language is

described in detail in reference 1. A complete description of each

step involved in an ASPEN PLUS run may be found in the first chapter

of reference 2).

The input file is interpreted by the Input Translator, which also

generates a FORTRAN program to carry out the simulation. The program

written by the Input Translator is tailored to the problem at hand

according to the information given in the input file. The simulation

program is then compiled along with any FORTRAN subroutines provided

by the user. Once the program is compiled, an executable module is

created by the loader. Only the ASPEN PLUS subroutines needed for the

particular simulation run are loaded with the main simulation program

during this step. Finally, the simulation is performed by executing

this program and a report with the simulation results is generated.

During the whole execution process, the history of the calculations

and any diagnostics generated are placed in a "History" file to help

the user understand and debug the run.

It is easy to see from the above description that ASPEN PLUS

generates its own main control program (simulation program) for each

problem (general purpose programs may be generated once to solve

several problems [1]; however, this does not alter the general

principles discussed here). As discussed before, the main control

program determines the architecture of the simulator. We shall study

the programs generated by ASPEN PLUS in more detail.
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Figure 3.c: Steps in an ASPEN PLUS Run (Reproduced from Reference 2, with permission
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3.4.2 The Input Translator and the Structure of the Simulation Program.

In an ASPEN PLUS run, the simulation program is generated by the

input translator. The main functions of the input translator are

summarized in Figure 3.d.

The input file provided by the user is first combined with any

user defined insert files (files equivelent to subroutines written in

ASPEN PLUS input language). Since the keywords in the input file may

be in any order, the input is sorted to a preestablished order before

the input is analyzed. The input processor compares the keywords in

the input file with the accepted keywords stored in a system

definition file (a file that contains a table with all the keywords

that may be used in the simulator). The information entered using

keywords in the input file is then processed, and the information

needed from the data banks is retrieved. The next step is flowsheet

analysis. Three basic functions are carried out during this step: (1)

A set of tear streams is chosen following the criteria developed by

Upadhye and Grens [57]; (2) a feasible calculation sequence is

generated, and (3) the convergence blocks needed to converge the

material and information recycle loops are generated. The most useful

information for the new simulator is the calculation sequence.

In order to better understand how the calculation sequence is

stored and used, we should first look at the structure of the main

calling program created by the program generator. ASPEN PLUS employs

the execution monitor concept [2]. In its simplest form, the execution

monitor is a subroutine that performs some of the functions of the

main control program as discussed in Section 3.2:
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(1) The monitor determines the next block to be executed.

(2) The monitor sets up block data and determines the next block

to be executed.

(3) Control is transferred to the statement that calls the block

subroutines in the main program.

(4) Upon completion of the model calculations, control is returned

to the monitor.

A simplified calling program is show below:

100 CALL MONITOR(NGOLl)
GO TO (101,102), NGO

101 CALL FLASH(PLEX(Ll))
GO TO 100

102 CALL SPLIT(PLEX(Ll))
GO TO 100

With this scheme there is only one calling statement for each model,

regardless of the number of blocks that use the model. The block data

address, L, is different for each block. The array PLEX is a vector

that contains all the information related to the run (see a complete

description of the PLEX data structure in reference 2). The code above

could, for example, apply to a flowsheet with one FLASH block and one

SPLIT block, or to a flowsheet with 100 FLASH blocks and 50 SPLIT

blocks. Ll, which represents a pointer to the block data, has a

different value for each block. Thus, only one call for each model is

generated; a given call can be used for any number of blocks.

The actual ASPEN PLUS implementation of the monitor concept is

more complicated. Figure 3.e shows part of the main calling program

generated to simulate Cavett's [14] problem (see description of the
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C *** CALL EXECUTION MONITOR TO SIMULATEREPORT, OR QUIT *
80 ICALL-0

ENTRY RENTRY
90 CALL EXMON (ICALL ,LPROC ,LBSMB ,LRPTWR ,SIM ,

* RPT )
C DETERMINE NEXT MODEL TO CALL
C AND LOCATE BLOCK BEAD AND ITS MAJOR ARRAYS
100 IF (SIM)

*CALL SEQMON(IPLEX(LBSMB),IPLEX(LBSMB+11),IPLEX(LBSMB),
*

*

*

NGO ,NB ,Ll
L4 ,L5 ,L6
L9 ,L10 ,Lll

* L14 ,L15
* L19 ,L20
IF ( .NOT. RPT) GO TO 400

300 CALL RPTMON (IPLEX(LRPTWR),
* NGO ,NB
* L4 ,L5
* L9 ,L10
* L14 ,L15
* L19 ,L20
IF(IRNCLS .LT. 100) GO TO 4

500 CALL QUIT
GO TO 99999

400 NGO = NGO + 1
GO TO (90, 101

* 102 103
* ) NGO

,L16
,L21

,Ll
,L6
,Lll
,L16
,L21

00

,L2
,L7
,L12
,L17
,L22

,L2
,L7
,L12

,L17
,L22

,L3
,L8
,L13
,L18
)

,L3
,L8
,L13
,L18

)

C
101 CALL MNF001

*

*

*

*

*

GO TO 100
102 CALL MNF002

*

*

*

*

*

GO TO 100
103 CALL MNF003

*

*

*

*

*

GO TO 100
99999 RETURN

***** CALL MODELS *****
(NB
IPLEX(L4)
IPLEX(L8)
IPLEX(L12)
IPLEX(L16)
IPLEX(L20)

(NB
IPLEX(L4)
IPLEX(L8)
IPLEX(L12)
IPLEX(L16)
IPLEX(L20)

(NB
IPLEX(L4)
IPLEX(L8)
IPLEX(L12)
IPLEX(L16)
IPLEX(L20)

,IPLEX(Ll)
,IPLEX(L5)
,IPLEX(L9)
,IPLEX(L13)

,IPLEX(Ll7)
,IPLEX(L21)

,IPLEX(Ll)
,IPLEX(L5)
,IPLEX(L9)
,IPLEX(L13)

,IPLEX(Ll7)
,IPLEX(L21)

, IPLEX(L1)
,IPLEX(L5)
,IPLEX(L9)
,IPLEX(L13)
,IPLEX(Ll7)
,IPLEX(L21)

,IPLEX(L2)
, IPLEX(L6)
,IPLEX(L10)
,IPLEX(Ll4)
,IPLEX(L18)
,IPLEX(L22)

,IPLEX(L2)

, IPLEX(L6)
,IPLEX(L10)

,IPLEX(Ll4)
,IPLEX(L18)
,IPLEX(L22)

,IPLEX(L2)

, IPLEX(L6)
,IPLEX (L10)
,IPLEX(L14)

,IPLEX(L18)
,IPLEX(L22)

,IPLEX(L3)
,IPLEX(L7)
,IPLEX(Lll)
,IPLEX(L15)
,IPLEX(L19)

,IPLEX(L3)
,IPLEX(L7)

,IPLEX(L1l)
,IPLEX(L15)
,IPLEX(L19)

)IPLEX(L3)
,IPLEX(L7)
,IPLEX(Lll)
,IPLEX(Li5)

,IPLEX(Ll9)

Figure 3.e: Sample Simulation Program Generated by ASPEN PLUS.
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INITIALIZE RUN SET FLAG TO SOLVE
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6END
Figure 3.f: Steps in the Simultaneous Modular Calculation Sequencing

Subroutine.

F:

II

i

00000



-95-

problem in Section 5.3). The simulation program may execute the

simulation calculations, the report writer, or both. SEQMON controls

the simulation calculations, in the same way as subroutine MONITOR in

the example shown above. RPTMON controls the report writer, and EXMON

controls whether SEQMON or RPTMON is executed. All three of these

monitors work in reverse communication mode. That is, they are called

repetitively, each time returning instructions to the main calling

program. Subroutines MNFOO1, MNF002 and MNF003 are interface routines

that call the subroutines that actually simulate the modules.

One advantage of the ASPEN PLUS architecture is that the main

calling program generated by the input translator does not have to be

directly modified to make the simultaneous modular conversion. The

control of calculations is performed by the subroutine SEQMON, which

is not altered by the input translator. Thus, if the subroutine SEQMON

is modified to perform the new functions of the main control program

described in Section 3.2, then a simultaneous modular version of ASPEN

PLUS will be available.

A flowchart describing the flow of information in subroutine

SEQMON is shown in Figure 3.f (a listing of the simultaneous modular

section of the program is included in Appendix 3). The subroutine has

all the characteristics of a simultaneous modular control program,

except that the module calls are executed by the main calling program

generated by the input translator. SEQMON decides which block should

be executed next and then passes all the information needed to execute

the module call to the main program. The type of computations to be

carried out by the modules is controlled by a flag. Other flags

control the types of reduced models to be used (linear versus
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nonlinear); the stream variables converged in the outside loop (tear

and inlet streams only versus all the streams), and the convergence

method used in the outside loop (direct substitution versus bounded

Wegstein). Convergence of the inside loop is monitored directly by the

solver subroutine used to solve the reduced problem. This solver

program is written in reverse communication mode; so that it returns

repetitively to SEQMON indicating the status of the calculations and

the information needed for the next call (see description of the

algorithm in section 7.3.2. A listing of the subroutine is included in

Appendix 2).

The modules were modified as little as possible to allow for the

functions needed in the new architecture. Three sections were appended

at the end of each subroutine used to simulate a module: (1) reduced

model parameter evaluation; (2) generation of the Jacobian of the

reduced equations, and (3) evaluation of the residuals of the reduced

equations. As an example of the computer code used to perform these

functions, the simultaneous modular part of the subroutine used to

simulate a heater/pressure changer (subroutine UHE01 in ASPEN PLUS) is

included in Appendix 4. The overall information flow is a simultaneous

modular ASPEN PLUS simulation is as shown in Figure 3.g.

The reduced model parameters for each model are stored in local

retention variables which are updated once every outside loop

iteration. There are enthalpy parameters for each stream (see Chapter

4) in the process. During a parameter generation step, each module

computes the stream parameters for the outlet streams, for the inlet

tear streams, and for the inlet streams that do not come from other

blocks.
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The calculation sequence generated during the flowsheet analysis

step is stored in a matrix with two columns. The first column contains

either an identification for a block to be executed, or a step number

to branch to. The second column contains the GO TO index to be used by

the main calling program in order to branch to the right subroutine

call. This information is stored sequentially in the matrix. That is,

each row in the matrix corresponds to a step to be executed. The

branches to different steps in the calculation sequence reflect the

need to loop back in order to achieve convergence in the sequential

modular simulator. Some of the blocks called in the calculation

sequence are used to handle convergence of the recycle loops. In

simultaneous modular runs, branches and convergence blocks are ignored

when a pass on the flowsheet is carried out. Therefore, the steps on

the sequence are performed straight to the end, skipping branching

steps and ignoring calls to convergence blocks.

3.4.3 Reduced Problem Formulation

In section 3.3.2, it was indicated that there are two ways to set

up the reduced flowsheet equations. The first way is to duplicate each

stream variable and then generate network type equations to model the

flowsheet connectivity explicitly. The second way is to use each

stream variable only once and keep the connectivity relations

implicit. Even though the first formulation results in a much larger

set of equations, its use may prove advantageous if very efficient

sparse matrix handling algorithms are used to decompose the Jacobian

matrix. However, in this work it was decided to follow Stadtherr's
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Figure 3.g: Information Flow in Simultaneous Modular Simulator.
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suggestion and use the second formulation to reduce the size of the

problem.

In order to simplify the process of locating variables in the

reduced problem, it was decided to further sacrifice the structure of

the Jacobian matrix of the reduced simulation equations. This decision

was further justified by the fact that the programs used to factorize

the Jacobian (Harwell library subroutines MA28AD, MA28BD and MA28CD.

See documentation in reference 24) do not use algorithms that would

fully exploit a more structured matrix.

The structure of the Jacobian matrix generated by the version of

ASPEN PLUS developed in this work is shown in Figure 3.h. All the

stream variables are kept together at the beginning of the variable

list, followed by the internal variables used in each unit operation

block in the flowsheet. Each stream in the process is given a number

to identify the position of the stream vector in the variable list.

This number is chosen to match the order generated by ASPEN PLUS

during the flowsheet analysis step. Each stream vector consists of

component flowrates (ordered according to the component list used

internally by ASPEN PLUS), temperature and pressure. Thus, the size of

the stream variable section in the variable list is just the number of

components plus two times the number of streams in the flowsheet. Any

stream variable may then be located knowing the number of the stream

on the stream list and the number of components present in the

process. For example, the temperature of a given stream will be in a

position given by the following expression:

(n-1)(NC+2)+NC+l
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Where n is the number of the stream and NC is the number of components.

Only a counter is needed to keep track of the equation numbers in

the reduced problem. The counter will point to the specific number of

the equation when the derivatives or the residual of the equation are

evaluated. No permanent record of the location of each equation is

needed. However, it is not difficult to identify a given equation by

looking at its position. Because of the architecture of the simulator,

all the reduced equations associated to a module will be generated

together in a preestablished order. Design specification equations are

generated at the end of the reduced problem definition step.
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CHAPTER 4: REDUCED MODELS FOR UNIT OPERATIONS

The core of the two-tier simultaneous modular approach is the set

of reduced models for the unit operations, which provide the equations

for the inside loop. The first simultaneous modular algorithms used

linear models in the inside loop (see Section 2.1). However, more

recent work suggests that the use of nonlinear reduced models may

result in a significant improvement in the computational efficiency of

the overall algorithm. The purpose of this chapter is to discuss in

detail the present knowledge of reduced models. In Section 4.1 the

criteria involved in choosing adequate reduced models are discussed.

