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Abstract

Civil infrastructure is and continues to be the backbone of our society to meet our

needs in housing, transportation, water and electricity supply, and so on. However,
its functions are recently revisited in response to rising concerns about its certain

sustainability aspects. These aspects include and are not limited to excessive green-

house gas emissions, unreasonably high energy footprint, relatively short service life,
low durability and poor resilience. This presents us with an exclusive opportunity

to take these detrimental aspects seriously and turn them into exciting venues for

research in the realm of civil and environmental engineering. These opportunities

are disseminated across the entire infrastructure landscape, spanning several length

scales starting from the molecular structure of construction materials to the entire

global transportation network.
From Atoms to Cities is intended to provide a multiscale bottom-up framework to

seamlessly connect the heat transport through the molecular structure of construction

materials to thermal energy losses at the city level. Separated by twelve orders of

magnitude in length scales, from nanometers to kilometers, this provides a chance to

link ideas in mechanics and physics of materials to analysis of complex systems. Two

major impediments hinder any progress in pursuit of such a hierarchical multiscale

model: the absence of a realistic molecular structure of construction materials such

as Calcium-Silicate-Hydrates (C-S-H), the glue of concrete, and the multiplicity of

factors affecting heat losses at large scales. The first is an indispensable requirement

in statistical mechanics as it shapes the energy landscape. The second makes it rather

impossible to quantitatively assess the impact of sustainability initiatives at the city

scale.
By combining the tool of statistical physics with combinatorial screening tech-

nique, we first construct a database of realistic molecular structures of C-S-H with

varying calcium-to-silicon ratios and compare them against an extensive array of nano-

textural and nano-mechanical experiments. A comprehensive analysis of this database

reveals a deeper level of connection between cement science and glass physics. This

includes the existence of anomalies in mechanical properties similar to that observed
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in rigidity transition windows in binary glasses and the presence of extra atomic vi-

brational modes at low THz regime known as Boson peak. These models are further

utilized to calculate the heat capacity and transport properties using Green-Kubo
formalism in equilibrium molecular dynamics. While considering other phases in

cement paste, the use of mean-field homogenization technique enables us to upscale

thermal properties from the nanoscale to the engineering macroscale. The macro-level
thermal properties are subsequently compared with those measured experimentally

throughout the cement's hydration process. Afterwards, we show that the building

envelope's heat transport property is among the set a few influential parameters that

affect heat losses at the city scale. This subset of key parameters makes it feasible to

construct a high fidelity mechanistic-based reduced order model of heat losses at the

building level. Together with energy consumption data of more than 6,200 buildings

in Cambridge, MA, this model paves the way to find the shortest path to reduce heat

losses in city's building block through retrofit.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: Roland Pellenq
Title: Senior Research Scientist of Civil and Environmental Engineering
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ter molecules. f) At C/S=1.5, several bridging tetrahedra are removed
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experiments measured by Thomas et al. [332]. c) The effect of C/S
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carried out by Chen et al. [65]. The inset presents the variation of MCL

before and after reactive modeling. About 20% of molecular models
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2-4 M/H as a function of Ca/Si ratio. The simulation results are compared

against experimental data. The experimental M/H is calculated from

measured M and H by assuming that they are normal independent
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2-5 Exploring the toughness anomaly in the dual-defect framework. a)

Ca/Si-A(Si-0) and b) Ca/Si-A'(Cw-0). The both contour plots show

a region in which the toughness is maximized. The correlation among
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network (responsible for lower hardness). . . . . . . . . . . . . . . . . 60

16
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Chapter 1

Introduction

1.1 Societal and Industrial Challenges

Civil infrastructure is and continues to be the backbone of our society to meet our

needs for housing, transportation, water and electricity supply, and so on. However, in

response to rising public concerns about sustainable and resilient infrastructure devel-

opment, its functions are recently revisited to encompass roles beyond providing basic

services. In fact, the modern infrastructure is assumed to actively cope with excessive

greenhouse gas emissions, unreasonably high energy footprint, relatively short service

life, low durability and poor resilience. These expectations are placing the United

States' infrastructure at the focal point of our Civil and Environmental Engineer-

ing (CEE) community. This presents us with an exclusive opportunity to take these

threats seriously and turn them into exciting venues for creative research and possi-

bilities to educate the next generation of civil and environmental engineers. These

opportunities are disseminated across the entire infrastructure landscape, spanning

several length scales starting from the molecular structure of construction materials to

the entire global transportation network. The challenge is then to properly recognize

opportunities, discern their root causes and develop practical solutions.

As mentioned above, one of the critical issues with civil infrastructure is its con-

tribution to the global warming potential. Global warming is a detrimental threat to

our national and global security. Its dire consequences include, and are not limited to,
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drastic weather and climate patterns, exacerbating health issues, endangering wildlife,

and rising sea levels. The synergies between global warming and climate change entail

longer periods of drought in some regions and an increase in the number, duration

and intensity of tropical storms in other places, while increasing the potential risk for

more frequent wildfires. Heat waves claim thousands of lives across the globe and con-

tribute to smog pollution that intensifies pollen allergies and asthma. Global warming

does not only jeopardizes human lives via extreme weather events but also places sev-

eral species at the verge of extinction. Finally, the melting of glaciers and associated

see-level rise accompanies loss of wetlands and places our coastal landmarks at risk of

annihilation. These ominous consequences call for different stakeholders ranging from

policy makers to scientists and engineers to recognize this worldwide phenomenon as

a global threat and take this historic opportunity to curb its unrestrained expansion.

The first step to control global warming is to identify its contributing factors.

Most climate scientists agree the main cause of global warming phenomenon is an-

thropogenic emissions that block the thermal radiations bouncing from-earth's surface

toward the outer space. The greenhouse gas emissions in 2014 exceed 5,000 million

metric tones of carbon dioxide equivalents. Carbon dioxide, methane and nitrous

oxide respectively constitute 85%, 8% and 5% of these emissions [Ref: Fig 1-1 from

World Resources Institute]. In United States, all sectors supply greenhouse gas dis-

charge to the atmosphere with transportation, electricity and heat, industrial appli-

cations and processes, and agriculture and waste accounting respectively for 27.2%,

32.4%, 31.6%, and 8.8% of national emissions [Ref: Fig 1-1 from World Resources

Institute]. This holds civil infrastructure, the combination of transportation network,

residential and commercial buildings, and productions of construction materials, ce-

ment and steel, accountable for more than 60% of national CO2 emissions.

More specifically, the cement industry faces strict challenges ahead of itself to

limit its carbon footprint. The two major sources of emissions in this industry are

associated with energy-intensive manufacturing process and calcination of limestone

(CaCO 3 ) in a cement kiln. Combined together, manufacturing every ton of cement

involves discharging one cubic meter of CO2 to the atmosphere. This does not per
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Figure 1-1: United States greenhouse gas (GHG) emissions flowchart across different
sectors and end use activity in 2010, courtesy of World Resources Institute.
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se make cement a good or a bad material. It is astonishing to know that concrete,

the structural backbone of our infrastructure, is the most-used man-made material

on Earth. Every human being on earth consumes on average one cubic meter of

concrete every year. In fact, it is this unrestrained bulk consumption of concrete that

makes it responsible for 4-5% of global and 2.3% of our national CO 2 emissions[358].

Therefore, it is imperative to search for novel approaches to increase bulk properties of

cementitious materials in general. To this end, I dedicate part of this thesis to develop

a general framework to study the impact of modulating chemistry of cementitious

materials on their macroscopic bulk properties.

Another source of infrastructure-related emissions are closely tied to our ever-

increasing demand for electric and heating energy consumption in residential and

commercial sectors. According to a recent survey, 44% of energy consumption in

buildings is used for space heating and cooling, which accounts for 20% of the na-

tional CO 2 emissions[2]. Currently, the White House seeks approaches to lower energy

consumption of buildings by 40% and reduce the associated greenhouse gas emissions

by 150 million metric tons till 2020[3]. At this policy level, it is not always straight-

forward to discern the fundamental cause of an infrastructure dilemma. As it turns

out, several factors affect energy use in buildings, such as human behavior, thermal

characteristics of buildings' envelope, HVAC systems, and many others. Therefore,

it is instructive to have a quantitative understanding of influential parameters and

their impact on network level properties prior to embarking on a specific solution

approach. For instance, is it cost-effective to improve the thermal resistance of in-

sulation materials among hundreds of other factors for retrofit purposes? If so, how

much decrease in thermal conductance would have a meaningful impact on energy

consumption at the city scale? I allocate the other part of this thesis to this class

of societal problems with an intention to construct a quantitative model to leverage

science-informed decision making in promoting sustainable development.

To conclude, the main industrial and societal challenge here is to mitigate green-

house gas emissions associated with civil infrastructure. These emissions can be in the

form of embedded carbon footprint of construction materials or use phase emissions
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associated with energy consumptions.

1.2 Formulating the Science Problems

Now that the industrial and societal problems are identified, the challenge is then

to translate them to a set of physically sound science questions, so that answering

them could ultimately pave the way to mitigate the discharge of greenhouse gases to

the atmosphere. Here, we elaborate on three classes of science problems that have

direct implications on sustainability of civil infrastructure. These science problems

are usually at the interface of different fields ranging from physics and chemistry, to

materials, civil, mechanical, and systems engineering.

The first class of problems tries to enhance the sustainability of cemetitious mate-

rials by reducing their carbon footprint and enhancing their bulk properties. Cement's

carbon footprint is directly correlated to limestone consumption in the manufacturing

process. During limestone's calcination reaction in cement kiln, CaCO 3 dissociated

into carbon dioxide and calcium oxide. This calcium oxide is the source of calcium

in cement clinker phases, mainly different polymorphs of di- and tri-calcium-silicates.

Subsequently, this calcium will be involved during cement's hydration process that

precipitates calcium-silicate-hydrate (C-S-H). C-S-H is the glue of cement paste re-

sponsible for its stiffness, strength, and aging properties. Now that the connection

between the limestone consumption and the origins of mechanical properties in ce-

ment paste is brought forward, a research question can be formulated as follows: what

does decreasing the limestone usage, and subsequent calcium content, affect mechani-

cal properties of cement paste? In other words, does modulating the calcium content

in the cement paste aggravate or enhance the stiffness, strength, and fracture resis-

tant properties of cement paste? In fact, if it is shown that mechanical properties

of the paste do not vary significantly with calcium content, then a factor of # de-

crease in calcium consumption will result in a # times reduction in emissions. On the

other hand, while the emissions scale with volume, the strength of concrete columns,

arches and domes, scale with cross sectional area. Therefore, the specific strength of
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purely compressive members scales with inverse of length, L 1 . This suggests that

if the strength of cement paste scales with 6, the carbon emissions would eventually

scale with 6- to maintain the same strength level by resizing the cross section. This

reduction in carbon emissions is in addition to the reduction of limestone consump-

tion with the 3 factor. It is the ultimate goal of my scientific pursuit to identify the

correlation between these two factors, 0 and 6, through a coupled chemo-mechanics

analysis.