Section 4.2 is devoted to a concept in linear reduced models that uses

more information about the physical process than the models previously

used. In the remainder of the chapter new nonlinear reduced models for

some complex units commonly found in flowsheeting problems are

proposed.

4.1 Required Characteristics of Reduced Models.

The simultaneous modular concept may be viewed as a generalization

to the flowsheet level of the inside-out algorithms previously

developed to simulate individual units. Thus, the arguments

rationalized by Boston [9] in his description of individual equations

may be generalized to the reduced models for entire units. Other

criteria, such as numerical analysis -and mathematical theory, may be

used to derive other desired characteristics of reduced models. The
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following is a list of the main requirements imposed on the

development of reduced models. This list represents a starting point

in the derivation of new models:

(1) The number of equations in a reduced model should be much

smaller than the number of equations solved by the rigorous unit

module.

(2) The equations in the reduced model should be well behaved.

(3) The number of degrees of freedom of a simple model should be

the same as that of the corresponding rigorous model.

(4) The variables included in a reduced model are: inlet and

outlet stream variables, equipment parameters, computed properties

and the internal variables that may be unique to the simple model.

(5) The reduced model equations should give the same solution as

the rigorous model at the base point where their coefficients are

calculated.

(6) The simple model equations and the Jacobian associated with

them should be evaluated analytically, without other auxiliary

calculations, such as thermophysical properties, and without

requiring iterative calculations.

Requirements (1) (2) and (6) guarantee that the calculations

needed to converge the inside loop are relatively simple, so that

equation oriented methods may be used to solve the reduced simulation

equations. It is desired to have a system of simulation equations that

is smaller and better behaved than the rigorous system of equations

that describe the flowsheet globally. Furthermore, the calculations in
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the inside loop may be greatly simplified if the reduced equations and

their derivatives are computed analytically.

Requirement (3) insures that the problem defined in the inside

loop is equivalent to the original problem in terms of the variables

that are calculated when the simulation problem is solved. Requirement

(4) is also related to the degree of freedom analysis as it defines

the variables that must appear in the model. The choice of variables

in the model is particularly important when dealing with design

specifications, where some model parameters that are usually specified

may become variables (see Chapter 6).

Finally, requirement (5) is needed to guarantee that the

simultaneous modular procedure converges to the solution of the

rigorous simulation equations.

The list of requirements for reduced models presented above does

not impose any constraints as to the actual form of the model being

used for a unit. That is, these requirements would apply to both

linear and nonlinear reduced models. As it was mentioned before,

nonlinear models seem to be more effective in simultaneous modular

calculations. The following set of requirements was developed with the

idea of further improving the performance of nonlinear reduced models:

(7) The equations in a nonlinear reduced model should be

representative of the type of unit being modelled.

(8) The material and energy balances around each unit should

always be satisfied, even away from the base point.
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(9) The expressions for the coefficients of a simple model should

be analytical. These expressions may involve any variables of the

rigorous model.

Requirements (7) and (8) indicate that the reduced models should

make use of the knowledge available of the physical process taking

place in the unit operations. The reduced models would then be

suitable engineering approximations of the rigorous equations (see for

example the reduced models presented in Section 4.3 and in Appendix

1). Such models increase the range of extrapolation of the reduced

equations away from the base points at which the model coefficients

were computed.

Requirement (9) is intended to discourage the use of gradient type

models that require the computation of numerical derivatives accross

each unit. Such calculations require a lot of computer time and should

be avoided whenever possible. Analytical expressions for the reduced

model coefficients result in increased efficiency of the parameter

generation steps in each outside loop iteration.

Requirement (5) guarantees that the solution found by the

simultaneous modular procedure for simulation problems satisfies the

rigorous simulation equations. That is, the method will converge to

the exact solution of the simulation problem. For optimization

problems, this requirement guarantees that the computed solution will

be a feasible solution to the flowsheet. However, it may be shown

through a mathematical analysis of the optimization problem (see

Section 7.2) that another requirement must be imposed on the reduced

models to guarantee convergence to the true optimal solution:
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(10) The input-output Jacobian matrix predicted by a reduced model

must be the same as that predicted by the rigorous model of the

unit.

Gradient type linear models always satisfy this requirment, because

the model coefficients are the derivatives of the outlet variables

with respect to the intlet variables. The direct application of this

statement to other types of models would require the calculation of

numerical derivatives from the rigorous models in order to introduce

the appropriate correction factors in the reduced models. This

procedure, however, would introduce time consuming computations, in

direct contradiction with the statement in Requirement (9). The

proposed solution to this problem is to develop nonlinear reduced

models that have enough physical meaning to give a good approximation

to the input-output Jacobian using model parameters that may be

computed analytically. Such models might result in an suboptimal

solution which in general would be close to the real optimal solution.

If more accuarcy is required, linear models could be used in the last

outside loop iterations to reach the real optimal solution (using the

suboptimal solution obtained with the nonlinear models as a starting

point when the linear models are introduced). This procedure will be

discussed in detail in Chapter 7.

The remainder of this chapter will be devoted to a discussion of

appropriate linear and nonlinear models for flowsheet simulation and

optimization problems. It should be noted that the use of local

thermodynamic approximations of the type described by Barret and Walsh

[6] has been suggested to improve the performance of both modular and
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equation oriented simulators (making the equation oriented simulator a

simultaneous modular simulator). The models used for such local

approximations fall in the same category as the reduced models

described in this chapter.

4.2 Linear Models.

Although this study is oriented towards the use of nonlinear

reduced models in simultaneous modular calculations, linear models may

be important in optimization calculations. The idea behind the use of

linear models is that the derivatives of the output variables with

respect to input variables predicted in each block by the linear model

are the same as those predicted by the rigorous models. As it was

discussed in Section 2.1, the best type of linear reduced model is a

gradient model of the form:

Where x and y are inlet and outlet stream variables, respectively; b

is the residue vector, and A is the linear coefficient matrix. Each

element of the coefficient matrix, aij is the derivative of the

ith output variable, yi, with respect to the j th input variable,

x j. The elements of this matrix need to be computed numerically by

perturbing the inlet variables to the unit and observing the

difference in the computed outlet variables.

There are two problems with this type of linear model. First, the

model does not have any physical significance. At points other than
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the base case, the material and energy balances around the unit may

not be even satisfied. Furthermore, extrapolation to points far

removed from the base is usually very poor. These problems cause slow

convergence of the outside loop. The second disadvantage is the

wasteful amount of computer time needed to compute numerical

derivatives during each outside loop iteration.

The efficiency of this type of model may be increased by

substituting some of the gradient type equations by other linear

equations that do have physical significance in the unit. For example,

overall material balance equations are linear. The introduction of

these equations in the linear model will guarantee that all the

material balances around each unit are satisfied at any point. This

idea adds some engineering insight to what would otherwise be a black

box model.

Let us take as an example a two phase flash model for specified

pressure and duty (PQ Flash). The input variables are: the flow rates

for each component in the inlet stream F; the inlet stream temperature

and pressure, Tf and Pf, and the specified pressure and duty, P5

. and Q5 . The output variables are the variables associated with the

liquid and vapor outlet streams: flowrates for each component L and V,

temperatures T, and Tv, and pressures P1  and Pv The standard

gradient type linear model would take the form:

7 Ax + b
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That is,

L F

p1  Pf

(4.2-1) T1  - [A] Tf + b
V P- s
v I .
T
L

For a system of n components, the matrix of coefficients A contains

(2n+4)(n+4) partial derivatives, which need to be computed

numerically. This model may be easily improved by substituting some of

the gradient type equations by rigorous linear equations. For example,

the overall component material balance equations may be included in

the reduced linear model, along with the simple relations that specify

that both outlet streams leave at the same temperature and pressure.

The following set of expressions is then obtained:

F

[Li PfLI [A'] T

s

(4.2-2) .. s

V - F-L

P - P

Pv -
T - Tv 1

is simpler and more accurate than theEven though this new model
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standard gradient model, the new coefficient matrix A' contains only

(n+l)(n+4) elements.

For simultaneous modular simulators that keep the stream

enthalpies in the inside loop variable list, the overall energy

balance could also be included in the linear model by adding the

following linear equation:

H - H - Hv -Q QS 0

Where H represents the total enthalpy flow of a stream.

Models such as the flash model described above were used when

linear models were needed in this study.

4.3 Nonlinear Reduced Model for Process Units.

Both Jirapongphan [27] and Pierucci [44] used nonlinear reduced

models in their work with the simultaneous modular concept. Pierucci's

nonlinear models were designed for material balance only calculations

and did not include any physical properties for energy balances or for

complex unit computations. For this reason such models can only be

used for very simple flowsheets.

Jirapongphan also developed a set of reduced models for the most

common simple units used in flowsheet simulation. He included models

for mixers, splitters, pumps, compressors, flashes and simple material

balance reactors. These models were based on reasonable engineering

approximations of the rigorous equations that describe the units, and

included terms for thermodynamic properties, such as stream enthalpies
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and vapor-liquid equilibrium constants. In fact, most of the required

characteristics of simple models presented in Section 4.1 were also

rationalized by Jirapongphan when he derived the reduced models used

in his simultaneous modular simulator.

The reduced models used in this work follow the guidelines

presented at the beginning of the chapter. Some of the models for

simple units such as flow splitters, mixers, heaters, pumps,

compressors and flashes are almost equivalent to the models used by

Jirapongphan. A complete description of these models is included in

Appendix 1. An important improvement introdued in our models is the

calculation of molar stream enthalpies as enthalpy departure functions:

(4.3-1) H - HIG + A + B(T - Tref)

Where H is the molar enthalpy of the stream; HIG is the ideal gas

enthalpy of the stream; T is the stream temperature; and A, B, and

Tref are reduced model parameters obtained from the rigorously

computed stream enthalpy at a base point. The introduction of the

ideal gas enthalpy term in the enthalpy expressions introduces a

composition dependance of enthalpy in the energy balances included in

the inside loop. This type of equation was also used successfully by

Lee [32] in reduced models for distillation columns. The above

enthalpy equation is used consistently througout the flowsheet to

describe the energy balances around each unit. Since all the stream

enthalpies are computed in the same way, there is a set of enthalpy

parameters A, B and Tref for each stream in the process. All the
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nonlinear reduced models include the same type of energy balance

equation.

The nonlinear reduced model for a flash unit is based on the

reduced model used in the two-tier flash algorithm available in ASPEN

PLUS (see technical documentation for this model in Reference 2). The

choice of model serves a double purpose: First, the model itself has

proven to be very effective in two-tier calculations. Second, such a

model allows for the type of integrated simultaneous modular

calculations described in Section 2.3. Since this model illustrates

all the basic principles involved in the development of nonlinear

reduced models, it will be discussed in detail in the following

paragraphs.

Let us consider a flash drum with one feed stream containing n

components, a vapor outlet stream and a liquid outlet stream. The

first set of equations that any nonlinear reduced model sould satisfy

is the material balance for each component fed to the unit. These

equations may be written in terms of component molar flows as:

(4.3-2) f - v l-i - 0

Where the variables f i V and I refer to the molar flow rates

of component i in the feed, vapor outlet and liquid outlet streams,

respectively.

The second equation that relates input and output variables is the

overall energy balance on the unit:

FHF - VHV - LHL + Q - 0(4.3-3)
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Where H refers tothe molar enthalpy of stream j (j F for the

feed, V for the vapor outlet and L for the liquid outlet); F, V and L

are the total molar flow rates for the feed and outlet streams, and Q

is the heat added to the unit. In general, the enthalpy of a stream is

a function of temperature, pressure and composition. As it was

mentioned before, the molar enthalpy of each stream is calculated as

an enthalpy departure function of the form:

(4.3-4) H - HIG + A + B(T - Tref

The distribution of the components in the outlet streams is

determined by the phase equilibrium equations. For these equations,

relative volatilities were chosen as reduced model parameters due to

their small dependence on temperature, pressure and composition. For a

component i, the vapor-liquid equilibrium constant Ki may be

expressed in terms of the relative volatility by the following

equation:

(4.3-5) Ki = aiKb

Where a, is the relative volatility of component i and Kb is a

reference equilibrium constant. The value of Kb at the base point is

defined following the development by Boston and Britt [10]:

n
(4.3-6) ln Kb E wi ln Ki

in
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Where w are weighting factors which are defined as:

wj - t/ Et

ti - yi/(l - a - Ki)

The variable y, denotes the mole fraction of component i in the

vapor outlet stream, and 8 is the vapor fraction,

a - V/F

Once the value of Kb is determined at the base point, the values

of the relative volatilities may be computed from the rigorously

computed equilibrium constants through the following relationship:

(4.3-10) ai K /Kb

These parameters are assumed constant in the reduced model due to

their small dependance on process variables. To account for the

dependence of equilibrium constants on temperature and pressure, use

is made of the fact that these parameters are represented very well

over small ranges of these variables by a model of the form:

ln(KbP) - a + b(+ -

(4.3-7)

and

(4.3-8)

(4.3-9)

(4.3-11)
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Where T* is some reference temperature, and a and b are parameters

which have a small dependence on temperature and pressure. The reduced

model coefficients in this equation are computed at the base point as

follows. From the definition of Kb in the above equation, b can be

derived as:

(4.3-12) b (ln Kb)
a(1IT)

The derivative term is evaluated numerically by computing the

equilibrium constants, K ', at a perturbed temperature T', holding

the composition and pressure constant. Kb' at the perturbed

temperature is then computed using equation (4.3-6), and the

expression for b becomes:

(4.3-13) b - ln(Kg) - ln(Kb
(1/T') -(l/T)

The coefficient a may be solved directly from equation (4.3-6).

The relationship between the outlet composition and the vapor-

liquid equilibrium parameters may be found through a combination of

the equilibrium and constitutive equations:

(4.3-14) vi(1 - $) - aiKblia = 0

The last equations in the model are also equilibrium equations,

which state that both outlet streams leave at the same temperature:

435TT -T - 0(4.3-15)
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The reduced model includes 2n+8 equations (equations (4.3-2),

(4.3-3), (4.3-4), (4.3-6), (4.3-9), (4.3-11), (4.3-14) and (4.3-15))

with 3n+ll variables (fi, lip vi, TF, TL, TV, P, a, Q and

Kb). The reduced model parameters to be determined at the base point

are the relative volatilities, ai, the two Kb model coefficients

and the enthalpy parameters for the feed and outlet streams.

It should be emphasized that this reduced model complies with all

the requirements mentioned in Section 4.1, with the only exception of

requirement (10). As shown by Jirapongphan [27], the number of

equations is much smaller than for the rigorous flash model. The

equations are well behaved, they have physical meaning, and their

Jacobian may be evaluated analytically. Note that when all the feed

conditions are specified (f and TF), there are only two degrees

of freedom left to completely define the problem, which is the same

number of degrees of freedom found in a rigorous flash model. Thus,

the degree of freedom analysis complies with the third requirement for

reduced models.

Models for complex separation units have also been developed as

part of this effort to test the simultaneous modular concept in an

industrial simulator. Not all of these models have been adapted to the

process simulator described in this thesis. However, because of the

importance of the concepts involved in these models, the next

subsection will be used to describe these models briefly.
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4.3.1 Reduced Model for Absorber Columns.

A reduced model has been developed for multistage, adiabatic

absorbers. Although this model has not yet been adapted to the

simultaneous modular simulator developed in this study, tests using a

wide variety of conditions have been conducted and published by

Trevino-Lozano, Kisala and Boston [56]. This model constitutes a good

illustration of the application of the principles described in Section

4.1 to a real complex unit. For this reason, the model will be

described in detail.

To present the reduced model, let us consider an absorber column

with N stages (see schematic on Figure 4.a). The first equation that

any mathematical model of the absorber should satisfy is an overall

material balance, which may be written in terms of component flows as:

(4.3.1-1) Uli,N+l 1 ,1 l- (vi,N - vi,O 0

The second equation that relates input and output variables is the

overall energy balance on the column:

(4.3.1-2) + +l + V0 H0 - L 1 - VN

Where H refers to the molar enthalpy flow of stream j. In general,

the enthalpy of a stream is a function of temperature, pressure and

composition.

Since the effect of temperature is typically much stronger than
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Figure 4.a: Diagram of an Absorber Column.
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that of other variables, and heat capacity is a relatively weak

function of temperature, the molar enthalpy may be approximated by the

following expression:

(4.3.1-3) H = HIG + A + B(T - Tref

In order to perform an energy balance on the absorber column using

equation (4.3.1-3) to model the enthalpy of each stream, a set of

parameters "A" and "B" are calculated for each stream from the results

or the rigorous model calculations. The values are obtained from two

enthalpy values, one at Tref and the second at a perturbed

temperature, with composition held constant.

The overall material and energy balances give relationships that

the inlet and outlet streams must satisfy. However, they do not

determine the distribution of components in the outlet streams. The

distribution is determined by two additional types of equations that

are used in the reduced analytical model: phase equilibrium equations

for the top and bottom stages; and "short-cut" equations to provide an

approximate description of the multicomponent, multistage separation

behavior.

For equilibrium relationships, relative volatilities were chosen

as reduced model parameters due to their small dependence on

temperature, pressure and composition. For a component i in stage 1,

for example, the vapor-liquid equilibrium constant Ki1 may be

expressed in terms of a relative volatility by the following equation:



-120-

(4.3.1-4) K - a Kb

where a is the relative volatility of component i and Kb is a

reference equilibrium constant. Similarly, for a component in stage

N, the vapor-liquid equilibrium constant would be:

(4.3.1-5) Ki,N - aiN KbN

The reference equilibrium constants Kb and Kb are determined from the

base case rigorous model solution as a weighted average of the

component vapor-liquid equilibrium constants following the development

given by Boston and Britt [10]. For each stage:

n
(4.3.1-6) ln Kb - w i ln Ki

i1m

where wi are weighting factors. In previous work with this model [56],

the vapor mole fractions yi,N are used as the weighting factors for KbN
while for Kb , the liquid mole fractions x were used.

The error introduced by assuming that the relative volatilities of all

components in both stages stay constant when temperature, pressure, and

composition are changed from the base conditions is typically small, due

to the small dependence of relative volatilities on those variables.

However, the values of the reference equilibrium constants will depend

strongly on temperature and pressure, and to a smaller degree on

composition. To account for this dependence, equilibrium constant

equations similar to the one used in the reduced flash model are used:
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(4.3.1-7) ln(KbP) = a + b -

In the reduced analytical model, both Kb and Kb are represented

by equations of this form:

in (KP - a1 + b

(4.3.1-8) in (Kb N ) - aN + -

The reference temperatures T * and TN * are taken as the base case

temperatures (in the following discussion, all quantities with an

asterisk refer to base case conditions). This choice of reference

temperatures emphasizes the fact that these equations are used to

compute Kb1 and Kb Nfor deviations from base case conditions.

The reference equilibrium constants at base conditions and K
91 N

may be evaluated from equation (4.3.1-6) and the values of the

equilibrium constants and mole fractions for each component. These

quantities are usually available as part of the solution given by the

rigorous absober model, or may be calculated from the column

composition profiles. Since the relative volatilities a 1i and ai,N

are considered constant, the values of these parameters are easily

calculated using base data; for example:
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*

a K

i,N 
KK*
'b N *
N

The parameters b and bN of equation (4.3.1-8) may be obtained,

from the values of the individual K's at two temperatures, with

composition held constant.

Having defined all the simple model parameters needed to represent

the vapor-liquid equilibrium constants in the top and bottom stages of

the column, it is now possible to write an equation for each stage

that describes the physical equilibrium between the vapor and liquid

streams leaving the stage. The development of such an equation for

the top stage may be visualized as follows. Consider first the

following identity:

n n
(4.3.1-10) E xi,N y iN - 1.0

where xiN and yi,N refer to the mole fraction of component i in

the liquid and vapor streams leaving stage N, respectively. Using the

criterion of vapor-liquid equilibrium the above expression becomes:

n
(4.3.1-11) E y 1 N9 -- 1.0) - 0

i-1 'i,N

Finally, substituting eq. (4.3.1-5) and writing the vapor phase mole

fractions in terms of molar flows we obtain,
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n 1
(4.3.1-12) ivi ( i - 1.0) - 0

iN KbN

Following a similar development for the bottom stage, the following

expression may also be derived:

n
(4.3.1-13) (Kb a - 1.0) 1 - 0

1

Equations (4.3.1-12) and (4.3.1-13) represent the combined phase

equilibrium and constitutive equations. Finally, in addition to the

equilibrium equations for the top and bottom stages, an approximation

to the multicomponent separation behavior in a multistage system is

needed. We have selected the Kremser equation [51], which represents

an analytical solution under certain conditions. The Kremser equation

relates the distribution of a component in the outlet streams with the

feed inputs, number of stages and average properties of the mixture in

the column. For a given component i, the Kremser equation may be

written as follows:

(,0 + li,N+l) (1.0 - S) + Li,N+l ( - S i
(4.3.1-14)

- 1 (1.0 - N+l) = 0

Where Si is the average stripping factor for component i in the

column, defined as:

_ K V
S - -
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where Ki, V and L are the average equilibrium constant, vapor

rate and liquid rate, respectively. Clearly, the average

stripping factors will be strong functions of feed composition

and operating conditions. To introduce model parameters which

are less dependent on these variables, it is possible to follow

a parallel development as in the case of component equilibrium

constants, and define a reference stripping factor Sb, and

simple model parameters $i, which relate this reference

factor to the individual component stripping factors.

(4.3.1-15) S - i Sb

The reduced model parameters % are calculated by solving equation

(4.3.1-14) for Si for each component and calculating Sb at the

base conditions by an equation analogous to equation (4.3.1-6).

It is reasonable to assume that for deviations of the operating

conditions from the base case, the component stripping factors will

change markedly from the base values, but in such a way that the

relative changes of all components will be much smaller. This idea

may be visualized if the definition of average stripping factor is

taken into consideration. Changes in temperature and pressure, for

example, will qualitatively affect the equilibrium constants and vapor

and liquid rates in the same way, so that S would typically be

expected either to increase or to decrease for all components.

Therefore, a small dependence of $i on operating conditions may be
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expected. To take into account variations of stripping factors in the

model, the reference Sb was introduced as a variable to be

determined and not as a parameter of the reduced model. This enables

the reduced model to respond properly to changes in temperature,

pressure and inlet stream conditions. Thus, in solving the reduced

model, the effective stripping factors, Si, are calculated from

equation (4.3.1-15) using a value of Sb which is determined in the

solution of the reduced model.

As mentioned above, the number of equations and degrees of freedom

are also important considerations in a reduced model. In order to

illustrate this point, degrees of freedom analyses are performed for

the reduced and rigorous models in Tables 4.3.1-1 and 4.3.1-2. The

first important thing to notice is that the reduced model is formed by

2n + 5 equations versus (3n + 3)N equations that have to be solved in

a rigorous computation. The reduction in the number of equations is

very significant, especially for big columns with a large number of

components. It is also important to point out that the number of

degrees of freedom is the same in both cases (with the only difference

being that the reduced model requires only the pressure of the top and

bottom stages, while rigorous calculations require a complete pressure

profile of the column). Therefore, outlet stream variables (flow

rates and temperatures) may be computed with both models when the

inlet stream variables, the number of stages and the pressure profile

are specified.
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Table 4.3.1-1: Degree of Freedom Analysis of Reduced Analytical

Model:

1) Equations: Number

Component material balances n

Energy balance 1

Equilibrium constant models 2

Equilibrium equations 2

Constitutive equations n

2n + 5

2) Variables:

Stream component flowrates: v1 ,0; 11,1 VI,N; liN+1 4n

Stream temperatures: To, T1, TN, TN+l

Pressures: P , PN 2

Number of stages: N 1

Other: K , K , S b 3

4n + 10

Degrees of freedom: 2n + 5

Reduced model parameters that must be determined: 3n + 12

The reduced model parameters are: a ,1 aiNo $ , a 1 b1, aN
bN, Al, B1 , Ao, B0, AN, BN' AN+l' BN+l
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Table 4.3.1-2: Degree of Freedom Analysis of Rigorous Model of an Absorber

Column:

1) Equations:

Component material balances

Equilibrium equations

Equilibrium constant models

Energy balances

Vapor enthalpy models

Liquid enthalpy models

2) Variables:

Component liquid flowrates

Component vapor flowrates

Equilibrium constants

Inlet stream variables

Temperature at each stage

Pressure at each stage

Vapor and liquid enthalpies

Number of stages

Number

n x N

n x N

n x N

N

N

N

(3n + 3)N

n x N

n x N

n x N

2n + 2

N

N

2N

1

(3n + 4) N + 2n + 5

Degrees of freedom1 : 2n + 3 + N

(1) In the rigorous model, N degrees of freedom are used in
specifying the pressure profile. In the reduced model, only 2 are
used.
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4.3.2 Reduced Model for Distillation Columns.

The development of an efficient nonlinear reduced model for

distillation columns is fundamental to the practical implementation of

the simultaneous modular concept. Such a model has to be general

enough to describe complex columns: As a minimum, the model must

accomodate multiple feeds and sidestreams, internal heaters, and

non-standard configurations such as side sidestrippers. In addition,

the model should allow design specifications on internal stream

variables.

To accomplish the objectives described above, a building block

approach to model formulation was proposed. The building blocks would

be the reduced models already available for flash separators and

absorber columns. For example, a simple distillation column with one

feed, one reboiler and a condenser would consist of six blocks: The

feed plate would be described with a mixer and a flash model; the

rectifying and stripping sections would be represented by absorber

models, and two flash models would be used to describe the reboiler

and the condenser. Figure 4.b illustrates graphically the different

sections of a distillation column model. Complex columns may be easily

described by adding more sections (building blocks) to the basic

scheme. Therefore, the proposed methodology tailors the reduced model

equations according to the problem at hand avoiding unnecessary

complexity.

This idea of building the model for a given distillation column by

combining simpler units was further developed and tested by Lee [32].