Second, cement and concrete are multifaceted materials, meaning that their me-

chanical properties are not the only concerns in the design and construction of civil

infrastructure. In fact, durability issues in cementitious materials continue to en-

danger the serviceability of concrete structures. This triggers the next set of science

questions, aiming to explore the impact of modulating the chemistry of C-S-H on its

equilibrium and non-equilibrium physical properties including water and ionic mobil-

ity and transport properties. In other words, are water molecules and cations bound

to the surface of the atomic structure of C-S-H or are they free to diffuse within

the porous structure of cement paste? More specifically, what is the role of cal-

cium content of C-S-H on the mobility of atomic and molecular species? Another

source of concern is cement paste's thermal properties, heat capacity and heat con-

ductivity, which appear to be important during both construction and use phases.

The thermally-driven early-age cracking during cement's exothermic hydration pro-

cess imperils the long-term serviceability of concrete structure. Thermal properties

of cement paste affect energy consumption of buildings through heat conduction and

thermal mass of the building envelope, the tendency of the building to retain a con-

stant temperature despite outdoor temperature variations. This motivates another

set of science problems that try to examine the impact of chemical modification of

C-S-H on its thermo-physical properties. In other words, how does calcium content

affect the heat capacity and thermal conductivity of cement paste? Also, how does

this thermal properties evolve during the hydration process? Therefore, another goal

of this thesis is to provide a consistent image of the interplay between the chemistry

and physics of cement paste.
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The third and the last set of problems that we try to address in this thesis pertains

to better understanding and hence proposing novel approaches to control excessive

energy loss of civil infrastructures at the city scale. Here, the thesis focus is mainly

shifted to energy losses associated with thermal conditioning of buildings including

both heating and cooling processes. The fundamental challenge is to find the op-

timum way that reduces energy losses and the associated carbon footprint of cities

through retrofitting its building blocks. This problem is at the interface of engineering

mechanics and systems science as it aims at manipulating the systems level prop-

erties through modulating energy losses in elementary building blocks of cities, i.e.

residential and commercial units. At the building level, the thermal energy losses are

affected by several factors, turning it to a complex system that can be regarded as a

function with many inputs parameters. The science challenge would then transform

to reducing the complexity of the elementary units to a simplified high-fidelity model

that is only affected by a subset of most influential factors, rather than the entire input

space. Answering this challenge is extremely informative and provides the solution

to several intermediate questions regarding the importance and impact of different

retrofit strategies at material, building and ultimately city levels. For instance, is

improving thermal properties of construction materials a necessity for reducing the

thermal efficiency of cities? If so, what are the minimum thermal characteristics of a

new construction material to place it as a "game-changing" material on the market?

Also, how does human behavior affect energy losses in buildings and how to disen-

tangle the thermal efficiency of a unit from residents' behavior? The answer to these

questions not only highlight the role of different factors but also facilitate identifying

the fastest and most energy efficient way to retrofit a city's building block.

1.3 Thesis Approach and Outline

The above science questions can be rationalized in a multiscale bottom-up framework

that involves several length scales starting from the molecular structure of materials

at the nanoscale, all the way to the policy and decision forming level at the city
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Figure 1-2: Multiscale bottom-up framework for hierarchical infrastructural infor-

mation flow starting from thermal proeperties of molecular constituents of cement

paste all the way to heat loss mechanisms at the city scale.
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scale. As discussed extensively in mean field theory, the scale separability condition

is absolutely essential in upscaling properties as it ensures the characteristic length

1 at a particular scale is much smaller than that of the subsequent scale L (1 < L).

Given that the scale separability condition is met, a hierarchical multiscale frame-

work provides a versatile tool for information passage in between adjacent scales (see

Fig. 1-2). In other words, the ultimate goal of analysis at a particular scale is to

provide the necessary information required for better understanding of the physical

phenomenon at the larger scale. The hierarchical multiscale modeling approach has

a lot in common with renormalization group theory. In fact, both approaches assert

that some information becomes increasingly irrelevant as the magnification power

of the notional microscope decreases. This means that the information content de-

creases as the characteristic length scale becomes larger. For instance, the molecular

structure of cement paste at the nanoscale is irrelevant in engineering design process.

However, the macroscopic strength properties, that are somehow the consequence of

molecular arrangements and interatomic interactions, play a substantial role in the

design of concrete structure against failure. Here, the aim is to fill this gap by pro-

viding a rational framework to sieve the abundant information at the nanoscale and

obtain observables of interest at the macroscale.

We use diverse sets of tools ranging from statistical physics and continuum me-

chanics to complex systems analysis to study each scale in depth. At the nanoscale,

we employ tools of computational physics including molecular dynamics, energy mini-

mization, and phonon analysis to unravel the correlation between the atomic structure

of cementitious materials and their mechano-physical properties. Subsequently, we

employ conventional tools of microporomechanics to upscale physical properties from

the nanoscale to the macroscale and compare the upscaled results with experimen-

tal measurements. This summarizes my toolbox for studying materials across length

scales. Moving toward the system level properties, we employ ideas in the design of

experiment, sensitivity analysis, and surrogate modeling and optimization, to connect

the energy losses at the city scale to the thermal properties of construction materials

at the material's macroscale. The thesis is divided into four chapters. The first two
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chapters focus on nanoscale properties of C-S-H. The subsequent chapter connects

the nanoscale properties to that of macroscale measurements. The last chapter is

dedicated to the study of heat losses in buildings and cities. In the following, we

provide a concise overview of every chapter.

Chapter 2 investigates the effect of calcium content or the calcium-to-silicon

(Ca/Si) ratio on the nanostructure and nanomechanics of C-S-H. This is achieved

by generating a database of 150 C-S-H models with Ca/Si ratio varying between 1.1

to 2.1. There are several steps involved in generating this database. The details

of the model construction are extensively discussed in Appendix A. The interested

readers are encouraged to study this appendix before proceeding to this chapter.

Subsequently, C-S-H models are used to explore the effect of Ca/Si ratio on the nan-

otexture of C-S-H and comparing it with available experimental data. This is followed

by the analysis of mechanical properties of C-S-H, including both elastic and strength

properties and their comparison with experimental coupled nano-chemo-mechanical

analysis via wavelength dispersive spectroscopy and nanoindentation. The details of

the experimental data are provided in Appendix B. Later on, the anomaly in indenta-

tion modulus-to-hardness ratio is thoroughly investigated in a dual-defect framework,

interpreting the results in terms of both Ca/Si ratio and medium-range order in Ca-

o and Si-O bonding in C-S-H. Afterward, this combinatorial database is juxtaposed

with Richardson's standard T/CH models and the points of agreement and disparity

are brought forward. Finally, discussions on the implications of findings close this

chapter.

Chapter 3 probes the effect of Ca/Si ratio on the structure and dynamics of

nanoconfined water in the interlayer spacing of C-S-H. The molecular models em-

ployed in this chapter are the same as those initially constructed in chapter 2. First,

the structural properties of nanoconfined water including the number of hydrogen

bonds, dipole moment and Voronoi density of water molecules are studied in all 150

C-S-H models. Subsequently, the anisotropy and inhomogeneity of confined water

dynamics are explored by means of mean square displacement analysis. This inho-

mogeneity in dynamical properties is further characterized through Van Hove space-
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time correlation function. This helps us unravel the size and residence times of water

molecules in the dynamical cage. Later on, it is shown that the dynamical properties

of ultraconfined water in C-S-H are composition-dependent and the self-diffusivity of

mobile water molecules are estimated and compared with experimental observations.

The conclusive remarks close this chapter.

Chapter 4 deals with thermal properties of cementitious materials across length

scales. This chapter starts with a detailed description of the multiscale and multi-

phase porous structure of cement paste across length scales. The different calcium

silicate phases in cement paste, including both clinker and hydration phases, are de-

scribed afterward. Since the CSH-FF potential used in this thesis was designed to

reproduce the structure and elastic properties of C-S-H models, the transferability of

this potentials to other crystalline phases is performed afterward and comparisons are

made with previous atomistic simulations and experiments. The vibrational density

of states of all phases are calculated and analyzed in detail, subsequently. The ther-

modynamic properties such as heat capacity at constant volume and pressure, coeffi-

cient of thermal expansion, and compressibility are calculated next from the density

of states and incremental molecular dynamics simulation. The Green-Kubo formal-

ism is employed thereafter to calculate the heat transport properties from equilibrium

molecular dynamics simulation. Mean-field homogenization techniques are used later

on to upscale heat capacity and conductivity values at the nanoscale to that at the

macroscale. These macroscopic quantities are monitored against the hydration de-

gree of cement paste and compared with experimental measurements. This chapter

is summarized with some conclusive comments.

Chapter 5 discusses the heat loss mechanisms from buildings and their aggregated

form at the city scale. This chapter begins with an overview of the several parameters

that affect building heating and cooling energy losses. The interested readers that

are not familiar with building energy simulations are refered to Appendix F for an

extensive discussion on building energy loss calculations. A global sensitivity analysis

is performed afterward to identify the most crucial factors that affect building en-

ergy losses. To this end, a Monte Carlo design is employed to propagate uncertainty
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from the space of parameters to space of energy losses. This input-output relation

is analyzed via the Spearman Partial Rank Correlation Coefficient to identify the

aforementioned crucial factors. The interested readers are referred to Appendix D

and Appenix C for fundamental definitions and mathematical concepts in design of

experiment and sensitivity analysis, respectively. Subsequently, the set of influential

parameters are employed to construct a reduced order model of building energy losses

via both machine learning and dimensional analysis techniques. Extra discussions of

surrogate analysis and design are provided in Appendix E. This study is further en-

riched by employing real energy consumption data for more than 6,200 buildings in

Cambridge, MA. The detailed investigation of the data reveals the intrinsic character-

istics of human behavior and building thermal efficiency. Together with the reduced

energy loss model, a power-law distribution of potential building energy savings is

found that paves the way to find the shortest path to retrofit a city's building block.

The conclusions discuss the implication of our findings in this chapter.

Chapter 6 presents the conculsions of this thesis by both summarizing the main

findings of each chapter and explaining how they contribute to a new level of under-

standing about infrastructure materials and systems. Finally, comments on future

research and developement directions close the thesis.
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Chapter 2

Nanostructure and Nanomechanics of

C-S-H

The more than 20 billion tons of concrete produced annually contributes 5-10% to

the worldwide anthropogenic carbon dioxide production 1358]. One strategy to re-

duce this environmental footprint is to enhance concrete's specific stiffness or strength

[12, 344] by optimizing the molecular-level properties of the calcium-silicate-hydrates

[260, 17, 98, 211] (C-S-H), the binding phase of concrete, validated'against an array

of nano-texture and nanomechanical experiments. In this scheme, a combinatorial

database of atomic configurations of C-S-H is generated by simulation, with each

configuration having a well-defined set of defect attributes as well as a set of corre-

sponding mechanical properties such as elastic modulus and hardness. Optimization

then consists of screening the database for the desired properties against the defect

attributes, essentially in the spirit of structure-property correlation. C-S-H paste is

comprised of small nano-particles of 5 nm average diameter [17], products of reac-

tions between anhydrous calcium silicates and water that form a gel-like network

of variable stoichiometry [285]. Recently, Pellenq and coworkers reported a model

molecular structure of C-S-H, attained through computational simulations that were

consistent with an experimentally measured average composition, density, scattering

and spectroscopic signatures [260]. It is worth mentioning that while Dolado et al.