His results show that the reduced models generated for a wide variety
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Figure 4.b: Diagram of a Reduced Model for a Distillation Column.
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of column configurations are very good at predicting the trends of

column performance at conditions far removed from the base point. This

was true even for moderately nonideal systems. These results suggest

that such models may be very effective for simultaneous modular

calculations in flowsheets with complex distillation columns. The only

case where this approach seemed unsatisfactory was for azeotropic

distillation. More complex reduced models are needed to represent such

highly nonideal systems.

If the flowsheet convergence algorithm is integrated with the

two-tier algoritms used in rigorous distillation modules (see Section

2.3), the type of reduced models described above could not be used. In

this case, the appropriate simple models would be the inside loop

equations of the inside-out distillation algorithms used in the

computation modules. These models are in general more complicated than

the reduced models generated from a building block approach, as

simplified tray calculations are performed at each stage (a detailed

discussion of inside-out algorithms for distillation columns may be

found in References 9 and 11). The added complexity of these models

results in better handling of highly nonideal cases such as azeotropic

distillation. For this reason, these models may also be attractive in

nonintegrated simultaneous modular calculations.

4.4 Reactor Models.

Chemical reactor modeling is still lagging in flowsheeting

applications. Most available simulators offer only simple material

balance reactors based on specified yield or specified fractional
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conversion. The only industrial simulators that offer the two standard

ideal reactor models, the well stirred reactor (CSTR) and the

plug-flow reactor (PFR), are ASPEN [20] and ASPEN PLUS [1]. Even the

ideal reactor models (CSTR and PFR) are already simple models of the

complex phenomena which take place in real reactors.

The development of reduced models for chemical reactors does not

imply a refinement of the existing reactor models used in simulation.

The idea is to solve flowsheets that contain such reactor models using

simultaneous modular algorithms; therefore, a series of reduced models

with the characteristics specified in Section 4.1 need to be developed

for the reactor modules available in simulators. The rigorous reactor

models are the already idealized models such as the material balance

model, the CSTR and the PFR.

It is necessary to recognize two different types of general

reactor models for which reduced models are needed: those that contain

only algebraic equations, and those which include differential

equations. Models based on specified extents of reaction (such as XTNT

in FLOWTRAN and RSTOIC in ASPEN PLUS), models based on specified

yields (like RYIELD in ASPEN PLUS), and the commonly used CSTR model

belong to the first classification. The plug-flow reactor model is the

most important of the second class of models. The models based on

algebraic equations used currently in simulators contain material and

energy balance equations only. Reduced models for these reactors would

consist of the material balance equations (linear for the simple yield

and extent models, nonlinear for a CSTR), and an overall energy

balance equation. The reduced energy balance equation would be

analogous to the ones used in other reduced models, like equations
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(4.3.1-2) and (4.3.1-3) for the absorber model. A description of some

basic reduced reactor models is included in Appendix 1).

In the case of units described by systems of differential

equations, the reduced model must represent the same unit using

algebraic equations. This is conceptually different from the problem

of finding simple algebraic equations that approximate the behavior of

other more complex algebraic equations. The solution to this problem

may be the key to expanding the simultaneous modular concept to other

problems that contain ordinary differential equations, such as dynamic

simulation and the simulation of batch plants. The next subsection

will be devoted to the description of a proposed reduced model for

plug-flow reactors. This model is general enough to be used in almost

any unit described by differential equations, including batch reactors

and rigorous continuous absorber models.

4.4.1 Reduced Model for Plug-Flow Reactors.

It is necessary to describe the plug-flow reator problem before

the reduced model is presented. Let us consider a system of n

components including reactants and all possible products. A material

stream enters the reactor at inlet temperature Ti and inlet pressure

P i(in some problems there may be multiple phases at different

temperatures flowing through the reactor. If this is the case, a

differential energy balance for each phase is necessary to compute the

different temperature profiles). The inlet flow rates of the

components in the system are represented by the vector f . A series

of reactions take place inside the reactor, and heat is added or
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removed in order to control the reactor temperature.

The component flow rates and the stream temperature and pressure

will change inside the reactor in a way which is best described by a

system of nonlinear differential equations:

df - Hf(f, T, P)
Ti-

(4.4.1-1) dT - HT(f, T, P)
dz

__ M Hp~f, T, P)
dz

Where z denotes the position inside the reactor relative to the

entrance. At the outlet of the reactor, z - L, the stream variables

have values f , T , P0.

The purpose of the reduced reactor model is to approximate the

values of the outlet stream variables, , T, P0, given the

inlet conditions f, Ti, P and other relevant exogenous data

such as heat transfer rates. This approximation must be made through a

system of algebraic equations, and the equations in the model should

take into account the coupling between the original differential

equations.

One way to account for coupling in the original differential

equations is to approximate the complete composition, temperature and

pressure profiles through the reactor. In the proposed reduced model

this is done using mth order polynomials (m is chosen by the user

for a given problem) of the form:
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f - Aof + (Alf + ?f)z + A 2fz2 + .

(4.4.1-2) T = AOT + (AlT + 'T)z + A 2TZ + .

P - AOP + (Alp + 1 )z + A2PZ2 + .o

For the most general case, the order of the polynomials describing the

profiles of different variables may not be the same. In this case, the

number of polynomial coefficients to be determined changes; however,

the overall structure of the reduced model equations remains unchanged.

The main feature of the proposed reduced model is that the

polynomial coefficients A09 Al' A2 , etc., are not simple model

parameters. Instead, these coefficients are reduced model variables to

be determined for any given set of initial conditions. The

coefficients X are reduced model parameters which are determined from

the rigorous solution of the differential equations for the base point

initial conditions. The function of these coefficients will be

discussed later in this section.

The equations needed to determine the polynomial coefficients

A ... , are obtained from the application of collocation techniques

to linearized sets of differential equations. Given a set of m

collocation points (chosen by the user) z*, z*, ... , z, it is possible1 dem

to define a system of m(n+2) algebraic equations of the form:
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n 3H k(4.4.1-3) H + r5l - (Af + A Z* + . - r
r z* r r

aHk
+ (Ao + ATz + .T*)

3Hkj

+ 3Hk (AOP + A1pz* +.. -P*) - Alk + 2 Az+...

For k = 1, 2, ... , n+2 (n - number of components)

j = 1, 2, ... , m (m = degree of polynomials)

The right hand side of equation (4.3.1-3) corresponds to a first order

Taylor series expansion of the derivative function H k at the

collocation point z . The value of the stream variable whose profile

is described (in differential form) by Hk is approximated by the

corresponding polynomial without the linear correction term kz.

Asterisks are used to indicate terms evaluated at the collocation

point z J

The unknowns in this system of equations are the polynomial

coefficients A1 , A2, ... , A The independent coefficients A

are determined from the inlet conditions by the following equations:

A 1f_
=Of =i

A - A - T

-A OP [
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The reduced model parameters to be determined from the rigorous

solution for the base inlet conditions are the elements of the

Jacobian matrix of the derivative functions H at each collocation

point. The choice of reduced model parameters may be justified by the

following arguments:

(1) The first order partial derivatives of the derivative

functions H take into account the coupling of the original system

of differential equations.

(2) The shapes of the stream variables profiles inside the reactor

(determined by the values of the partial derivatives through the

reactor) are usually less dependent on inlet conditions than the

stream variables themselves. Thus, these coefficients constitute a

better set of iteration variables for flowsheet convergence

calculations.

(3) The numerical methods used to integrate systems of ordinary

differential equations in practical engineering applications

(Gear, Episode, etc,) require the computation of derivatives at

each point along the integration [13]. Thus, the Jacobian matrix

of the differential functions at each collocation point is usually

computed automatically, so that the evaluation of the reduced

model coefficients involves no additional work.

One of the requirements of the reduced models used in simultaneous

modular calculations is that they are exact at the base point where

the parameters are computed. In the case of the plug-flow reactor

model, the collocation equations by themselves do not guarantee that

the reduced model solution matches the rigorous solution for the base
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inlet conditions . In order to match the two solutions, a linear

correction function z is added to the polynomials. The correction

parameters X are computed from the difference between rigorous and

reduced solutions evaluated at the outlet of the reactor for the base

inlet conditions. Mathematically:

[Of + AfL + . .

(4.4.1-5) 1 T IAOT + AlTL + . .

P [ [;base A OP + A L +base

The correction functions are added to the collocation polynomials to

obtain the approximate stream variable profiles described by equations

(4.3.1-2).

This reactor model was successfully implemented in the sequential

modular simulator developed for this work. All the benchmark problems

in Chapters 5, 6 and 7 which involve a plug-flow reactor were solved

very efficiently using the model. As a next development in this area,

the reactor model could be adapted for flowsheets containing

continuous absorber columns or other unit operations described by

ordinary differential equations.

(1) The solutions given by the rigorous and reduced models are
only required to match at the outlet of the reactor.
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CHAPTER 5: SIMULTANEOUS MODULAR SIMULATION RESULTS.

In this chapter, the results obtained from three benchmark process

simulation problems will be discussed in detail. The scope of this

chapter is limited to pure simulation problems without design

specifications, and the purpose of the study is to compare the

simultaneous modular solution methodology with the sequential modular

algorithm used originally in ASPEN PLUS. Evaluation of performance

goes beyond the direct measurement of computer time needed to solve a

given problem. Criteria such as number of flowsheet passes, number of

simulation time equivalents and reliability of the algorithm, which

were introduced in Chapter 1, will be used in the comparison of the

algorithms.

In addition to the efficiency measurements, an analysis of the

time spent in each step of the simultaneous modular algorithm is

presented. This type of analysis is necessary to predict the

performance of the simultaneous modular algorithm in problems other

than the test problems presented in this study. Furthermore, the

information obtained from this analysis may be used for future

improvements of the algorithm by properly identifying the most time

consuming steps in the calculations.

Three benchmark problems are studied in this chapter. The first

problem is a simple flowsheet with one material recycle stream.

However, this problem is difficult to solve using nonlinear

simultaneous modular calculations as it includes a plug-flow reactor

where two reactions in series are taking place. The second problem is
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a process to produce cyclohexane by hydrogenation of benzene. The

flowsheet includes two recycle streams and a reactor which is modeled

with a simple mass balance reactor model. Finally, the third problem

is a version of the well known Cavett's flowsheet [14] with sixteen

components in the feed stream. These three problems are described in

detail in Section 5.1.

Section 5.2 is devoted to a description of the parameters chosen

for the simultaneous modular and the sequential modular runs

(convergence tolerances, initialization procedures, etc.). An analysis

of the performance of the standard and integrated simultaneous modular

algorithms (see Section 2.3) is presented in Section 5.3.

5.1 Benchmark Problems - Description.

Each one of the benchmark problems used in this chapter represents

a flowsheet with a special feature often encountered in simulation.

Problem 1 contains a complex unit (a plug-flow reactor) that requires

a lot of comptuer time to simulate. Problem 3 represents a flowsheet

with many material recycle loops. Problem 2, on the other hand,

represents a fairly standard flowsheet with simple units and a

straight forward topology.

5.1.1 Problem 1.

The first problem is an adaptation of a flowsheet used by Evans as

an example to demonstrate the principles of sequential modular

simulation [18]. The flowsheet is shown in Figure 5.a. This purely
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hypothetical process consists of five unit operations. The feed stream

is mixed with a recycle product stream rich in unreacted raw material

in a mixer. A pump is used to increase the pressure from atmospheric

conditions to the high pressure at which the reaction takes place. The

raw material A is transformed to product P in a reactor. The product,

however, further reacts to form G, an undesirable byproduct. The

stream leaving the reactor is introduced to a flash drum to separate

the more volatile product P from the leftover A and the byproduct G.

The liquid stream leaving the flash drum is split into two fractions:

a small fraction of the stream is purged out of the process and the

rest is recycled and mixed with the feed stream.

The feed stream (stream FEED) transports 0.0126 kmol/sec of pure

reactant A at 2980K and 1 atmosphere (1.013 x 105

newtons/square-meter) to the mixer. The recycle stream (stream

RECYCLE) also arrives to the mixer at atmospheric pressure. The pump

operates adiabatically to raise the pressure of the stream fed to the

6 2
reactor (stream REACTIN) from 1 atmosphere to 1.0342 x 10 N/m,

The reactor may be considered to be an ideal plug-flow reactor

operating at a constant temperature of 449.820K. The length of the

reactor is 15.331 meters, and its diameter is 0.1533 meters. The rates

of the two reactions taking place in the reactor are given by

Arrhenius type kinetic expressions, which are functions of reactant

concentration and temperature:
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A p P G
Reaction 1 Reaction 2

Reaction 1:

(5.1.1-1) - dC - (3.53 x 107) exp(-35570/RT)C-=A A
dt

Reaction 2:

(5.1.1-2) - dC - (53.346) exp(-23670/RT)C2
P P

Where CA and CP are the concentrations of A and P respectively; T

is the temperature in degrees Kelvin, and R is the ideal gas constant

in SI units.

The flash drum is operated adiabatically at atmospehric pressure,

bringing the mixture of components leaving the reactor to the two

phase region. The vapor stream leaving the flash (stream PROD) is the

product stream rich in product P. The liquid stream (stream GUNK) is

introduced to a flow splitter. Three percent of the liquid stream is

purged (stream BLEED) and the rest (stream RECYCLE) is recycled back

to the mixer.

Following the information given in the class notes for this

hypothetical system, the physical properties were computed assuming

the following compounds in the system:

A: isobutyric acid.