[98] adopted a glass quenching approach to produce an amorphous structure of C-S-
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H, we chose to start from the crystalline molecular structure of Tobermorite. In fact,

at low C/S ratios, the method of Dolado et al. yields a disordered glassy structure

for C-S-H, while our approach leads to dominant layered (hence more crystalline)

signatures as seen in experiments. In the present chapter, this model is used to create

the database of atomic configurations and corresponding defect attributes and me-

chanical properties, for a wide range of C-S-H chemical compositions. Before using

this database to screen for optimum mechanical behavior, we compare the simulation

results to available experiments, consisting of: drying measurements, Small Angle

Neutron Scattering (SANS), Inelastic Neutron Scattering (INS), solid-state Nuclear

Magnetic Resonance (NMR), and our own wavelength dispersive spectroscopy (WDS),

nanoindentation and Transmission Electron Microscopy (TEM) experiments. These

comparisons provide model validation and provide insights into the system-level prop-

erties of the ensemble. We are especially interested in the effects on the mechanical

behavior of two types of defects. The first is the calcium to silica ratio, denoted as

C/S ratio, which is well-known in cement chemistry. It can be defined as a measure

of points defects (vacancies) in the silicate network [3281. The second type of defects

pertains to variations that exist in the medium-range environment of the Si-O and

Ca-O networks. It is most simply defined in terms of the first sharp diffraction peak

in the Si-O and Ca-O partial structure factor, which is familiar in the study of silica

glasses [1081.

2.1 Generating the Database of C-S-H Models

The database for the combinatorial screening of mechanical behavior is obtained by

creating an ensemble of atomic structures of C-S-H with each member characterized

by a known value of the calcium to silica ratio, C/S, over the range of 1.1 to 2.1; (see

Appendix A for comprehensive discussions). This is achieved by randomly cutting sil-

ica chains (removing a number of charge neutral Si0 2 groups from 11A Tobermorite)

to increase the C/S ratio; allowing an account for reactivity through empirical reac-

tive potentials in the course of this procedure. In applying combinatorial optimization
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to better understand the relation between defect attributes and mechanical behav-

ior of C-S-H hydrates, we search the generated database for atomic configurations

that have optimum mechanical properties, and meanwhile we determine the defect

attributes specifying these configurations. By mechanical properties, we mean the

ratio of indentation elastic modulus (M) to indentation hardness (H). This M/H

ratio is distinct from indentation toughness that refers typically to fracture tough-

ness and depends also on indentation crack length [20]; here, high M/H describes

a material of low elastic strain limit. By defect attributes, we consider C/S as an

overall measure of chemical composition and two correlation lengths characterizing

medium-range environments of Si-O and Ca-O networks. It is not known a priori

whether atomic configurations having optimum M/H actually exist, and if so, which

defect attributes are relevant. Thus, we begin our screening by first considering only

the defect attribute C/S since the generated database allowed for variations in atomic

configurations at fixed values of C/S (see details in Appendix A for details). While

others [209, 211, 259, 305] have calculated elastic properties of distinct mineral phases

such as Tobermorite polymorphs and Jennite via using atomistic simulation methods,

our approach provides a comprehensive screening of mechanical properties for the C-

S-H phase as a function of its chemical composition. Regarding experimental aspects,

while correlations between chemical composition and mechanical properties of syn-

thetic C-S-H gels [37, 266, 206, 63, 16] (fully cured or calcium leached cement pastes

[81]) have been previously reported, our approach provides a venue to directly assess

these mechanical properties of the elementary C-S-H nano-particle as a function of

C/S ratio.

To be specific about the different defect attributes considered, we show a typical

atomic configuration of Tobermorite 11A [139] in Fig. 2-1.a. The unit cell contains the

silica chains Fig. 2-1.b and Ca atoms in two distinct environments, intralayer Ca Fig.

2-1.c and interlayer Ca in the interlayer spacing (between adjacent calcium-silicate

sheets as highlighted in Fig. 2-1.d). Hereafter, the intralayer and interlayer calcium

atoms are referred to as Ca and Cw, respectively. We introduce two correlation

lengths A and A' (see Fig. 2-1.a). Here, A is the medium-range correlation length
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Figure 2-1: Effect of C/S ratio on the molecular structure of C-S-H at the nanoscale.
a) The unit cell of Tobermorite 11Ak is enclosed by a black dashed line. The brown and
cyan spheres represent intra and interlayer calcium ions, respectively. Red and yellow
sticks depict Si-O bonds in a silicate tetrahedra. White and red sticks display the
hydroxyl groups and water molecules. By repetition of unit cells in all lattice vectors,
a (2*2*2) super cell of the molecular structure of Tobermorite 11iA is constructed
for representation and is outlined by dashed red line. The medium-range correlation
lengths A and A' which pertain to Si-O and Cw-O network are represented by dashed
black and blue arrows, respectively. The solid skeleton of Tobermorite is consisted of 3
parts b) Silica chains, c) Calcium interlayer and d) Calcium Intralayer. e-g) Molecular
model of C-S-H at C/S=1.1, 1.5 and 1.8. e) At C/S=1.1, a 2D lamellar structure is
presented with minor defects in silica chains, reminiscent to that of 11iA Tobermorite.
The interlayer regions contain counter charge-balancing calcium ions, hydroxyl groups
and water molecules. f) At C/S=1.5, several bridging tetrahedra are removed from
the silicate chains. The interlayer calcium ions are still organized in well-defined sites.
g) The C/S ratio is further increased to 1.8 by removal of more silica tetrahedra. This
indicates that, from low to high C/S ratio, the C-S-H's molecular structure changes
from 2D crystalline layered to a more amorphous structure.

48



as measured on Si-O-Si-O motifs and defined for silica glasses [108] [107]. Similarly,

A' is the medium-range correlation length measured on Cw-O-Cw-0 motifs. Both A

and A' are present at around 4.3A and 4.6A in experimental total radial distribution

function [224]. We will show that each of these two correlation lengths plays a different

role in its influence on the mechanical properties, since they pertain to two distinct

medium-range order environments in the C-S-H atomic structure.

Our database for the combinatorial screening of mechanical behavior is obtained

by creating an ensemble of atomic structures of C-S-H with each member characterized

by a known value of the calcium to silica ratio, C/S, lying in the range [1.1, 2.1].

The procedure used to generate this ensemble consists of seven steps of atomistic-

scale simulations, which we summarize here (See Appendix A for details). First,

a (3x2x2) supercell of the atomic structure of Tobermorite 11A after Hamid [139]

is constructed. With the silicate chains having no defects, there are no hydroxyl

groups in the system at this stage. Also, the chains are infinitely long. Then, all

water molecules are removed from the interlayer spacing in the super-cell. In step

three, 150 samples are prepared by randomly cutting the silica chains (removing

a number of charge neutral Si02 groups). Each removal causes the C/S ratio to

increase. By cutting the chain at different locations, several samples with the same

C/S ratio are thus generated. In this step, the interlayer calcium atoms are first

allowed to relax by energy minimization using CSH-FF potential [306], followed by

all the other atoms and the supercell dimensions. In step four, water molecules

are introduced back using a Grand Canonical Monte Carlo method using the same

potential, simulating equilibrium with bulk water at room temperature. At step five,

the inserted water molecules are allowed to react with the interlayer calcium and

the silica groups by running semi-classical molecular dynamics simulations using the

ReaxFF potential [212]. To accelerate the reaction, the system temperature is raised

to 500 K, which is well below the melting point of C-S-H. At this stage, the results

show that some of the interlayer water molecules dissociate to hydroxyl groups and

protons. Minor condensation/dissociation of silica chains are also observed in some

samples. Of the 150 samples generated, all were amenable to equilibration within
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ReaxFF over the finite trajectory duration. In step six, a comprehensive topological

analysis is performed to identify the local environment of species, in the process of

distinguishing between different types of oxygen, hydrogen and calcium atoms. This

facilitates the transition from the use of ReaxFF to the non-reactive potential, CSH-

FF, which is well suited to the study the mechanical properties of C-S-H phases

[306]. In the final step, a 3ns-long simulated annealing is performed on each sample

to bring the temperature from 500 K to 300 K at ambient pressure, using the CSH-

FF potential. The annealing procedure consists of 1 ns simulation at 500 K followed

by a .1 ns ramp to decrease the temperature to 300 K and additional 1 ns at 300

K for relaxation. All the chemical and structural characterizations along with the

mechanical properties (indentation modulus and hardness) are calculated from the

atomic configurations prepared by this procedure. Fig. 2-1.e-g shows the sensitivity

of atomic configurations to variations in C/S ratio in the range of 1.1 to 1.8. Keeping

in mind our procedure of removing silica groups in order to increase C/S ratio, we

see a progression from a well-ordered 2D lamellar structure at C/S = 1.1 to a more

disordered structure at C/S=1.8. In particular, the structural surroundings of the

interlayer calcium atoms (Cw) as the C/S ratio increases are of prime importance, as

this illustrates the subtle effects of introducing vacancies in the silica chains.

2.2 Effect of C/S on the Nanotexture of C-S-H

Predicted structural properties of C-S-H with C/S ratio are presented in Fig. 2-2,

and compared directly against experiments. The number of initially absorbed water

molecules is predicted to scale linearly with the C/S ratio Fig. 2-2.a, a behavior that

is found in both SANS [171 and drying [78] experiments. There is also consistency

with the notion that a removed Si0 2 unit occupies the volume of approximately two

H 2 0 molecules. As a result of using a reactive force field to model the interactions

with absorbed water, a part of the initially grand canonically adsorbed water remains

structural molecular water with a composition-dependent dynamical anomaly and

glassy nature [274, 368] Fig. 2-2.a, while a considerable amount of water molecules
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Figure 2-2: Effect of C/S on the nano-texture of C-S-H. a) The state of water in

C-S-H interlayers. The total equivalent water contains both the hydroxyl groups and

molecular water in the interlayer spacing. The water content is comparable with total

equivalent water measured in SANS performed by Allen et al.[171 and a set of con-

trolled drying experiments done by Cong and Kirkpatrick [781. b) Number of Ca-OH

bonds measured via topological analysis and its comparison with INS experiments

measured by Thomas et al. [332]. c) The effect of C/S ratio on the mean silicate

chain length compared to NMR experiments carried out by Chen et al. [65]. The

inset presents the variation of MCL before and after reactive modeling. About 20% of

molecular models exhibit extra silica condensation and 5% show silica chains dissocia-

tion. d) The total pair correlation function and the comparison with X-ray diffraction
experiments of [318]. The inset provides the comparison between coordination num-

ber of the calcium ion as calculated from atomistic simulation and measured from

X-ray diffraction [3181.
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dissociate. The hydroxyl groups predominantly react with interlayer calcium ions to

form Ca-OH bonds. The protons bond to non-bridging oxygen of defective silicate

chains. To a lesser extent, Ca-OH bonds are also produced by condensation of silica

chains, which release an oxygen atom that combines with H+ to form a hydroxyl

group. As a consequence of both mechanisms, we find that the number of Ca-OH

bonds per Si atom increases linearly with the C/S ratio, Fig. 2-2.b, including zero

Ca-OH bond for C/S=1, corresponding to 11A Tobermorite. These predictions are

validated by INS data [332], and provide evidence that the present combinatorial

simulation approach is able to describe the local water and Ca environments in C-S-

H. The level of agreement achieved between simulations and experiments is largely due

to the simulated annealing step incorporated in our database generation procedure

(see Appendix A for further details). This means that the stoichiometry of the solid

C-S-H phase can be essentially predicted from atomistic simulations, in the form of:

CaSiO 2.75 (OHCa)O.85(x- 1 )+a(OHSI) 1.15(x-1)+O.5+b [0.8(x - 1) + 0.3 + c]H 20 (2.1)

where x is the C/S ratio and a, b, c represent the variability in the nanostructure

of C-S-H at a given C/S ratio (a = b = c = 0 corresponds to an average pat-

tern for a given C/S ratio and jal, al, Icl < 0.2 to only account for polymorphism).

The variability in the structure of C-S-H is due to the change in the structure of

calcium-silicate backbone at a given C/S ratio. Note that (OHca) and (OHsi) show

hydroxyl groups in calcium-hydroxide and silanol groups, respectively. In subsection

2.5, we fully compare our approach to that of the T/CH model proposed Richardson

[284, 287, 285, 283]. We show that our combinatorial approach to C-S-H not only

provide a quantitative agreement with textural data (water content, Ca-OH amount,

mean silica chain length and X-ray diffraction pattern) but also has the ability to

predict the mechanical properties (elasticity and strength). We term these configura-

tions that share a given C/S composition but differ in atomic level structural details

as polymorphs, and later discuss the implications of C-S-H polymorphism. The mean

chain length (MCL) of silicates in C-S-H, representative of the degree of polymer-
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ization of silicate monomers, is found to decrease non-linearly with C/S Fig. 2-2.c;

there is also a considerable range in the chain length for a set of polymorphs (e.g.

see C/S=1/8). While some silicate groups, especially monomers, are found through

reactive modeling to condense to form longer chains (see Fig. 2-2.c inset and MCL

behavior in the inset of Fig. 2-2.c), the amount of monomers at a given C/S before

and after condensation reaction varies by less than 15% (see Appendix A for dis-

cussions). The existence of a range of chain lengths, including monomers, indicated

by our simulations is consistent with 29Si NMR experiments [65] and is the basis of

C-S-H polymorphs. Fig. 2-2.d compares simulation and experimental synchrotron

X-ray data for the total pair correlation function [318]. Both are qualitatively in

good agreement. Then simulation data refines the position of all physical correla-

tion peaks in N (r) function for different C/S ratios. However, we note that the

Ca-O correlation peak is constantly broader in simulation. But, this does not affect

the calculation of the calcium coordination number that is in quantitative agreement

with experiment as shown in the inset of Fig. 2-2.d. We note that the existence of

secondary small features in the experimental data that correspond to no identifiable

correlation distances can be the results of truncation error in the Fourier transform

of the original scattering data. An extensive discussion on the calculation procedure

of N (r) is provided in the Supplementary Methods.

2.3 Effect of C/S on the Mechanical Properties of

C-S-H

It is the central goal of this chapter to probe the relation between mechanical prop-

erties (stiffness and hardness) and the various defect attributes via a combinatorial

database established by atomistic simulations. We are interested in the average elastic

properties of the C-S-H solid particles expressed in terms of the indentation modulus

(M) which is determined from the full compliance tensor of each C-S-H model, and

evaluated by M = 4G(3K + G)/(3K + 4G), where G and K are Voigt-Reuss-Hill
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Figure 2-3: Effect of C/S ratio on the mechanical properties of C-S-H at nanoscale.
a) C-S-H's solid phase indentation modulus. The computational data (this work,
orange squares) are compared with coupled nano-indentation and WDS experiments
(cyan circles) together with their confidence bounds (gray squares) and previous ab
initio calculations on 11 and 14A Tobermorite [139]. b) Indentation modulus parallel
(M1 ) and perpendicular (M3 ) to the layers. c) C-S-H's solid phase hardness. The
computed data (brown squares) are compared with experimental values following the
same convention as in (a). d) Computed isotropic Euclidean norm as an indication
of the level of anisotropy in C-S-H. Orange lines are a guide for the eyes. e) TEM

image of C-S-H at C/S=0.86 [132]. f) TEM image of C-S-H at C/S=1.7 produced
from hydration of C 3S. The error bars in atomistic simulations are calculated via

sampling the phase space at independent time frames. The experimental error bars

are measured via the statistical clustering technique coupling nanoindentation and
WDS data.
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shear and bulk moduli, respectively (see Appendix A for mathematical relations). In

our atomistic simulations, hardness (H) was determined by using the Mohr-Coulomb

failure criterion, applicable to cohesive-frictional materials such as C-S-H [126]. This

is achieved through a coupled biaxial (shear-compressive) deformation scheme in sev-

eral independent deformation paths similar to those utilized for studying validity of

the Cauchy-Born rule 113, 172, 171]. The hardness is calculated from the friction

angle (0) and cohesion (C) (see Appendix A for methodolgy). Both indentation

modulus and hardness are averaged at several statistically independent time frames

along the MD trajectory for each polymorph. To provide experimental validation of

the predicted changes in C-S-H stiffness and hardness with chemical composition, we

synthesized common industrial cement pastes with various amounts of silica addi-

tives and curing conditions (see Appendix B). We implemented a statistical chemo-

mechanical clustering method of both composition and mechanical properties at the

sub-pm scale ( see Appendix B for details). The composition for each cement paste

was determined by clustering X-ray wavelength dispersive spectroscopy (WDS) data

comprising 400 nanoscale volumes (voxels) per sample. Similarly, the indentation

modulus and hardness were quantified, at similar length scales, via clustering analy-

sis of nanoindentation results across the cement paste sample surface [126], sampling

400 voxels per sample, while ensuring the compatibility of chemical and mechanical

clustering results. The composite properties thus obtained were corrected for the ef-

fect of mesoscale porosity to arrive at the properties of the solid C-S-H nanoparticle

[81] for direct comparison with the simulation data. Sensitivity analysis of WDS ex-

citation voltage, interaction volumes and nanoindentation extrapolation algorithms

were also conducted.

Several key features can be noted in the experimental validation of model pre-

dictions shown in Fig. 2-3. Both simulations and experiments indicate a significant

decrease of the average stiffness response with increasing C/S ratio (Figs. 2-3.a and

2-3.b). It is not surprising that as C/S increases, the calcium-silicate layers becomes

more defective, and as a consequence, mechanical stiffness and anisotropy decrease. A

similar trend is found for the hardness, which is related to the mean pressure sustained
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beneath the indenter prior to permanent deformation and is proportional to the yield

strength in a material that exhibits plastic deformation (Fig. 2-3.c). Compared to

typical cement hydrates prepared via usual cement dissolution [2841 at a median C/S

ratio of 1.7, C-S-H prepared at C/S=1 to 1.1 exhibits on average 31% and 48% supe-

rior stiffness and hardness, respectively. Furthermore, the decrease of M and H with

C/S follows a bilinear trend intersecting at C/S=1.5. This suggests that C-S-H at low

and high C/S ratios respond differently to defect incorporation in the silica chains.

To elucidate this particular behavior, we make use of the calculated full compliance

tensor of each numerical sample, and determine the orthotropic in-plane and in-layer

elasticity constants, M, and M3 (Supplementary Methods) that would be measured in

a Hertzian elastic contact loading along orthogonal directions of the calcium-silicate

layers [931. Given the random orientation of C-S-H particles in real cement paste, the

experimental assessment of these M1 and M3 constants is still out of reach of current

indentation technology. The simulations identify a pronounced anisotropic behavior

of C-S-H at the nanoscale (Fig. 2-3.b) in terms of a significant difference between the

in-plane stiffness, M1 , and layer to layer-stiffness, M3 . While both M1 and M3 follow

the trend of the indentation stiffness M (Fig. 2-3.a), we can see that the anisotropy,

expressed by the ratio M1 /M3 also decreases with the C/S ratio. That is, a highly

anisotropic C-S-H at low C/S ratios (C/S<1.5) becomes gradually isotropic as long

silica chains are shortened upon increasing C/S ratio. To further appreciate the im-

pact of texture on properties, it is instructive to employ the isotropic Euclidean norm

of the C-S-H stiffness tensor, defined as dE(Ciso, Ct) = IiSO - C lE, where Ct and

Ci,, are the full and isotropic parts of the stiffness tensor, respectively [101]. Applied

to the C-S-H models, we find that this norm is almost constant for C/S<1.5 (Fig. 2-

3.d), which correlates well with the observation that C-S-H maintains a tobermoritic

crystalline layered texture for low C/S ratios (see Figs. 2-1.e-g). This predominantly

crystalline structure is in agreement with experimental observations by TEM30, [1321

and X-ray diffraction [134]. Indeed, C-S-H at C/S=0.86 shows an apparently crys-

talline lamellar structure (Fig. 2-3.e). In turn, for larger C/S ratios, the Euclidean

norm decreases (Fig. 2-3.d). For such compositions, C-S-H retains some long-range
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Figure 2-4: M/H as a function of Ca/Si ratio. The simulation results are compared

against experimental data. The experimental M/H is calculated from measured M

and H by assuming that they are normal independent quantities. The experimental

error bars are measured via the statistical clustering technique coupling nanoinden-

tation and WDS data.

layered texture [33, 32, ?] as TEM images show (Fig. 2-3.f) but the increasing amount

of defects in the silica chains induces a lower short-range order that leads to textures

that are mechanically isotropic (Fig. 2-3.b, M1 ~ M3 ).
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2.4 Understanding Maximum M/H via Dual-Defect

Framework

The goal of our combinatorial optimization is to find atomic configurations that give

maximum toughness and correlate those molecular structures with corresponding de-

fect attributes. To this end, we take M/H to be a measure of this property on the

grounds that while we want higher stiffness (through M), we also desire higher duc-

tility (through 1/H). The correlation of M/H with C/S ratio is shown in Fig. 2-4.

Notably, some C-S-H configurations, with C/S ratio close to 1.5, exhibit maximum

nanoindentation toughness. Next, we consider the thermodynamics stability of these

polymorphs to consider their relative prevalence in experimentally accessible C-S-H.

Numerous compelling experimental results from this and other experimental stud-

ies [17, 65] confirm our conjecture that C-S-H at the nanoscale can exist in different

molecular structures for the same oxide composition, i.e., the same C/S ratio. Specif-

ically, results from NMR experiments [65] suggest that C-S-H at a given composition

can have different MCL, and results from neutron scattering experiments[17] imply

that C-S-H of a given composition can exhibit varying water content. Fig. 2-3 shows

that the calculated indentation modulus and hardness exhibit a range of possible

values at a fixed oxide composition for a given C/S ratio. Experimentally measured

M and H (e.g., C/S 2.1 in Fig. 2-3.a, c) confirm this potential variation in stiff-

ness and hardness for fixed oxide chemistry. Yet, the existence of polymorphism

calls for thermodynamics arguments to assess the co-existence of C-S-Hs of different

molecular structure at equilibrium for a given composition. This is achieved in our

simulation through the calculation of the free energy of the C-S-H models consider-

ably below their melting point via lattice harmonic approximation theory from the

phonon density of state. Interestingly, the free energy content of C-S-H polymorphs

is almost constant at a given C/S ratio (Supplementary Methods). This means that

all polymorphs of a given C/S ratio are equi-probable at equilibrium, and thus ther-

modynamically competitive. This means that a targeted mechanical property at

constant C/S ratio cannot be achieved through equilibrium conditions, but relies on

58



the kinetics of silica polymerization and associated disorder assimilation.