P: ethyl acetate.

G: n-butyric acid

For enthalpy and equilibrium calculations, ideal properties were

assumed in the system. In terms of the ASPEN PLUS modules used to
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;

ASPEN PLUS INPUT FILE FOR PROBLEM 1 *
;
IN-UNITS SI
OUT-UNITS SI
;

; USE IDEAL PHYSICAL PROPERTIES, OPTION SET SYSOPO
;

PROPERTIES SYSOPO

; DEFINE COMPONENTS IN THE SIMULATION

COMPONENTS A ISOBUTYRIC-ACID/P ETHYL-ACETATE/G N-BUTYRIC-ACID
;
; * DEFINE FLOWSHEET CONNECTIVITY

;

FLOWSHEET
BLOCK MIX
BLOCK REACT
BLOCK FLASH
BLOCK SPLIT

IN-FEED RECYCLE
IN-REACTIN
IN-REACTOUT
IN-GUNK

OUT-REACTIN
OUT=REACTOUT
OUT-PROD GUNK
OUT-BLEED RECYCLE

;

; * DEFINE FEED STREAM CONDITIONS

STREAM FEED TEMP=298.15 PRES=1[ATM]
MOLE-FLOW A 0.0126

DEFINE OPERATING CONDITIONS OF
BLOCK MIX MIXER

PARAM PRES-1.034D6
BLOCK REACT RPLUG

PARAM TYPE=T-SPEC LENGTH-15.331
T-SPEC 0.0 449.82
STOIC 1 MIXED A -1.0/P 1.0/

2 MIXED P -1.0/G 1.0
RATE-CON 1 3.525D7 3.557D4/

2 53.346 2.367D4
POWLAW-EXP 1 A 1.0/

2 P 2.0
BLOCK FLASH FLASH2

PARAM PRES=1[ATM] DUTY0.0
BLOCK SPLIT FSPLIT

FRAC BLEED 0.03

UNIT OPERATIONS

DIAM-0.1533 PHASE-2 PDROP=0

Figure 5.b: ASPEN PLUS Input File for Benchmark Problem 1.
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simulate the process, only four computation blocks were needed: The

mixer block MIXER to simulate both the mixer and the pump together;

the plug-flow reactor block RPLUG; the two outlet stream flash FLASH2,

and the flow splitter FSPLIT. The ASPEN PLUS block diagram is also

indicated in Figure 5.a, and the ASPEN PLUS input file is shown in

Figure 5.b. The report file generated by ASPEN PLUS with the complete

results for the run is included in Appendix 5. In the sequential

modular runs with ASPEN PLUS, the block HEATER was used to simulate

the mixer and the pump. The reason for this change is that the reduced

model for the mixer allows for pressure changes in the outlet stream;

therefore, the use of a heater/pressure changer module is not required.

5.1.2 Problem 2.

The second problem is a process to produce cyclohexane by

hydrogenation of benzene taken from the first chapter of the ASPEN

PLUS Introductory Manual [1]. The flowsheet is shown in Figure 5.c.

Fresh benzene (stream BZIN) and make-up hydrogen (stream H2IN) are

mixed with recycle hydrogen (stream H2RCY) and recycle benzene (stream

(CHRCY) and fed to a catalytic reactor. In the reactor, the following

reaction takes place:

C6H6 + 3H2 6H12

benzene hydrogen cyclohexane

The reactor effluent (stream RXOUT) is cooled and separated into

liquid and vapor phases in a flash drum. The liquid stream leaving the

flash drum (stream LIQ) is split and thirty percent of the original
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stream is recycled (stream CHRCY) and mixed with the feed streams. The

rest of this product rich stream (stream COLFD) is taken to another

part of the plant for further processing. The vapor stream leaving the

flash (stream VAP), rich in unreacted hydrogen, is also split. Eight

percent of this stream is purged out of the process (stream PURGE) to

control the buildup of inerts in the system. The rest of the stream

(stream H2RCY) is recycled and mixed with the feed streams.

The benzene feed stream (stream BZIN) carries 0.0126 Kmol/sec of

pure benzene at 1.0342 x 105 N/m2 (approximately 1 atmosphere) and

310.930K to the feed mixer. The make-up hydrogen stream (stream

H2IN) brings 0.0391 Kmol/sec of a gaseous mixture at 2.31 x 106

N/m and 322.04 0K to the feed mixer. The composition of the

make-up hydrogen stream is as follows:

Hydrogen: 97.5 mole percent

Nitrogen: 0.5 mole percent

Methane: 2.0 mole percent

After the feed streams and the recylce streams are mixed in the

feed mixer, the combined stream (stream HIN) is passed through a

preheater to raise its temperature to 422.040K. The pressure at the

outlet of the preheater is 2.28 x 106 N/m 2  (note that the

feed-mixer/preheatpr operation includes some pumps and compressors not

shown in the flowsheet diagram of Figure 5.c).

In the reactor, 99.8 percent of the benzene in the feed is

transformed to cyclohexane. The stream going through the reactor

undergoes a pressure drop of 1.035 x 105 N/m2 and leaves the
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ASPEN PLUS INPUT FILE FOR PROBLEM 2 *

TITLE 'HYDROGENATION OF BENZENE TO CYCLOHEXANE'
IN-UNITS SI
OUT-UNITS SI

; * DEFINE COMPONENTS IN THE SIMULATION
;

COMPONENTS H2 HYDROGEN/N2 NITROGEN/Cl METHANE/BZ BENZENE/
CH CYCLOHEXANE

; * USE REDLICH-KWONG-SOAVE EQUATION FOR PHYSICAL PROPERTIES
;

PROPERTIES SYSOP3

; *DEFINE FLOWSHEET CONNECTIVITY

;

FLOWSHEET
BLOCK FEED-MIX IN-H2IN BZIN H2RCY CHRCY OUT-HIN
BLOCK HEAT IN-HIN OUT-RXIN
BLOCK REACT IN=RXIN OUT=RXOUT
BLOCK HP-SEP IN=RXOUT OUT=VAP LIQ
BLOCK V-FLOW IN-VAP OUT=PURGE H2RCY
BLOCK L-FLOW IN=LIQ OUT-COLFD CHRCY

;

; *DEFINE CONDITIONS OF FEED STREAMS
;

STREAM H2IN TEMP-322.04 PRES=2.31D6 MOLE-FLOW=0.0391
MOLE-FRAC H2 0.975/N2 0.005/Cl 0.02

STREAM BZIN TEMP=310.93 PRES=1.034D5 MOLE-FLOW=0.0126
MOLE-FRAC BZ 1

;

; DEFINE OPERATING CONDITIONS OF UNIT OPERATIONS

BLOCK FEED-MIX MIXER
BLOCK HEAT HEATER

PARAM TEMP=422.04 PRES=2.275D6
BLOCK REACT RSTOIC

PARAM TEMP-477.59 PRES--1.035D5
STOIC 1 MIXED BZ -l/H2 -3/CH 1
CONV 1 MIXED BZ 0.998

BLOCK HP-SEP FLASH2
PARAM TEMP=322.04 PRES--3.45D4

BLOCK V-FLOW FSPLIT
FRAC PURGE 0.08

BLOCK L-FLOW FSPLIT
FRAC COLFD 0.7

Figure 5.d: ASPEN PLUS Input File for Benchmark Problem 1.
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reactor at 477.590K. The outlet stream from the reactor (stream

RXOUT) is fed to a product cooler (a flash drum) where two phases are

formed. The cooler operates at 322.040K and has a pressure drop of

3.45 x 104 N/iM2

To simulate this system, six ASPEN PLUS modules were used: A MIXER

block to simulate the feed-mixer; a HEATER block for the feed

preheater; the stoichiometric reactor model RSTOIC to simulate the

reactor; the two outlet stream flash FLASH2 for the product cooler,

and two stream splitter blocks FSPLIT to split the vapor and liquid

streams leaving the product cooler. All physical properties were

calculated based on the Redlich-Kwong-Soave Equation-of-State, which

corresponds to the physical property option set SYSOP3 in ASPEN PLUS.

The ASPEN PLUS input file for this process is shown in Figure 5.d. The

complete set of results generated by ASPEN PLUS for this flowsheet are

included in Appendix 5.

5.1.3 Problem 3.

The third problem is the separation train shown in Figure 5.e. A

feed stream Fl is mixed with the liquid leaving flash unit FLAl

(stream R1) and with the vapor leaving from the flash unit FLA3

(stream R2). This mixture (stream Zl) is fed to the second flash unit

FLA2. The vapor stream from this unit (stream Sl) is sent to the first

flash FLAl, while the liquid (stream S2) is mixed with the vapor

leaving from the fourth flash FLA4 (this is stream R3). The mixture of

these two streams (stream Z2) is fed to the third flash unit FLA3. The

liquid leaving FLA3 is sent to the fourth flash FLA4. The two products
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from this separation process are the light components leaving FLAl as

a vapor stream (stream Pl), and the heavy components leaving the

fourth flash FLA4 as a liquid stream (stream P2).

The feed stream containing 16 components is introduced to the

first mixer at 310.92K and 5.617 N/m. The flow rate of each one

of the components in the feed is shown in Table 5.1.3-1. The operating

conditions for each of the four flash units in the process are as

follows:

Temperature (K) Pressure (N/Sqm)

Flash FLAl: 310.93 5.617 x 106

Flash FLA2: 310.93 1.963 x 106

Flash FLA3: 308.71 4.392 x 105

Flash FLA4: 302.59 1.910 x 105

This system was simulated in ASPEN PLUS using four flash modules

(FLASH2) and three mixer blocks (MIXER). Two different physical

property options were used in the simulation runs. One set of runs was

performed assuming ideal gas properties and Raoult's law for

vapor-liquid equilibrium calculations (this is ASPEN PLUS option set

SYSOPO). The other set of runs used the Redlich-Kwong-Soave

Equation-of-State to compute all the physical properties (option set

SYSOP3). A copy of the ASPEN PLUS input file is shown in Figure 5.f,

and a complete set of results is included in Appendix 5.
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ASPEN PLUS INPUT FILE FOR PROBLEM 3 *****

;

IN-UNIT SI
;

; * DEFINE FLOWSHEET CONNECTIVITY
FLOWSHEET

BLOCK MIXi IN - Fl R1 R2 OUT - Z1
BLOCK MIX2 IN - S2 R3 OUT - Z2
BLOCK FLA IN - S1 OUT = P1 Rl
BLOCK FLA2 IN w Zl OUT - Sl S2
BLOCK FLA3 IN - Z2 OUT = R2 S3
BLOCK FLA4 IN - S3 OUT - R3 P2

;
; * DEFINE COMPONENTS AND PHYSICAL PROPERTIES

COMPONENTS N2

PROPERTIES
;

C02
H2S
CH4
C2H6
C3H8
C4H10-2
C4H10-l
C5H12-2
C5H12-1
C6H14-1
C7H16-1
C8H18-1
C9H20-1
C10H22-1
CllH24-1
SYSOP3

NITROGEN
CARBON-DIOXIDE
HYDROGEN-SULFIDE
METHANE
ETHANE
PROPANE
C4H10-2
C4H10-1
C5H12-2
C5H12-1
C6H14-1
C7H16-1
C8H18-1
C9H20-1
C10H22-1
N-UNDECANE

DEFINE FEED STREAM CONDITIONS
;

STREAM F1 TEMP-310.93 PRES=5.617D6
MOLE-FLOW 4.51D-4 / 0.0063 / 4.27D-4

7.61D-4 / 0.0019 / 9.96D-4
0.0023 / 0.0021 / 0.0010

/ 0.0038 / 0.003 / 0.0029 /
/ 0.0014 / 0.0022 / 0.0033 /
/ 0.0015

;

; *DEFINE OPERATING CONDITIONS OF UNIT OPERATIONS
;
BLOCK MIXi MIXER
BLOCK MIX2 MIXER
BLOCK FLAl FLASH2

PARAM TEMP-310.93 PRES-5.617D6
BLOCK FLA2 FLASH2

PARAM TEMP-310.93 PRES-1.963D6
BLOCK FLA3 FLASH2

PARAM TEMP=308.71 PRES=4.392D5
BLOCK FLA4 FLASH2

PARAM TEMP-302.59 PRES-1.910D5

Figure 5.f ASPEN PLUS Input File for Benchmark Problem 3.
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Component

Nitrogen

Carbon dioxide

Hydrogen sulfide

Methane

Ethane

Propane

Isobutane

n-Butane

2-Methyl-butane

n-Pentane

n-Hexane

n-Heptane

n-Octane

n-Nonane

n-Decane

n-Undecane

Flow Rate (Kmol/sec)

4.51 x 10-4

0.0063

4.28 x 10-4

0.0038

0.0030

0.0029

7.61 x 10-4

0.0019

9.96 x 10-4

0.0014

0.0022

0.0033

0.0023

0.0021

0.0010

0.0015

Table 5.1.3-1: Composition of Feed Stream (Stream Fl) for Problem 3.
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5.2 Parameters Used in the Simulation Runs.

All the runs were made using a VAX 11/780 computer. The version of

ASPEN PLUS used both for sequential modular and for simultaneous

modular calculations corresponds to the Fall of 1984 release of the

simulator.

The following two subsections describe the specific parameters

used in the runs made to evaluate the performance of the simultaneous

modular simulator.

5.2.1 The Simultaneous Modular Runs.

In order to compare the simultaneous modular runs on a consistent

basis, adjustable parameters such as convergence tolerances and

initialization procedures need to be set consistently.

The performance of the algorithm will be judged relative to the

existing sequential modular version of ASPEN PLUS. Therefore, the

convergence criteria used in the two algorithms should be adjusted so

that both methods give answers of comparable accuracy. The sequential

modular algorithm tests convergence by comparing the updated values of

the tear stream variables with the previous values used at the

beginning of the flowsheet pass. These variables are scaled internally

by ASPEN PLUS so that the given tolerances apply to the difference

between the scaled values of the tear stream variables. Furthermore,

the convergence tolerance in ASPEN PLUS is scaled relative to the

value of the variable. The default value of the relative convergence

tolerance provided by ASPEN PLUS was used in all the sequential



-154-

modular runs. This value is set to 10-4.

As it was discussed in Section 2.2.4, the convergence criteria

used in the outside loop of the simultaneous modular calculations is a

comparison between the scaled values of the outside loop variables in

two successive iterations. Convergence is achieved when the largest

change in the values of the variables is below the given outside loop

tolerance, and this tolerance is applied on an absolute basis. This

convergence criterion is incompatible with the convergence criterion

used by ASPEN PLUS. The outside loop variables are not always the same

as the tear stream variables (see Sections 2.2.2 and 2.2.3).

Furthermore, the scaling factors used by ASPEN PLUS are not the same

as the scaling factors used in the simultaneous modular algorithm.

In order to have consistent results, several trial runs were made

with different outside loop tolerances. An outside loop tolerance was

chosen such that the sequential modular results and the simultaneous

modular results differred only in the last significant figure printed

in the report files generated by the simulator. This tolerance was a

function of the scale factors used in the run. In order to simplify

the analysis, the same scale factors were used in all the simultaneous

modular simulation runs: The molar flow rates were left unscaled, the

pressures, temperatures and enthalpies were scaled to be of the order

of unity. The outside loop tolerance used in all the simulation runs

was 10-3.

Another important choice related to the convergence of the outside

loop was discussed in Section 2.2.5. This is the relaxation of the

tolerances of the variables which are calculated automatically in the

last flowsheet pass after the outside loop is converged. The tolerance
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relaxation on these variables was achieved by varying the scale

factors applied to them. The scaled variables would always have values

below the outside loop tolerance, so that the change in these

variables from one outside loop to the next would always satsify the

convegence criterion. This principle was applied to the temperatures

of streams Zl and S3 in the third benchmark problem.

The convergence criterion for the inside loop is based on the norm

of the changes in the variables during a Newton-Raphson iteration (see

Section 7.3). The choice of inside loop tolerance had an effect in the

overall efficiency of the algorithm. If the inside loop tolerance is

too tight, a lot of computer time is wasted converging the inside

loop. However, a loose inside loop tolerance may lead to convergence

problems in the outside loop. For all the simulation problems solved

in this chapter and in chapter 6, an inside loop tolerance of 104

was used with very effective results.

Finally, the last parameter affecting the efficiency of the

simultaneous modular algorithm is the number of flowsheet passes used

to initialize the method (see Section 3.3.1). For each problem there

is an optimum number of initialization passes through the flowsheet;

however, this number is not known a priori. Since the algorithm should

be able to initialize itself without the help of the user, the number

of initialization passes was fixed to two. This initialization

procedure was adequate for almost every problem. Damping in the

outside loop (see Section 2.2.5) and the automatic handling of

discontinuities (see Section 2.2.4) made the algorithm robust enough

to handle even the cases where two initialization passes were not

enough to provide a good initial estimate of the flowsheet variables.
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During the execution of the simultaneous modular calculations,

many parameters used internally by the ASPEN PLUS simulator were also

used. During the first initialization pass, the tear streams were

initialized to zero, which is the ASPEN PLUS default. No initial

guesses were ever provided for any variables in the flowsheet.

Whenever a sequential modular pass was performed (for initialization

calculations, during outside loop iterations and during the reduced

problem formulation), the calculation sequence provided by the ASPEN

PLUS flowsheet analysis system was used. Furthermore, whenever an

ASPEN PLUS computation module was executed to solve the rigorous unit

models, the default convergence parameters (internal tolerances, etc.)

were always used. All the operating parameters in ASPEN PLUS are

documented in the ASPEN PLUS Introductory Manual [1] and in the ASPEN

PLUS Technical Reference Manual [3].

In every problem involving a plug-flow reactor, quadratic profiles

were used in the reduced model (see Section 4.4.1). The collocation

points chosen to generate the reduced model equations were 0.5 and

0.95 times the reactor length.

5.2.2 The Sequential Modular Runs.

All the sequential modular runs were carried out using the

defaults provided by ASPEN PLUS (as shown in the input files included

in Section 5.1). These defaults include the flowsheet analysis

performed by the simulator, the choice of tear streams, the initial

values for tear stream variables (zero), the choice of convergence

methods (bounded Wegstein with bounds on the acceleration factor
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-5 < q < 0) to converge the tear streams, and the convergence

tolerance both for the modules and for the flowsheet. It should be

noted that by default ASPEN PLUS converges all the tear streams

simultaneously, avoiding the type of ineficient tear stream nesting

described in Section 1.2.2.

The computer times needed by ASPEN PLUS and by the simultaneous

modular version of the simulator to solve a given problem cannot be

compared directly. Since the simultaneous modular simulator developed

in this study was designed for research purposes only, many of the

features used by ASPEN PLUS to make calculations more efficient were

not implemented. For example, in simultaneous modular calculations,

all the stream variables, including entropy and density, were computed

every time a rigorous model was executed. ASPEN PLUS computes these

variables only during the last iteration, since they are not needed to

converge the flowsheet. Furthermore, the simultaneous modular programs

were not optimized during compilation in order to allow for

interactive monitoring of the calculations (use of a debugger). In

order to compare the runs carried out in different simulators, one

simulation time equivalent was defined as the time that would be

required for the simultaneous modular simulator (which can also

execute sequential modular calculations) to execute the number of

flowsheet passes needed by ASPEN PLUS to converge a flowsheet. This

time is much higher than the time normally required by ASPEN PLUS.

However, it provides a consistent measure of the performance of the

simulator.
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5.3 Performance of the Simultaneous Modular Simulator.

5.3.1 Standard Simultaneous Modular Calculations.

The first measure of the performance of the algorithm is a direct

comparison with the sequential modular version of ASPEN PLUS in terms

of the number of simulation time equivalents needed to converge the

flowsheet. Table 5.3.1-1 summarizes the results obtained for the three

problems. The first column in this table shows the number of CPU

seconds needed by the sequential modular simulator (a version of ASPEN

PLUS that executes the modules with the same low efficiency as the

simultaneous modular version) to solve each one of the problems using

the default convergence strategy (by definition, the number of

simulation time equivalents required by the default convergence method

in ASPEN PLUS is exactly 1.0). As it was mentioned in the last

section, the default convergence methodology used in ASPEN PLUS is the

bounded Wegstein method applied to all the tear streams

simultaneously. The second column shows the number of simulation time

equivalents needed to converge the flowsheet if the more efficient

Broyden quasi-Newton method is used to converge all the tear streams

simultaneously. This convergence algorithm provides the maximum

performance achieved in sequential modular simulators. In general

sequential modular simulators perform less efficiently than the second

column would suggest. To date, ASPEN [20] and ASPEN PLUS [1] are the

only sequential modular simulators of idustrial importance that

provide Broyden's method as a convergence option. Furthermore,

Broyden's method has proven to be unreliable for realistic simulation
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Sequential
Modular
Simulation

Time
(CPU seconds)

Broyden
(STE)

Simultaneous
Modular
(STE)

Problem 1

Problem 2

Problem 3

35

40

(ideal)

(RKS)

1.44

0.70

0.49

0.95

292

176

0.80

0.67

0.28

0.95

Table 5.3.1-1: Comparison of Simulation Time Equivalents for

Sequential Modular Simulator Using Wegstein and Broyden methods, and

for Simulataneous Modular Calculations.
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problems where some of the variables in the simulation are required to

be within some imposed bounds (see Section 1.1). Finally, the third

column in Table 5.3.1-1 shows the number of simulation time

equivalents required to solve the problems using the simultaneous

modular concept as implemented in this work.

The most important conclusion that may be drawn from comparing the

number of simulation time equivalents required by each method is that

the simultaneous modular algorithm consistently outperforms the

sequential modular convergence methods. The superior efficiency of the

simultaneous modular simulator is proven over a wide variety of

conditions.

Tables 5.3.1-2 to 5.3.1-5 contain more information about both the

sequential modular and simultaneous modular runs. For sequential

modular calculations, the total number of flowsheet passes (including

the last results pass) and the average time per flowsheet pass. (The

time per pass is larger in the first couple of passes because all the

blocks need to be initialized. Due to the use of retention arrays to

save intermediate results, after the first passes, the blocks are

initialized with the results obtained from the previous pass. This

results in considerable savings in time needed to execute the modules

in a flowsheet pass). For the simultaneous modular runs, the time

spent in each step of the convergence procedure is presented in the

tables. Time measurements are given both in absolute CPU seconds, and

as percentage of the total time needed to converge the flowsheet. The

steps considered in simultaneous modular calculations are the

following:
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(1) Sequential Modular Flowsheet Passes.

(2) Reduced Problem Formulation.

(3) Reduced Problem Solution (the Inside Loop).

(4) Stream Initialization.

The sequential modular flowsheet passes include three basic

operations: flowsheet passes needed to initialize the calculations

(two passes in every problem); execution of the blocks to obtain a

rigorous solution at the beginning of each outside loop iteration (one

flowsheet pass per outside loop iteration), and a last pass (a results

pass) after the flowsheet is converged.

The reduced problem formulation steps include the calculation of

the residuals of the reduced flowsheet equations, and the generation

of the Jacobian matrices associated with the reduced problem

equations. The reduced problem solution steps include only the time

spent in the inside loop solver subroutine. (The operations performed

in this step include the computation of the Newton-Raphson directions

and the variable updates during the convergence of the inside loop).

For Problem 3, the total time needed to initialize the process

streams at the beginning of each outside loop iteration is also

included. By default, only the inlet and tear streams are

reinitialized at each iteration (see Section 2.2). For problems 1 and

2, the stream initialization time is very small and is lumped together

with the time spent in flowsheet passes.

Tables 5.3.1-7 to 5.3.1-10 contain the simultaneous modular

iteration history for each problem. In each of these tables, the left

column is an outside loop iteration counter, while the right column
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Sequential Modular Calculations:

* Number of Flowsheet Passes:

* Time per Flowsheet Pass:

13

2.7 CPU seconds

Simultaneous Modular Calculations - Time distribution:

Step Time Spent (sec) Percent of Total Time

Flowsheet Passes 23.8 82.1%
Reduced Problem Formulation 1.1 3.8%
Reduced Problem Solution 4.1 14.1%

Table 5.3.1-2: CPU Time Distribution for Benchmark Problem 1.

Sequential Modular Calculations:

* Number of Flowsheet Passes:

* Time per Flowsheet Pass:

16

2.5 CPU seconds

Simultaneous Modular Calculations - Time distribution:

Step Time Spent (sec) Percent of Total Time

Flowsheet Passes 15.6 57.4%
Reduced Problem Formulation 1.3 4.6%
Reduced Problem Solution 10.3 38.0%

Table 5.3.1-3: CPU Time Distribution for Benchmark Problem 2.
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Sequential Modular Calculations:

* Number of Flowsheet Passes:

* Time per Flowsheet Pass: 7.3 CPU seconds

Simultaneous Modular Calculations - Time distribution:

Time Spent (sec) Percent of Total Time

Flowsheet Passes
Reduced Problem Formulation
Reduced Problem Solution
Stream Initialization

Table 5.3.1-4: CPU Time Distribution for Benchmark

Ideal Physical Properties.

Sequential Modular Calculations:

* Number of Flowsheet Passes: 16

* Time per Flowsheet Pass:

Problem 3, Using

11.0 CPU seconds

Simultaneous Modular Calculations - Time distribution:

Time Spent (sec) Percent of Total Time

Flowsheet Passes 85.2 50.5%
Reduced Problem Formulation 4.0 2.4%
Reduced Problem Solution 69.6 41.3%
Stream Initialization 9.8 5.8%

Table 5.3.1-5: CPU Time Distribution for Benchmark Problem 3, Using

Redlich-Kwong-Soave Equation-of-State for Physical Properties.

40

Step

34.4
3.5

40.0
4.1

42.0%
4.3%

48.8%
5.0%

Step
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indicates the number of Newton-Raphson iterations needed to converge

the inside loop during each outside loop iteration. At the bottom of

the columns, the total number of outside loop and inside loop

iterations are given.