To consider whether the short-range structural characteristics could explain why

M/H is high at a specific C/S ratio, we performed a comprehensive search for corre-

lations among structural characteristics (bond lengths, bond angles, and coordination

numbers) and mechanical properties. No such short-range correlations were identified.

It was these findings that motivated us to consider medium-range correlation lengths

as possible defect attributes as captured by the first sharp diffraction peak (FSDP) in

covalent glasses [108, 107], which captures spatial correlations in the medium-range

order (Supplementary Methods). While its origin in amorphous silicate solids is not

yet fully understood, it is commonly accepted that the FSDP relates to the period-

icity of the boundaries between small adjacent structural cages of Si04 tetrahedra

[223]. The associated correlation distance in real space is given by A =7.7/QFSDP,

where QFSDP is the position of the FSDP in the partial Si-O structure factor, and

the constant 7.7 is the location of the first maximum of the spherical Bessel function

Jo [227]. Overall, this distance characterizes how well Si0 4 tetrahedra are packed as

it corresponds to the distance between Si atoms and their second coordination shell

of oxygen atoms [224, 318]. Recently, it has been pointed out that as a coarse-grained

defect attribute of network glasses, A plays a significant role in enabling structural

characteristics to be correlated with transport and rigidity properties [227]. Moreover,

the lack of covalent bonding and the screening effect of structural water molecules

make the chemical environment surrounding interlayer calcium atoms susceptible to

deformation. This leads to the localization of the deformation at the interlayer region

upon application of uniform strain field [260, 9]. This further motivated us to define,

in a similar fashion, the medium-range correlation length A' in the interlayer calcium

environment pertaining to the Cw-O network (see Fig. 2-3.a).

Given the fact that these structural defect attributes, (C/S, A, A') may not be

independent, it is reasonable to ask whether a broader search by screening two or

more defect attributes together could be useful. In fact, we may benefit by extending

the screening to correlations of M/H against C/S, A and A'. For this purpose, contour

plots of M/H values on surfaces of two defect attributes were considered. Fig. 2-5.a-b
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shows the contour plots (color coded) of M/H on the surface of [C/S, A] (Fig. 2-5.a),

and [C/S, A'] (Fig. 2-5.b). In both cases, local regions of peak values are clearly

identified. According to Fig. 2-5.a-b, two optimum sets of defect attributes exist,

one involving (C/S, A) and the other (C/S, A'), which signifies that optimization of

M/H can be achieved through the synergistic sensitivity to two sets of dual-defect

attributes.

The notion of distributed (synergistic) sensitivity can be examined by correlating

the defect attributes, specifically the relations between A and C/S, and A' and C/S,

which are shown in Fig. 5.c-d. Within the considerable scatter in the data, it ap-

pears that A increases essentially linearly with increasing C/S (Fig 2-5.c), while A'

increases then plateaus (Fig. 2-5.d). The increase in A with C/S ratio corresponds

to an increase in the magnitude of tetrahedron-tetrahedron relaxation in the silica

chains - which is spatially distinct from the amount of nanometric SiO 2 vacancy de-

fects that correlates with C/S. Although the range of variation of A is rather small

from 4.1 to 4.4 A , our results are nevertheless in agreement with recent diffraction

studies34 which show that A corresponding to Si-O peak in the total diffraction pat-

tern (obtained after Fourier transforming the total X-ray scattering signal) does shift

to larger distance upon increasing C/S ratio (see Fig. 6 in ref. 12). This indicates

that, for a fixed C/S, the low-lying A points correspond to atomic configurations

where the local environment of the silica chains are more compact, and they there-

fore contribute to higher stiffness (M). Indeed, configurations of greatest M in Fig.

2-3.a at a fixed C/S=1.5 where those that also exhibit lowest A. Furthermore, in

Fig. 2-5.d, we see that A' reaches its maximum value signaled by a plateau at C/S

> 1.5. This corresponds to configurations with relatively open Cw-O medium-range

environment, which indicates there is more space for deformation. This explains the

hardness plateau in Fig. 2-5.c, for relatively stable and low H for C/S > 1.5. The

appearance of M/H an extremum in Fig. 2-5.a-b results from a coupled optimization

of A and A' at C/S=1.5. Therefore, the golden C-S-H is a C-S-H at C/S=1.5 that

simultaneously has a minimum in A and maximum in A'. However, it should be kept

in mind that these two are correlated. Another way to infer the significance of the
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peak region of M/H is to interpret M/H as proportional to the inverse of an effective

yield strain. Minimizing this yield strain means greater capacity for plastic energy

dissipation and less storage of elastic energy in the atomic configurations, which in

turn makes the assembly less brittle.

2.5 Comparison of Combinatorial Models with Richard-

son's T/CH Model

At this stage, it is imparative for us to compare our combinatorial model with the

so-called Tobermorite-'solid solution' calcium-hydroxide (T/CH) model. This model

is initially proposed by Richardson and Groove 1287, 2881 and is intended to provide a

"crystal-chemical" picture of C-S-H at different C/S starting from 14A Tobermorite.

Following the notation of Richardson [286], the chemical composition of T/CH model

can be written as:

CaxH(6n-2x)Si( 3 in-1)O(9n-2).zCa(OH) 2 .mH20 (2.2)

where x is the number of Ca2+ ions that to charge balance the silica chains, n is

the integer number representing the Drierketten structure of the silicate chain (1 for

dimer, 2 for pentamer and so on), z and m indicate the number of calcium-hydroxide

and intact water molecules in the C-S-H interlayer spacing. In our combinatorial

atomistic simulation approach, we start from 11A Tobermorite and construct our

samples carefully following an eight-staged process including proper consideration of

chemical reactions via the ReaxFF potential [212]. As we showed in Fig. 2-2 in

the main text, our simulations can reproduce drying, elastic and inelastic neutron

scattering, 29Si NMR experiments. Given the stoichimetery of the T/CH (eq. 2.2),

the scene is properly set to compare the T/CH and the combinatorial models (eq.

2.1). Here, we discuss seven different aspects of these models and emphasize the

points of agreement and disparity between them in the forthcoming paragraphs.

1) In the T/CH model, n is an integer number, which gives a mean chain length of

62



(3n - 1). Therefore, T/CH model fails to describe the variability of chain length at the

nano-scale for a given C/S ratio. In fact, in a realistic cement paste, a combination

of monomers, dimers, pentamers and so on exist, which gives rise to a non-integer

mean chain length (MCL). Unlike T/CH, our molecular modeling, along with NMR

experiments of Chen et al. [65], assert that MCL can have a value between an upper

and lower bound (see Fig. 2-2.c). The variability in MCL is mathematically expressed

as:
2y - 1.75 2.5y - 2

< MCL(y) < Y - (2.3)
y-1 y- 1

where MCL(y) denotes the average mean chain length at C/S= y. According to eq.

(3), MCL(1) is infinite indicating Tobermoritic silica chains. At C/S> 1, MCL is

between the two limits, which depend on the structural configuration of the calcium

silicate backbone. We recognize that the exact prediction of MCL is controlled by the

kinetics of the cement hydration process (and not through equilibrium conditions as

shown by our detailed free energy calculations), which depends on curing conditions,

stoichiometry of reactants, water to cement ratio along with other factors.

2) At 1 <C/S< 1.5, T/CH model proposes that by gradually removing bridging

Si0 2 groups, the C/S ratio can be increased from 1 to 1.5. At C/S> 1.5, T/CH

model assumes that the molecular structure of C-S-H is combination of Tobermorite

devoid of a bridging silica group sandwiched with calcium-hydroxide sheets in the

form of nano-scale Portlandite layers (CH). At this point, T/CH model fails to answer

concerns regarding the mixing of CH with defective Tobermorite. Where are these

layers located? How are they bonded to the calcium-silicate layers? What is the size

distribution of these Portlandite nano-layers? What is the molecular structure of C-

S-H at C/S=1.75? Recognizing these problems, we adopt a different approach, which

resolves this issue. At C/S> 1.5, we start removing the pairing sites in the defected

Tobermorite structure such that the number of monomers is kept minimal to agree

with NMR experiments. Moreover, we run reactive molecular dynamics simulations

to prompt reactions in the silicate regions to polymerize existing monomers if needed

(see the inset of Fig 2-2.c). Having done this, we show that the MCL of combinatorial
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structure are within the bounds observed in 29Si NMR experiment by Chen et al. [65].

Therefore, our combinatorial model does not need the additional CH layers to describe

the high C/S.

3) T/CH model (eq. 2.2) does not provide any relation between the C/S and m

(the structural water content). In fact, T/CH model fails to provide quantitative or

even qualitative description for the correlation between the defect content in C-S-H

and the water adsorbed in the interlayer spacing and voids created by removing silica

groups. By contrast, our combinatorial model provides a clear image and identifies

a linear correlation between the water content and C/S ratio. This is achieved by

performing Grand Canonical Monte Carlo simulation to adsorb water in C-S-H upon

creation of defects in the structure of Tobermorite. As discussed in Fig. 2-2.a,

the total equivalent water (comprising both structural water and hydroxyl groups)

matches perfectly with drying [78] and elastic neutron scattering [17] experiments.

We emphasize that both neutron scattering and drying experiments explore the total

hydrogen content rather than the hydrogen in structural water molecules per se. This

indicates that our combinatorial approach and the proposed chemical composition

fully display the interplay between the chemistry of calcium-silicate backbone and

the water content, which is missing in T/CH model.

4) The T/CH model (eq. 2.2) does not provide any relation between the C/S ratio

and z (the number of calcium-hydroxide bonds). In fact, Thomas et al. [3321 showed

that there is a linear correlation between Ca-OH content and C/S. Our reactive

molecular dynamics simulation without any tuning parameters indicated the very

same linear behavior (see Fig. 2-2. b). This means that the environment of Ca

is fully captured in our model without the need to introduce artificial CH in the

composition. Given that our composition captures both total equivalent H 20 and

Ca-OH content, this entails that Si-OH (silanol) content should also be properly

captured in our model simply because of conservation of mass. However, there are

no experimental data so far for correlation of C/S and silanol content.

5) Unlike the T/CH model which is controlled by 4 parameters (x, n, z, m), the

combinatorial model is majorly controlled by 1 parameter (C/S= y). In fact, by
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assuming a=b=c=0, one reaches good agreement (in average) with experimental ob-

servations. We emphasize that the effect of (a,b,c) is marginal with respect to y,

as these parameters are describing local textural variability at a given C/S due to

polymorphism.

6) The T/CH model provides a "crystal-chemical" interpretation of the C-S-H

structure. As extensively discussed by Richardson [286], the defective Tobermorite

remains fairly crystalline and also the additional CH is assumed to be crystalline

at high C/S ratios. Therefore, the molecular structure proposed by Richardson and

his co-workers has a crystalline nature. This is against the observations by Pellenq

and his co-workers [260, 8, 33], that C-S-H at high C/S presents pair-correlation or

structure factor responses, which resemble that of defective amorphous and 3D glassy

materials.

7) Finally, the very fundamental difference between the T/CH model and the com-

binatorial models is the predictive power of these two models. While the T/CH gives

a description of molecular structure of C-S-H, it is basically incapable of providing

qualitative or quantitative insights regarding the physical properties of C-S-H. Unlike

T/CH, as shown in Figs. 2-3,2-4 and 2-5, combinatorial models are able to predict

physical properties of C-S-H at the nanoscale such as elasticity, strength and fracture

toughness indentation elastic modulus and hardness. This is a clear advantage for the

combinatorial model, placing it as a foundation for computational material design.

The above seven points fully differentiate the combinatorial approach with respect

to the T/CH model proposed by Richardson and co-workers [287, 288, 286, 283, 284].

2.6 Discussions

To our knowledge, the simultaneous screening of mechanical properties against two

defect attributes has not been previously considered in the cement science and chem-

istry literature. By comparing Fig. 2-5.a-b and Fig. 2-5.c-d, we believe this new

approach has broad implications regarding property optimization. Simply stated,

in Fig. 2-4 one seeks an extremum in a single-variable function M/H = f(C/S),
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whereas in Fig. 5 one seeks a function of two variables, M/H = f(C/S, A). Any

effects of correlation between C/S and A would be missed in Fig. 4. Moreover, the

results of Fig. 2-4 and Fig. 2-5 suggest that M/H is a property distributed in two

defect attributes rather than being fully characterized by the single C/S chemical

attribute. This is perhaps to be expected, given the complexity of the molecular

structure C-S-H. It is therefore rather gratifying that other structural attributes, the

packing of the silica tetrahedra and the medium-range environment of the interlayer

Cw-O network, can also affect the mechanical response.

This work has benefitted from studies of network forming glasses [227, 351, 34]

which have given further insights into the concept of atom-averaged covalent coordi-

nation number, (r), as a structural attribute capable of identifying optimum network

connectivity[262, 263, 264]. From measurements of microhardness, indentation frac-

ture toughness on binary Ge-Se glasses peak values were found when the properties

were screened against (r)[351], a situation analogous to our findings in Fig. 2-5. Re-

cently it was pointed out that the defect attribute associated with the first sharp

diffraction peak (see Introduction) plays a fundamental role in revealing extremum

or anomalous behavior in rigidity deformation and transport properties of network

glasses [227]. Here again we see a connection with the present findings: A relation can

be established between system-level properties and defect attributes in both network

glasses and C-S-H, which is potentially universal in a significant overall implication.

In this work, we introduce an approach of combinatorial screening of indentation

stiffness and hardness for realistic models of cement hydrates against a set of structural

defect attributes. We find peak values in the measured M/H in two defect-attribute

sets, (C/S, A) and (C/S, A'). Based on considerations of various cross correlations

among the defect attributes, we conclude M/H is a distributed property in that the

relevant attributes of the underlying atomic configurations are coupled. We interpret

the nature of the correlation to lie in the connectivity of medium-range environments,

such as packing of silica network and openness of Cw-O regions of the cement hy-

drates. Moreover, we believe the defect-attribute coupling to be a manifestation of

inorganic molecular networks that may also describe other multi-component systems
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with structural complexities across the nano- and mesoscale. For future studies, we

believe it would be appropriate to focus on the characterization of pores and con-

fined water in cement hydrates. To achieve this, a new class of mesoscale models

[215, 102] have to be developed and validated, and appropriate databases generated.

These will involve additional defect attributes such as particle packing density, pore

size distribution and connectivity, and the effects of water in various spatial confine-

ments [242, 241]. The combinatorial approach introduced here is anticipated to aid

those efforts, and to contribute to optimized concrete design that may reduce mate-

rial consumption and associated CO 2 production. Indeed, while the CO 2 emission of

cement clinker production scales with the volume of the concrete structural elements

(beams, columns,...), the structural strength scales with their cross-sectional area.

By adopting a limit state design approach, it is thus expected that an increase of the

material strength by a factor of if allows reducing the environmental footprint to 6-1

for pure compressive members such as columns and shells, 6-2/3 for beams, and J- 1/ 2

for plates 344]. As contemporary concretes are characterized, on average, by high

C/S ratios, it is expected that the found 60% increase in C-S-H strength achieved

by reducing C/S from 1.7 to 1.1 (for instance with silica flour additions and proper

curing conditions) can entail a 37% reduction of material volume and associated CO 2

emissions for compressive members assuming that microtexture does not alter signif-

icantly with C/S ratio; not counting further reductions achieved by diluting cement's

calcium clinker [2101 with silica or other cement substitutes. In conclusion, the sus-

tainable development of green concrete to meet our societies needs for infrastructure,

homes and shelter, becomes possible.
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Chapter 3

Structure and Dynamics of

Nanoconfined Water in C-S-H

The main focus of this chapter is on the effect of chemical modification of C-S-H on the

structure and dynamic properties of water. With growing evidences on the nanogran-

ular texture of C-S-H [17, 82, 68, 215], the C-S-H particles appear to be excellent

analogs of nanocapsules with porous surfaces that enables inter-particle water and

cationic exchange. However, the difference between the interlayer and inter-particle

pore size distribution results in a broad distribution of water molecules' residence

times. This leads to partial decomposition and averaged representation of dynamical

quantities in Neutron Scattering (NS) [1181 and Proton Field-Cycling Relaxometry

(PFRC) [180] experiments. This highlights the relevance of atomistic simulation tech-

niques that provide insight into experimentally inaccessible measurements. In fact,

these experimentally aggregated descriptions are the origin of classifying water into

free, constrained and chemically bound water using Quasi-Elastic Neutron Scatter-

ing method [3331. This has led to classifying the dynamical properties of confined

water as "glass-like" behavior reminiscent of characteristics of supercooled liquids

and glassy phases [368, 125]. Nevertheless, the effect of confinement stoichiometry

by modification of surface chemistry and morphology on properties of confined water

remains to be investigated. In fact, we aim at answering long-standing questions

about the mobility of water in ultraconfined hydrophilic interlaminar spacing and its
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Figure 3-1: The state of hydrogen in C-S-H nanotexture as a function of stoichiom-

etry. The total hydrogen content calculated via a combination of grand canonical

Monte Carlo and molecular dynamics simulations based on REAXFF potential [2101

compared to drying experiment of Cong et al. [78] and Small Angle Neutron Scatter-

ing (SANS) experiment of Allen et al. 1171.

comparison with inter-particle and bulk water. The organization of the chapter is as

follows. Section 3.1 covers the details of molecular dynamics simulation and molec-

ular structure of C-S-H at different stoichiometry. Section 3.2 discusses the effect of

stoichiometry on the structure of water such as bond length, dipolar moment, density

and hydrogen bond network. The consecutive three sections (3.3, 3.4and 3.5) delve

into anisotropy and inhomogeneity of water dynamics in a confined medium. Section

3.6 presents the effect of confinement chemistry on the self-diffusivity and identifying

a new anomalous behavior of water under extreme confinement. Section 3.7 draws

final conclusions and summarizes our findings.

3.1 Setting Up the Computational Scene

To describe the disordered molecular structures of C-S-H, we rely on the set of 150

molecular structures for C-S-H constructed by varying Ca/Si ratio ranging from 1.1

to 2.1 in Chapter 2. In the CSH models, the silicate chains are only consisted of
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pairing (bridging oxygen atoms) and bridging sites (having two bridging and two

dangling oxygen atoms) [9]. These negatively charged calcium-silicate sheets are

separated from one another by interlayer spacing which incorporates "interlayer"

water molecules and charge-balancing calcium cations (4.8 j/nm2 ). The adsorption

of water molecules in the structurally defected Tobermorite models was performed

via the Grand Canonical Monte-Carlo (GCMC) method ensuring equilibrium with

bulk water at constant volume and room temperature and is denoted by "adsorbed

water" in Fig.3-1. The simulated number of hydrogen atoms in water molecules and

hydroxyl groups per silicon atom (H/Si) is in full agreement with drying [78] and

Small Angle Neutron Scattering (SANS) [17] experiments.

As shown in Fig.3-1, these models provide molecular structures of C-S-H that

are consistent with the experimental stoichiometry of (CaO)x(SiO 2 )(H 2 0)2(x-1)+0.+5

where 6 is associated with the polymorphic structure of C-S-H providing a variation

of water content based on the combinatorial nature of silicate arrangements at the

nano-scale. Some of the abovementioned interlayer water molecules are chemically

unstable and dissociates into hydroxyl groups and protons upon first principle or re-

active force field modeling. In this work, we use REAXFF potential [210] to react

the interlayer water with the defective calcium-silicate sheets. The rest of the water

molecules remain unreacted and are denoted in Fig 3-1 as "structural water". The

reactive modeling further refines the stoichiometry by adding an extra dimension:

(CaO)x (Si0 2) (H20) Ufreated (H20)ydroxyla tif2 where extra parameters 3 and y

introduce the effect of polymorphism to the stoichiometry. It should be emphasized

that "Unreacted" and "Hydroxylating" superscripts indicate unreacted and disso-

ciated water molecules during reactive simulations, respectively. It is noteworthy

that both drying and SANS experiments measure the total hydrogen content and

cannot distinguish between hydrogen atoms in molecular water or hydroxyl groups.

The collective topological observation of these 150 numerical samples indicates that

while C-S-H at low Ca/Si ratio, below 1.5, has a crystalline molecular structure, at

high Ca/Si ratios above 1.5, it has a local glassy structure while still retaining some

long-range layered texture [8].
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In this work, equilibrium MD simulations are performed on the reacted C-S-H

samples with focus on understanding the structure and mobility of unreacted inter-

layer water molecules. Several studies have suggested the importance of incorporating

flexibility in modeling confined water in hydrophobic and hydrophilic confinements

and ionic solutions [73, 350, 3111. To resolve the issues related to incorporating rigid

water models such as SPC/E, a flexible but unpolarizable version of SPC model was

employed which reproduces the structure and properties of water at ambient temper-

ature [330, 302]. A core-only potential, CSH-FF [306] which is a clayff-like potential,

is used which reproduces the structure and mechanics of C-S-H at various stoichiome-

try and is shown to be in good agreement with DFT calculations on crystalline C-S-H

such Tobermorite polymorphs [306]. To exclude the expenses incurred by calculating

coulombic interactions in real and reciprocal spaces, such interactions are calculated

via the wolf method [357]. The further details on the preparation of C-S-H structures

and the force fields are presented in the Supplementary Information.