Several important conclusions may be drawn from the information

given in these tables. The two most time consuming steps in

simultaneous modular calculations are the sequential modular flowsheet

passes and the reduced problem solution. In every case these two steps

account for more than 90 percent of the total time spent in

computations. Thus, it is possible to write the number of simulation

time equivalents (STE) in terms of the number of outside loop

iterations (N0 1), the time per flowsheet pass (Wo) the average

time spent to converge each inside loop subproblem (W i), and the

number of iterations required in sequential modular calculations

(Nsm). Mathematically,

(5.3.1-1) STE - No (W 1o + W i) + 3w01

Nsm ol

This expression may be rewritten as:

(5.3.1-2) STE - N0  + N 0 Wil + constant

No NmWoNsm Nsm Wol

Looking at the terms in the above equation, it is possible to

identify the main factors that influence the performance of

simultaneous modular calculations relative to the standard sequential

modular convergence methodology. It is interesting to note that the

relative efficiency of the simultaneous modular algorithm increases
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(that is, the number of simulation time equivalents decreases) as

either the time per flowsheet pass (W ) or the required number of

sequential modular passes (Nsm) increases. Both of these quantities

are related to the complexity of the flowsheet being simulated.

Chemical processes with complex unit operations will require large

amounts of computer time to simulate the units. Thus, for such

processes, the time needed for each flowsheet pass will also be large.

Similarly, flowsheets with many recycle loops will require more

sequential modular passes to arrive to the converged solution. This

implies that for a given simultaneous modular implementation, the

efficiency of the calculations relative to a sequential modular

simulator will increase as the complexity of the flowsheet increases.

With respect to the parameters in equation (5.3.1-2) which are

related to the simultaneous modular implementation, the number of

outside loop iterations Nol will be problem dependant. Nevertheless,

this quantity will decrease as better reduced models for unit

operations are used. The term better reduced models in this context

means models which approximate better the actual phenomena described

in the rigorous modules. For example, the version of Problem 3

simulated with ideal physical properties required 3 outside loop

iterations to converge. On the other hand, 5 outside loop iterations

were needed when nonideal physical properties were used in the

simulation (see Tables 5.3.1-9 and 5.3.1-10). This difference in

iteration history stems from the fact that the reduced models used for

the inside loop are based to some extent on idealized physical

property equations.

The time needed to converge each inside loop W1 1 be a function
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Sequential Modular Calculations:

* Number of Flowsheet Passes:

* Time per Flowsheet Pass:

40

7.3 CPU seconds

Simultaneous Modular Calculations - Time distribution:

Time Spent (sec) Percent of Total Time

Flowsheet Passes
Reduced Problem Formulation
Reduced Problem Solution
Stream Initialization

34.3
3.5

40.0
9.8

39.2%
4.0%

45.7%
11.1%

Table 5.3.1-6: CPU Time Distribution for Problem 3, Using Ideal

Physical Properties and Converging all the Stream Variables in the

Outside Loop.

Step
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NUMBER OF ITERATIONS

Outside Loop
1
2
3
4
5
6

total: 6

Inside Loop
5
3
2
2
1

1

Table 5.3.1-7: Iteration History for Problem 1 (Number of Inside

loop Iterations for each Outside Loop Iteration).

NUMBER OF ITERATIONS

Outside Loop Inside Loop
1 5
2
3
4

total: 4

2

11

Table 5.3.1-8: Iteration History for Problem 2 (Number of Inside

Loop Iterations for each Outside Loop Iteration).
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NUMBER OF ITERATIONS,

Outside Loop
1
2
3

total: 3

Inside Loop
6
2
2

10

Table 5.3.1-9: Iteration History for Problem 3 (number of inside

loop iterations for each outside loop iteration), Using Ideal

Physical Properties.

NUMBER OF ITERATIONS

Outside Loop Inside Loop
15
2 2
3 2
4 2
5 2

total: 5 13

Table 5.3.1-10: Iteration History for Problem 3 (Number of Inside

Loop Iterations for each Outside Loop Iteration), Using the

Redlich-Kwong-Soave Equation-of-State.
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of the complexity of the reduced flowsheet equations, the initial

guess provided to converge the reduced equations, and the efficiency

of the numerical algorithm used to solve the inside loop. For the

ideal and nonideal versions of Problem 3, the average times required

to converge each inside loop subproblem are about the same in both

cases (see Tables 5.3.1-4, 5.3.1-5, 5.3.1-9 and 5.3.1-10). Given the

relatively large amounts of time spent solving the inside loop

problems, important improvements in the performance of the

simultaneous modular concept could be achieved if better solution

algorithms were implemented. For example, better sparse matrix

manipulation techniques could lead to important reductions in time

spent in the inside loop.

To test the effect of converging all the streams in the outside

loop versus converging tear and feed streams only, some runs were

carried out using the former implementation. In every case, the

convergence history (number of outside and inside loop iterations) was

the same as when only the tear and feed streams were converged in the

outside loop. However, the amount of time needed to reinitialize all

the streams at the beginning of each outside loop iteration became an

important factor in the overall calculations. For example, table

5.3.1-6 shows the time measurements for the solution of Problem 3 with

ideal physical properties, taking all the stream variables as outside

loop variables. Comparing these results with the ones obtained when

only the tear and feed streams were converged, we observe that the

percentage of total time spent in stream initialization rose from less

than 5 percent to more than 11 percent. For standard simultaneous

modular calculations, it seems more efficient to converge only the
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tear stream variables in the outside loop.

5.3.2 Integrated Simultaneous Modular Calculations

Problems 2 and 3 were used to test the feasibility of integrating

the simultaneous modular calculations with the inside-out algorithm

used for flash calculations in ASPEN PLUS. The two levels of

integration discussed in Section 2.3 were implemented and tested. The

first level of integration, referred as "Integrated Calculations",

corresponds to a case where only one iteration in the inside-out flash

algorithm is performed. The second level of integration, referred as

"Completely Inside-Out Approach", corresponds to the case where the

rigorous model calculations for the flash unit are confined to the

simple model parameter generation.

Integrated calculations converged to the correct solution in all

the test problems. This shows the feasibility of the proposed methods.

For Problem 2, the iteration history (number of outside and inside

loop iterations) obtained with both types of integrated calculations

was exactly the same as for standard simultaneous modular calculations

(see Table 5.3.1-8).

For Problem 3, the iteration history obtained with both types of

integrated calculations was slightly different from that obtained with

standard calculations. Tables 5.3.2-1 and 5.3.2-2 show the number of

inside and outside loop iterations for the ideal and nonideal versions

of Problem 3, respectively. Both types of integration resulted in

identical iteration histories for a given problem. For the version of

Problem 3 simulated with ideal physical properties, the number of
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outside loop iterations was the same as for the case of standard

calculations. However, one less iteration was required to converge the

inside loop during the first outside loop iteration. For the nonideal

version of the problem, the number of outside loop iterations was also

the same with integrated calculations as with standard calculations.

In this case, however, one less inside loop iteration was required

during the last (fifth) outside loop iteration.

Measurements of the CPU time required to converge the benchmark

problems using integrated calculations gave results which were very

similar to the ones obtained from standard calculations. The internal

clock available in the VAX 11/780 computer is not accurate enough to

distinguish between integrated and standard flash calculations (time

measurements varied up to 5% even when the computer had a light load).

For example, Table 5.3.2-3 shows the computation time distribution

obtained when the completely inside-out approach was used on Problem 3

with ideal physical properties. The percentage of the total time spent

in flowsheet passes is very similar to that presented in Table 5.3.1-6

for standard calculations. (In making the comparison between the two

numbers, it should be noted that the percentage of time spent in

flowsheet passes in the completely inside-out case is higher because

less time was spent solving the inside loop). This is not an

unexpected result, given that the problems used to test the concept

are relatively simple. The time savings in the outside loop iterations

resulting from integrated calculations are within the error in the

time measurement. The main savings obtained in the integrated

calculations are derived from the reduced number of inside loop
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iterations. However, this result is problem dependent and may not be

generalized.

There are two important conclusions that may be drawn from the

results obtained by using integrated calculations. The first one is

that the proposed methods are indeed feasible. The second one is

related to the efficiency of the calculations. For the simple problems

used to test the method, the savings in outside loop computations were

much less than the extra work required to converge all the streams in

the outside loop (stream reinitializations at the beginning of the

outside loop iterations). This situation may be expected to change as

the complexity of the units in the flowsheet increases. The main

trade-off for complex flowsheets would be in the extra number of

iterations needed to converge the flowsheet using an integrated

approach (integrated calculations or a completely inside-out

simulator). However, for the problems solved in this work, no increase

in the number of outside loop iterations was observed as a result of

the integrated calculations, which do not require that all the

rigorous models are converged in the outside loop. It should be noted

that when standard simultaneous modular calculations are performed

converging all the stream variables in the outside loop (see Table

5.3.1-6, for example), the overall efficiency of the algorithm is

lower than for the two integrated approaches.

Integrated simultaneous modular approaches seem like a viable way

to further increase the efficiency of simultaneous modular simulators

when dealing with flowsheets that contain complex separation devices.
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NUMBER OF ITERATIONS

Outside Loop
1
2
3

total: 3

Inside Loop
5
2
2
9

Table 5.3.2-1: Iteration History for Problem 3 (Number of Inside

Loop Iterations for each Outside Loop Iteration), Using Ideal

Physical Properties. Integrated Calculations and Completely

Inside-Out Approach.

NUMBER OF ITERATIONS

Outside Loop Inside Loop
1 5
2 2
3 2
4 2
5 1

total: 5 12

Table 5.3.2-2: Iteration History for Problem 3 (Number of Inside

Loop Iterations for each Outside Loop Iteration) Using the Redlich-

Kwong-Soave Equation-of-State. Integrated Calculations and

Completely Inside-Out Approach.
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Simultaneous Modular Calculations - Time distribution:

Step Time Spent (sec)

Flowsheet Passes 38.5
Reduced Problem Formulation 4.2
Reduced Problem Solution 41.7
Stream Initialization 9.8

Percent of Total Time

40.9%
4.5%

44.3%
10.3%

Table 5.3.2-3: CPU Time Distribution for Problem 3, Using Ideal

Physical Properties. The Problem is Converged Using a Completely

Inside-Out Approach.
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CHAPTER 6: HANDLING OF DESIGN SPECIFICATIONS

In a standard simulation problem, the process feed streams and the

operating parameters associated with the units are specified by the

user. The solution to the simulation problem gives values for all the

flowsheet variables. For many applications, however, it may be

desirable to supply alternative specifications, which may be any

function of flowsheet variables. For example, the user may want to

specify an output flow rate, or the purity of a product stream, or a

property of any stream other than a process feed. For a simulation

problem, the number of degrees of freedom is always zero; that is, for

each design specification, the user must free a block input variable,

or a process feed stream variable. These manipulated variables would

otherwise be given by the user. The solution of a simulation problem

with design specifications will provide values for the manipulated

variables along with the other flowsheet variables.

When a simulation problem with design specifications is solved

using equation oriented methods, a design specification becomes just

another equation which is added to the original set of flowsheet

describing equations. The problem is then solved in exactly the same

way as a standard simulation problem. At the other extreme, sequential

modular simulators usually create an information recycle loop for each

design specification equation. That is, each design specification adds

another loop that needs to be torn and converged in order to solve the

problem. The additional nesting and coupling of loops makes the
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solution of design problems very inefficient in sequential modular

simulators.

Two-tier simultaneous modular simulators would have both, a

modular step (the outside loop) and an equation oriented part (the

inside loop). The most efficient way to solve a design problem in this

kind of architecture, is to add the design specifications to the

system of equations solved in the inside loop. This would keep the

advantages that equation oriented methods offer for this type of

problem. However, this procedure may not be used directly if the

sampled variables related to the design specifications were eliminated

from the inside loop because of the use of simplified models at this

stage.

The purpose of this chapter is to review the method of solution of

general design specification problems with a simultaneous modular

simulator. A summary of the procedure used in the simulator to handle

manipulated variables is presented in Section 6.1, along with a

discussion of the simple case where all the sampled variables are

included in the inside loop problem. Section 6.2 is devoted to the

case where sampled variables are not present in the reduced problem

but may be introduced by changing the simple 'model for a unit. A

general solution to design specification problems with sample

variables not included in the inside loop is presented in Section 6.3.

Finally, some examples showing the performance of the simultaneous

modular method for design problems are presented in Section 6.4.
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6.1 Handling of Manipulated and Sampled Variables.

Each design specification adds an equation to the reduced problem.

For each added specification, a process variable is freed, so that it

can be adjusted to satisfy the new constraint. In the original

simulation problem, the values of the freed variables (manipulated or

decision variables) were defined by equations that related the

variables with the user's input. When a process variable is freed, the

equation that would set its value should not be generated. The process

of defining decision variables, for simulation or optimization

problems, is simply a mechanism to stop the generation of the

equations that would normally define such variables.

The above statements imply that all the equipment parameters that

may be varied in design or optimization problems need to be included

in the variable list of the inside loop. An equation is generated to

set the numerical value of the parameter in the inside loop (as in

Equation 1.1-2), except when the parameter is freed as a decision

variable. This is also true of the process feed streams, which contain

variables that could be adjusted to achieve certain specifications or

to optimize the flowsheet.

During the transition from the inside loop to the outside loop,

new guesses of the process variables (obtained from the information

gained solving the inside loop) are placed back in the locations

needed for the next round of rigorous modular calculations. These

variables include the equipment parameters which are treated as

decision variables. At this stage, the process streams being converged

in the outside loop (see Sections 2.2.2 and 2.2.3) are reinitialized
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(flashed) to obtain all the stream information needed in the rigorous

models. If there are manipulated variables in the process feed

streams, then these streams should be reinitialized at the start of

the outside loop iterations with the new guesses of the manipulated

variables.