In this work, all MD trajectories for 150 C-S-H models were produced using

LAMMPS [267]. The equations of motion are integrated via Velocity-Verlet algo-

rithm. The time steps are set as small as 1 fs to reproduce the dynamics of 0-H

bonds. All 150 samples were relaxed in isobaric-isothermal ensemble (NPT) with the

target temperature of 300 K and pressure of 0 atm. To reproduce the dynamics of

water at different time-scales, all the simulations were taken to microcanonical en-

semble (NVE) to start two separate sets of simulations for the production phase. The

first set of simulations, aiming at describing the dynamics at short time scales, were

100 ps long with configurations saved every 100 fs. The second set of simulations

was 10 ns long with outputs recorded on intervals of 10 ps. It is worth mentioning

that Churakov predicted that iOns long simulations are necessary to capture the dif-

fusion of water in the interlayer of Tobermorite minerals [72]. To compare the effect

of confinement on water molecules with that of the bulk, a box of water with 1200

water molecules was simulated and referred here as to either "bulk" or "SPC" wa-

ter. To calculate the structural and dynamical properties of interlayer water, several

post-processing scripts were written to analyze the trajectories.
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Figure 3-2: The effect of substrate stoichiometry on the characteristics of confined

water. (a) Ow-Hw bond length as a function of Ca/Si ratio. The inset shows the dis-

tribution of dipole moments in C-S-H (Ca/Si=1.75) against bulk water. The stretch

of Ow-Hw results in the increase in dipole moment of water in confined medium. (b)

The effect of Ca/Si ratio on the Voronoi density of interlayer water compared to that

of bulk SPC water. The inset displays the distribution of Voronoi volume of water

molecules for C-S-Hs of varying composition against that of SPC bulk water. (c)

The effect of Ca/Si ratio on the number of hydrogen bonds per water molecules. The

inset presents the correlation between the number of hydrogen bonds and the Voronoi

density of confined water.
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3.2 Structure of Confined Water

By closely looking at water density profiles on the vicinity of calcium-silicate sheets,

Youssef et al. [368] found excess water concentration at the surfaces. Also, it was

realized that hydrogen atoms of water tend toward the surface. These are clear

signs of hydrophilicity of calcium-silicate sheets. The hydrophilicity of C-S-H's solid

backbone directly affects the structure of water.

Figure 3-2 presents the effect of the stoichiometry of C-S-H on the structure of

water in the interlayer spacing. The structure of water is directly affected by the

availability of adsorption sites on the calcium-silicate surfaces. Figure 3-2.a presents

the effect of stoichiometry on the equilibrium 0-H bond length. The 0-H bond length

in C-S-H microporous medium is larger than that of bulk water. This means that

the interaction between C-S-H hydrophilic surfaces and protons in water molecules

stretches the bond length. The O-H bond length in SPC water increases linearly from

1.018 A to 1.022 A in the crystalline substrate domain and reaches a plateau in the

glassy domain. The physical reason behind the plateau response in high Ca/Si ratio

is that the extra water is less affected by the surface through a shielding mechanism.

In fact, adsorbed, adjacent to the surface, water molecules screen the electrostatic

interactions between the additional water molecules and non-bridging oxygen atoms

[46]. While the O-H bond length is directly influenced by the hydrophilicity of C-S-

H substrate, the H-0-H angular distribution does not show a significant statistical

difference. This directly affects the dipole moment of water molecules in the interlayer

spacing. The inset in Figure 3-2.a provides the distribution of the dipole moment

in a Ca/Si=1.75 C-S-H sample compared to that of bulk water. Statistically, the

dipole moment of confined water, 2.56+0.3 D, follows normal distribution with first

moment higher than that of bulk water, 2.50 0.3 D. In contrast to hydrophobic zeolite

micropores [272, 308], the upshift of dipole moment is a signature of hydrophilicity

of C-S-H surfaces. The hydrophilicity of nanopores, not only affects the internal

structure of water molecules but also the way that water molecules are packed in the

interlayer spacing. This packing affects the accessible volume and density of water in
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ultra-confined environment.

The packing of water molecules in the interlayer spacing affects the density of C-S-

H particles [334]. This necessitates a fresh look at the definition of density of water in

confined geometries. This is achieved by employing topological geometry approaches

in the context of nano-scale confinements. The Voronoi tessellation algorithm is one of

the most used methods. For instance, it was applied to the structural analysis of liquid

glass formers [319], liquid-gas interfaces [185] and ice nucleation [218]. In a periodic

system, Voronoi or accessible volume is a portion of the space around a particle in

which every point is closer to that particle than any other particle. The Voronoi

density can be defined as the mass of particles divided by their Voronoi volume. In

the case of bulk water, the conventional and Voronoi densities are identical. However,

the ultraconfined medium in the interlayer spacing affects the Voronoi volume of water

molecule and hence their Voronoi density. Figure 3-2.b provides the relation between

the stoichiometry of C-S-H and Voronoi density of water in the interlayer spacing.

The water density increases linearly with the Ca/Si ratio. The adsorption of roughly

1.2 structural water molecules by removing a Si0 2 group asserts that the density

of interlayer water is more controlled by the availability of adsorption sites. At low

Ca/Si ratios, the density of water is close to that of SPC bulk water. However at

high Ca/Si ratios, the density of water is around 1.12 g/cm3 significantly larger than

that of bulk water. This is presented in more details in the inset of the figure 3-2.b

which exhibits the Voronoi volume distribution for bulk water against three C-S-Hs

at different chemical compositions. All distributions, either bulk or confined, follow

normal distribution. At low Ca/Si ratios, Ca/Si=1.15, the first moment of volume

distribution for confined and bulk water are identical. However, the second moment

is smaller in the case of confined water meaning that the motion of water molecules

is very limited in C-S-H interlayer. At high Ca/Si ratios, Ca/Si=1.5 and 1.8, both

the first and second moment of volume distribution are smaller than that of bulk.

The ultra-packing of water molecules in C-S-H is similar to that of hydration shell of

proteins [137, 183].

Generally, higher packing and proper orientation of water molecules increases
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the probability of forming hydrogen bonds network. There are numerous ways to

identify hydrogen bonds based on either energetic [184, 23] or geometrical criteria

[140]. Following the method of Luzar and Chandler [201, 202], the hydrogen bonds

are solely distinguished by geometrical rules satisfying do-0 <3.5 A and 0 H-O-O< 3 0

where d0_0 is the distance between the oxygen atoms in the donor and acceptor

and 9f0H0 is the angle between 0-H ray in the donor and 0-0 ray connecting

oxygen in the donor and the acceptor. Figure 3-2.c displays the effect of C-S-h's

substrate stoichiometry on the number of H-bonds per water molecule. Similar to

glycerol/water mixtures [87] and water at the surface of silicates [211, the number

of H-bonds is significantly less than that of bulk water, roughly 3.6 H-bond per

water molecules. The number of H-bonds increases linearly in the crystalline domain

from 1.5 to 2.15 H-bonds per water molecule and maintains a constant value in the

glassy domain. Using a potential-of-mean-force approach (PMF), Youssef et al. [368]

calculated the value of 2.3 H-bonds per water molecule for Ca/Si equal 1.7 which is

in close agreement with these results. A close investigation of Owater-Owater partial

pair distribution function, g aro Ow ), reveals that the distance between a water

molecule and its third and fourth water neighbors diminishes by increasing the Ca/Si

ratio from 2.35 to 2.05 A and 2.8 to 2.4 A, respectively. This makes the number

of H-bonds and density of interlayer water to be linearly correlated, see the inset of

Figure 3-2.c. This correlation explains the link between different structural properties

of water in confined hydrophilic media. Now that we have demonstrated the effect of

chemistry on the structure of water, it is of high interest to investigate the mobility

of water in the C-S-H interlayer space.

3.3 Inhomogeneity and Anisotropy in Water Dynam-

ics

Due to strong hydrophilicity of calcium-silicate layers, the width and roughness of

interlayer voids, the dynamics of water in the interlayer spacing of C-S-H is expected to
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Figure 3-3: Mean square displacement (MSD) as function of time for each water
molecule in a sample with Ca/Si=1.4. The inset presents the total average MSD and
average MSD parallel and perpendicular to the calcium-silicate layers. The dashed
red line at 4A 2 is used to define the cage size, dcage (see text).
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be heterogeneous. This dynamical inhomogeneity can be characterized via both Mean

Square Displacement (MSD) and the self part of Van Hove space-time correlation

function. By utilizing the principle of invariance under time translation in equilibrium,

the MSD of an atom is defined as:

MSD= (Ar2 (t)) = (|ri(t + T) - ri(-) (3.1)

where ri denotes the coordinate of oxygen atoms in water molecules and bracket

represent proper time averaging at multiple time origins, T. To illustrate the dy-

namical inhomogeneity of water, the MSDs of individual water molecules across all

150 samples were studied extensively. However, for the sake of brevity, Figure 3-3

presents individual MSDs of water molecules within the range of 100 to 10000ps in a

sample with Ca/Si ratio of 1.4. The set of those individual MSDs clearly proves the

validity of the aforementioned hypothesis on dynamical inhomogeneity. Hence, water

molecules can divided into two categories: mobile and immobile. Immobile water

molecules have limited motion around their adsorption sites, which is characteristic

of a liberational dynamics in an ultraconfining cage around interlayer calcium or at

the vicinity of defective silica chains. Mobile waters exhibit less bounded motion in

the interlayer spacing, which resembles to that of diffusive dynamics in supercooled

phases. The distinction between mobile and immobile water molecules is based on

two arguments. First of all, the root mean square displacement (RMSD) of immobile

and mobile waters are significantly different. While the RMSD of immobile water is

smaller than 2 A, the RMSD of mobile water is larger than 2 A. The 2 A length scale

is referred to as the typical cage radius and will be denoted by dcage. Secondly, the

slope of MSD in mobile and immobile water is clearly different. While the slope of

MSD versus time of mobile water is significantly larger than zero, the slope of MSD

of immobile water is close to 0 (at time scales lower than 1 ns). This inhomogeneity

in mobility is also observed in clay-zeolite composites [265].

The inset of Figure 3-3 displays the average MSD in the range of 0.ps to iOns. It

demonstrates the dynamically slow nature of confined water in C-S-H which can be
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partitioned in four stages; analogous to that of dense fluids and supercooled phases

[178]. The four stages are ballistic, cage, transition and diffusion regimes. At very

short times, t<200fs, the water molecules move just ballistically, (r2 (t)) Oc t2 [290].

In the second stage within intermediate time scales, MSD follows a plateau up to ips.

This is mainly because water molecules rattle around in the cage formed by neighbor-

ing particles colliding with water molecules and calcium layer species. Subsequently,

parts of water molecules succeed to escape the cage, which can be associated with an

intermediate stage. The motion of water molecules in the transition regime can be

described as diffusion with low exponent ((r 2 (t)) oc ta where o < 1). The transition

with exponent smaller than one is also observed in supercooled liquids and attributed

to inhomogeneous non-Gaussian collective hopping of particles [59]. The diffusion ex-

ponent gradually increases in the third stage till it reaches that of a diffusion regime,

(r2 (t)) Oc t.