The variables that may be manipulated in design specifications and

optimization problems are usually well identified within each unit,

and they should be considered when a reduced model for the unit is

developed. As long as reasonable reduced models are used in the

two-tier approach, all the manipulated variables will be present in

the reduced problem. This, however, may not be the case with sampled

variables, which may be variables that are not needed to converge the

flowsheet in most simulation problems. For example, internal unit

variables and complex physical properties of streams are eliminated

from the inside loop variable list because they do not need be

computed in the reduced models (see Section 4.1). If all possible

variables were kept in the inside loop, then the resulting calculation

would be equivalent to an equation oriented approach, with all its

disadvantages.

In the simple case when the reduced problem contains all the

sampled variables (and this case covers most design specification

problems found in practice), the design specification equation may be

simply added to the rest of the equations in the inside loop. The

first example presented in Section 6.4 illustrates the performance of

the algorithm in a problem with this characteristic.

The next two sections of this chapter are devoted to the cases

where the sampled variables are not present in the variable list of

the reduced problem.
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6.2 Adaptation of Reduced Models to Introduce Variables.

One of the guidelines suggested for reduced models of process

units (see Chapter 4) is that internal unit variables should be

excluded from the model equations. This way, the number of reduced

simulation equations is automatically reduced. Thus, a simple

nonlinear model for an absorber column, for example, could use

engineering approximations to predict the behavior of the column

without performing stage by stage calculations. In general, there is

no need to compute internal composition and temperature profiles in

the inside loop of the convergence algorithm. However, the possibility

arises that a design specification may be imposed on one of the

internal unit variables that does not appear in the reduced model

equations.

The problem described above is found mainly in staged separation

devices. In this case, the problem may be solved by introducing the

needed variables in the reduced problem through an adaptation of the

reduced model. One approach is to write "smart" simple models that

take different configurations depending upon the problem at hand. For

example, an absorber column for which there is a design specification

on one internal flow could be modelled as two absorber columns

interconnected at the stage where the required internal stream

appears. This idea is illustrated in Figure 6.1. Only two of the

internal streams in the column appear explicitly in the new reduced

model, so as to keep the number of variables in the model as small as

possible. If other internal stream variables had to be accessed, the
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column could be broken in more segments to generate the variables of

interest.

The above approach was discussed in detail in Chapter 4 in

relation to the reduced models for complex distillation columns tested

by Lee [32]. The general idea is to use building blocks to create

reduced models for complex units or to break a unit so as to have

access to internal variables. Each one of the building blocks is in

turn a reduced model for a smaller unit. In the example presented

above, the building blocks are the reduced models for absorption

columns, and two such blocks were used to model one single column in

order to create internal variables needed for design specifications.

For the case of integrated calculations presented in Section 2.3,

the reduced models of most staged separation devices would be the

simple equations used in the two-tier algorithms of the unit operation

blocks. In general, these models include all the internal flowrates

and temperatures; thus, the addition of design specifications on these

variables would pose no additional problems, as the variables would be

already available in the reduced problem.

6.3 Handling of Variables not Present in the Reduced Problem.

For most problems of interest, the addition of the design

specification equations pose no special problems. The sampled

variables most commonly used are already in the inside loop variable

list or may be introduced by an appropriate change in reduced model.

However, a general purpose simulator should be able to solve design

problems for the general case where sampled variables are not in the
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reduced problem.

To handle this case we propose to introduce a "reduced model" to

represent the behavior of the missing sampled variable in the inside

loop. Let us take a design specification of the form:

(6.3-1) h(x,w) = 0

Where x are the process variables included in the inside loop variable

list, and w is a sampled variable eliminated from the inside loop. The

idea is then to introduce the following two equations in the inside

loop:

(6.3-2) w - g(x) - 0

(6.3-3) h(x,w) - 0

The function g(x) is a simple model to represent the behavior of the

sampled variable as a function of the other process variables. With

the addition of the new reduced function, the sampled variable w may

now be introduced to the inside loop variable list. Thus the design

specification equation may now be simply added to the reduced problem.

A simple model for the sampled variable may be a first order

Taylor series expansion of the form:

(6.3-4) w-w aw - ) - w * * 0
1 xl) - (x2 -x 2 )
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Where x , x2, etc. are the process variables upon which the

sampled variable w depends. The partial derivatives in the above

expression are the simple model coefficients for the linear model.

* *
They need to be obtained numerically at the base point (x , w )

during each outside loop iteration, in the same way as the reduced

model parameters for unit operations. Although the number of process

variables in the reduced problem may be quite large for a typical

problem, the number of numerical derivatives to be calculated is in

practice very small. Only the process variables directly associated

with the sampled variable need to be included in the above expression.

Thus, if the sampled variable is a stream variable, only the variables

associated with that stream need to be perturbed to compute partial

derivatives.

6.4 Example Problems.

Three example problems were used to test the performance of the

simultaneous modular simulator for the convergence of flowsheets with

design specifications. All three problems are based on the basic

flowsheet described as Problem 1 in Section 5.1.1. The first

modification to the basic problem tests the performance of the method

for the simple case where the sampled variables in the design

specification equation are included in the inside loop. The second

modification has a design specification on a variable that is not

included in the inside loop. Finally, the third modification to the

basic problem combines both of the design specification equations used

in the other two examples. The purpose of this last problem is to test
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the efficiency of the algorithm as the flowsheet becomes more complex.

The first modification to the original plug-flow reactor problem

to be considered is shown schematically in Figure 6.a. The basic

flowsheet is the same as before, except that a specification is added

to achieve 95% conversion of the reactant A (isobutyric acid) in the

feed. Thus, the specification equation is:

(6.4-1) Afeed - (Aprod + Ableed) - 0.95 - 0

Afeed

Where Afeed, Aprod and Ableed refer to the molar flowrates of

component A in streams FEED, PROD and BLEED, respectively. All the

variables in the above equation are in the inside loop variable list.

To satisfy the above equation, the length of the reactor is to be

varied between a lower limit of 10 meters and an upper limit of 30

meters. The complete report generated by ASPEN PLUS with the results

of the simulation is included in Appendix 5. The length of the reactor

in this case should be 23.3 meters.

The second modification to the problem is shown schematically in

Figure 6.b. The fraction of the liquid stream purged in stream BLEED

is to be varied between 0.005 and 0.6 to achieve a mole fraction of

byproduct G (n-butyric acid) of 0.02 in the stream entering the

reactor (stream REACTIN). The specification equation added to the

original problem is:

(6.4-2) xG,reactin - 0.02 - 0

Although the problem contains one design specification, like the first
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problem described above, this example is much more difficult to solve

both in sequential modular and simultaneous modular simulators. In the

first problem, the specification loop solved by the sequential modular

simulator spans only two computation blocks. In the second case, the

specification spans the whole flowsheet. In terms of solution with a

simultaneous modular algorithm, it should be noted that the mole

fractions of the components in a stream are not included in the

reduced flowsheet equations. Therefore the sampled variable

xG,reactin is not directly available in the inside loop variable

list. The method proposed in Section 6.3 needs to be used for the

simultaneous modular solution of the problem. The solution to the

problem is to have 7.3% of the total liquid flow leaving the flash

drum purged in stream BLEED. A complete set of results for this

problem is included in Appendix 5.

The third modification to the problem is indicated in Figure 6.c.

This problem simply adds the two specifications used in the first two

design specification examples to the basic plug-flow reactor

flowsheet, and both the reactor length and the fraction of the liquid

stream purged are treated as decision variables. The solution to this

problem is to use a reactor 31.15 meters long and to purge 48% of the

liquid leaving the flash. A complete set of results is included in

Appendix 5.

All the runs with specifications (both sequential modular and

simultaneous modular) were made using the same run parameters

described in Section 5.2. The initial guess provided for the decision

variables in every case is the value in the basic flowsheet described

in Section 5.5.1 (reactor length - 15.33 meters, split fraction -
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0.03). The default convergence method provided by ASPEN PLUS (for the

sequential modular runs) for problems with design specifications is to

nest the design specifications inside the tear stream convergence

loops. Thus, two convergence loops were generated by ASPEN PLUS for

the first two problems, and three convergence loops were generated for

the problem with two specifications. The secant method was used to

solve the specification equations, and Wegstein's method was used to

solve the tear stream equations. Although Broyden's method is

available in ASPEN PLUS for the simultaneous solution of tear streams

and design specifications, it was decided not to use this option as a

standard of comparison. Broyden's method is seldom used in practice in

sequential modular simulators due to its unreliability when dealing

with problems with bounds, such as the example problems presented in

this chapter.

A summary of the results obtained for the three example problems

is presented in Table 6.4-1. The first column of this table shows the

number of simulation time equivalents required by ASPEN PLUS (with

sequential modular calculations) to solve each problem. The second

column shows the number of simulation time equivalents required to

solve the same problems using the simultaneous modular algorithm

implemented in this work. (Note that one simulation time equivalent is

referenced to the solution of the flowsheeting problem without

specifications).

Several important conclusions may be drawn from the numbers

presented in the table. The method used to deal with general

specifications which include variables not present in the inside loop

(see Section 6.3) worked successfully for the two test problems in
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Design Spec. on Conversion

Design Spec. on Mole Fraction

Two Design Specifications

STE
Sequential
Modular

1.9

4.8

6.4

STE
Simultaneous
Modular

0.85

0.84

0.73

Table 6.4-1: Simulation Time Equivalents for Solution of Problems with

Design Specifications.
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this category (the second and the third problems).

In terms of efficiency, the simultaneous modular methodology

proved to be far superior to the sequential modular methods used in

present industrial simulators. As the complexity of the problem

increases, the number of simulation time equivalents required by the

sequential modular version of ASPEN PLUS increases very rapidly. For

the simplest test problem, sequential modular calculations require

twice as much time to converge the flowsheet compared to the basic

flowsheet without specifications. For the more complex example with

one design specification, the number of simulation time equivalents

increases to almost 5. When the two design specifications are imposed

on the basic flowsheet, the number of simulation time equivalents

increases to 6.4. On the other hand, simultaneous modular calculations

seem to be insensitive both to the number and the form (span) of the

specifications. The number of simulation time equivalents is

approximately the same for all cases. In fact, for the test problems

chosen in this chapter, simultaneous modular calculations converge

faster for the more complex cases.

A comparison of the data given in Table 6.4-1 with those presented

in Table 5.3.1-1 suggests that the performance of the simultaneous

modular algorithm for problems with specifications is about the same

as for the solution of the basic flowsheet without specifications. For

all the problems based on the plug-flow reactor flowsheet, the number

of simulation time equivalents required to converge to the solution

was about 0.8. This is not an unexpected result. The design

specifications are solved in the inside loop, which uses an equation

oriented algorithm to converge to the solution. The system of
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equations solved in the inside loop does not change very much with the

addition of the specification equations. Equation (5.3.1-2) was

deribed to predict the number of simulation time equivalents needed to

solve the problem using simultaneous modular calculations as a

function of the complexity of the flowsheet. In terms of this

equation, the number of outside loop iterations (N0 1 ) and the work

needed to solve each reduced problem (W i) remain approximately

constant. Thus, the number of simulation time equivalents is the same

for all the variations of the original problem, even though the

complexity of the flowsheet increases considerably.

Tables 6.4-2 to 6.4-4 show the itertion history and the

computation time distribution for each of the three simultaneous

modular runs (the iteration history for each sequential modular run is

given with the summary of results for the runs in Appendix 5). As

expected, the convergence path and the time distributions are very

similar for all the runs. Since the flowsheet includes a complex unit

which requires a lot of computer time to simulate (the reactor), most

of the time needed to converge the problems using a simultaneous

modular methodology was spent on flowsheet passes. The situation would

be different for a flowsheet with simpler units, as it was shown in

Chapter 5.

It was mentioned in Section 5.3.1 that the relative efficiency of

the simultaneous modular approach increases as the problems become

more complex. Flowsheets with design specifications are good examples

of problems that are difficult to solve in present simulators because

of the added information recycle loops. Using the proposed
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simultaneous modular algorithm, these problems may be handled with the

same degree of efficiency as the basic problems without the design

specifications.
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* Percentage of Time Spent in the Outside Loop: 81.6%

* Percentage of Time Spent in the Inside Loop: 18.4%

NUMBER OF ITERATIONS

Outside Loop Inside Loop
12
2 3
3 2
4
5
6

total: 6 12

Table 6.4-2: Iteration History and Time Distribution for Problem 1

with a Design Specification on Conversion.
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* Percentage of Time Spent in the Outside Loop: 86.2%

* Percentage of Time Spent in the Inside Loop: 13.8%

NUMBER OF ITERATIONS

Outside Loop Inside Loop
1 5
2 3
3 2
4 1
5

total: 5 12

Table 6.4-3: Iteration History and Time Distribution for Problem 1

with a Design Specification on Mole Fraction.
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* Percentage of Time SPent in the Outside Loop: 82.4%

* Percentage of Time Spent in the Inside Loop: 17.6%

NUMBER OF ITERATIONS

Outside Loop
1
2
3
4
5

total: 5

Inside Loop
7
2
1
1
1

12

Table 6.4-4: Iteration History and Time Distribution for Problem 1

with Two Design Specifications.