1
Due to the small width to length ratio of interlayer channels (~ -), the diffusion

10
inside C-S-H particles has characteristics of quasi two-dimensional diffusion. This

anisotropy in the diffusion can be quantified via the components of average MSD

[21]:
1N

MSD2, = AX2(t) + Ay 2 (t)) (3.2)
i=1

N

MSDZ = NE(Az2(t)) (3.3)

where N is the number of water molecules, MSDxY and MSDZ denote the parallel

and perpendicular parts of the MSD. As it is shown in the inset of figure 3-3, the

MSDxY is almost one orders of magnitude larger than MSD 1 . This emphasizes that

the diffusion is strongly controlled by the interlayer space width presenting nearly

two-dimensional characteristics [46].
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Figure 3-4: Description of the collective diffusion of water molecules using Van

Hove space-time correlation function. (a) Van Hove correlation function of water

molecules in a C-S-H sample with Ca/Si=1.4 at different time steps. (b) The Van

Hove correlation function at 6 ns plotted for mobile and immobile water molecules.

3.4 Inhomogeneity Characterization via the Van Hove

Correlation Function

To further characterize the inhomogeneous dynamics of water, the self part of Van

Hove space-time correlation function is employed [641. This correlation is defined as

IN
G,(r, t) = N (j(r- I ri(t + T) - ri(T) )) (3.4)

where 6 denotes the Kronecker delta. This correlation function allows us to determine

the probability 2wrrG. (r, t) that a water molecule originally at (t = 0) and (r = 0)

has moved by distance r after elapsing time t [30]. Following the discussion on the

anisotropy of diffusion in the C-S-H, the planar 27rr factor is adopted instead of 47rr2,

as the motion of mobile water molecules is characterized by quasi two-dimensional dif-

fusion. Presenting only the results for a sample with Ca/Si=1.4 for the sake of brevity,

Figure 3-4.a provides the Van Hove correlation function at different time scales. As

displayed by the probability distribution, at short time-scales, (t ~ 0.ps), the motion

of water molecules is restricted to ballistic with characteristic length smaller than the
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cage size. At a time-scale one order of magnitude longer, (t l 1ps), water molecules

are still in the cage. In longer time-scales ((t ~ 300ps)), some water molecules have

traveled as far as 3A. In the range of 300 ps to 1.5 ns, the mobile water molecules

accumulate at the first hopping site characterized by the length of a water molecule,

3 A. As the probability of presence in the cage decreases, a peak appears at the posi-

tion of the first hopping site indicating the accumulation of mobile water molecules.

The average jump length in C-S-H (a 3 A) is more than three times larger than

that of bulk water at room temperature (~ 0.9 A) [329] . Interestingly, the average

jump length in supercooled water at 253 K is roughly 2.4 A [66] which is close to

that computed for C-S-H. This is another signature that water in the interlayer space

behaves like supercooled liquids. The hopping mechanism to the farther sites occurs

at longer time-scales.

The first water molecules arrive at the second hopping site after 1.5ns. At longer

time-scales up to 6ns, while the probability of the presence of water molecules in

the cage decreases diagnosed by vanishing of the first peak, second and third peaks

grow signaling dominant diffusive mode. This probabilistic picture is reminiscent of

picosecond local structural fluctuations within dynamical basin and slow inter-basin

jumps in supercooled liquids [277]. This brings about the notion of "lower effective

temperature" suggested by both neutron diffraction experiment [193] and molecular

dynamics simulations of water in hydrophilic surfaces [125]. Specifically, Gallo et al.

[125] observed that water molecules adjacent to hydrophilic surfaces behave as they

are below mode coupling crossover temperature in pores as large as 4nm even though

modeled at ambient conditions. However, this is a homogenous description of water

diffusion, which only explains the diffusive motion of mobile water molecules.

The heterogeneity in the dynamics of water molecules in the interlayer spacing of

C-S-H is very similar to heterogeneous dynamics of ionic [153] and supercooled liquids

[103] in which particles diffuse with significantly different residence times at different

regions only a few angstroms apart. To distinguish between the water molecules with

different residence times, the self part of Van Hove function is decomposed to that of
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mobile, G' (r, t), and immobile, G'(r, t), contributions:

1 NM

Gy (r, t) = - (6(r- I ri(t + T) - ri(T) )) (3.5)

NJ

G(r,t) = >Z(o(r- I ri(t +F) - rj(T) )) (3.6)
i=_1

where NM and N are the number of mobile and immobile water molecules, respec-

tively. The distinction between mobile and immobile species is made based on their in-

dividual MSDs. If the average displacement is less than the cage size, RMSDj < dcage,

then the water molecule is assumed to be immobile. Otherwise, it is classified as mo-

bile species. Figure 3-4.b presents the mobile-immobile decomposition of the Van

Hove function. For time-scales as large as 6 ns, the immobile water liberating within

the cage might overpass the cage size and briefly spend time in the first hopping

zone. This is suggested by the presence of a minor peak in G Immobile in the location

of first hopping site in Figure 3-4.b. It should be emphasized that since the MSD

of immobile water molecules are less than 3 A, any transgression beyond cage size

is temporal. This is a clear sign of backward hopping mechanism in which water

oscillates between the cage and the first hopping site. On the other hand, some of

mobile waters might briefly spend sometime at the boundary of the cage. However,

mobile water molecules elapse most of their time in the first and second hopping sites.

Again, some of the water molecules might oscillate back and forth characterized by

a forward hopping mechanism from first to second hoping sites and backward vice

versa. This forward and backward hopping is also experimentally observed in the

diffusion of hydrogen on TiO 2 surfaces in which forward hopping is favored depend-

ing on separation distance [195]. For the case of water in the interlayer of C-S-H,

the enhancement of interstitial molecules in the first coordination shell constraints

the large displacements. Therefore, diffusion of water molecules necessitates highly

correlated displacement of many water molecules referred to as cooperative hopping

mechanism [370]. This cooperative hopping mechanism increases the probability of

backward hopping as collective diffusion in confined environment attributes to higher
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Figure 3-5: The effect of composition on the mobility of water molecules in the
C-S-H interlaminar spacing. (a) Van Hove correlation function plotted for C-S-Hs of
varying stoichiometry. (b) The probability of water molecules to escape the cage as
a function of Ca/Si ratio.

diffusion energy barriers. This collective mobility depends strongly on the chemistry

of adsorption surface, which is analyzed in more details in the next section.

3.5 Composition-Dependent Water Mobility

The heterogeneity in water dynamics should substantially depend on the hydrophilic-

ity of nanoconfinements [46, 21]. This can be systematically analyzed by studying

mobility across samples of varying stoichiometry. Figure 3-5 provides the Van Hove

function at 6 ns for five C-S-H samples with Ca/Si ratios varying from 1.1 to 1.8.

At very low Ca/Si ratios distinguished by clear crystalline substrate, Ca/Si=1.12,

all of the water molecules are confined within the cage. In this case, the whole Van

Hove function is limited within the cage radius, d,,g. Figure 3-6 has visualized the

motion of water molecules by superposing the positions of water molecules within

the structure at different time steps starting at 1 fs up to 6 ns, covering six orders

of magnitude in the time domain. As depicted in the first row of Figure 3-6, at low

Ca/Si ratios, the motion of water molecules is restricted to liberation adjacent to

their adsorption sites. At this stoichiometry, the motion of the water molecules is
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Figure 3-6: Visualization of the space that water molecules explore within the C-S-H
interlayer for three different samples with Ca/Si ratios equal to 1.14 (crystalline sub-

strate), 1.45 (transition substrate) and 1.80 (glassy substrate). The water molecules
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cyan spheres present intralayer and interlayer calcium ions, respectively. Red and
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described as "pocket-like" behavior emphasizing their localized motion. This local-

ized behavior is related to abundance of bridging SiO 2 groups protruding into the

interlayer spacing which effectively obstructs the diffusive motion of water molecules

in the channel. At a slightly higher Ca/Si ratio, Ca/Si=1.30, more birding groups

are removed from the silicate chains. This provides the opportunity for some water

molecules to escape their cage and enter their first hopping site. At the transition

regime, most of the bridging sites are removed from the silica chains, which fully open

the diffusion channel. As described before, a significant portion of water molecules

diffuse to the first and second hopping sites. As highlighted in the second row of

Figure 3-6, the water molecules oscillate within the cage up to 10 ps and start to dif-

fuse at longer residence times in the order of 100 ps. The motion of water molecules

in transition regime is individually traceable which resembles to a "patch-like" diffu-

sive motion. As presented in the third row of Figure 3-6, the diffusive channels are

fully developed making it hard to distinguish between individual trajectories which

indicates a "channel-like" diffusion. To rigorously quantify the impact of substrate

stoichiometry on the mobility of water molecules, the probability of a water molecule

escaping the cage after 6 ns, P(d>dcage), is defined as:

P(d > dcage) = A 27rrG,(r, t = 6ns)dr (3.7)
An dca.ge

where d is displacement and An denotes the normalizing factor defined as f" 27rrG(r, t =

6ns)dr. This probability of escaping cage increases linearly with Ca/Si ratio within

the crystalline C-S-H regime. The probability of escaping the cage reaches to a

plateau in transition and glassy regimes. This plateau is mainly due to the absence of

bridging sites in the interlayer. However, at large Ca/Si ratio, the mobility increases

owing to the fact that extra water molecules provide screening against the columbic

interaction between the calcium-silicate substrate and mobile water molecules. Ow-

ing to the aforementioned screening effect which was pointed out as the origin of the

plateau in the dipole moment of water molecules as well (see Figure 3-2.a), the dipole

moment and mobility are strongly correlated as they both follow a bilinear trend.
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Crystalline Substrate Glassy Substrate

Inter-particle Water

- PFCR: Korb et al.
- ENS: Fratini et al.
* MD: This Work

(a) I Interlayer Water
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Figure 3-7: Mobility of water in C-S-H's interlayer spacing. (a) The effect of C-

S-H composition on the self-diffusivity of interlayer water compared against Elastic

Neutron Scattering (ENS) and Proton Field Cycling Relaxometry technique (PFCR).

(b) The anomalous correlation between density and self-diffusivity of confined water in

C-S-H and the insets provides the relation between the self-diffusivity and probability

of escaping the cage. (c) The scaling of self-diffusivity with inverse temperature for

four C-S-H models with different Ca/Si ratio. The inset presents the diffusion energy

barrier as a function of Ca/Si ratio.
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3.6 Self-Diffusion of Ultraconfined Water in C-S-H

interlayer

As discussed above, the diffusion of water molecules inside the C-S-H particles is both

inhomogeneous and anisotropic. Therefore due to quasi two-dimensional nature of

collective diffusive motion of mobile water molecules, the self-diffusivity of water is

defined only for planar component of the mobile water species:

D l m -lim d( (3.8)
4 t-+oc t

Description of water diffusion by DiI entails an approximation. However, the ratio

of DI/DII is quite negligible for mobile water molecules because the width to length

ratio of channels is negligible due application of periodic boundary conditions. The

effect of substrate composition on the self-diffusivity of water molecules is presented

in Figure 3-7. The self-diffusivity of water in the interlayer, DC-S-H, is normalized

by that of bulk SPC water, DH 20, 4.17 x 10- m 2s- 2 . Analogous to the probability

of escaping cage, DC-S-H increases linearly in the crystalline domain and maintains

a constant value at the transition and glassy regimes. Due to high H 20/Si ratio at

very high Ca/Si ratios, the self-diffusivity increases again because of screening effect.

DC-S-H in high Ca/Si, 0.0018x DH2Q, ratio is almost three times higher than that

of low Ca/Si, 0.0006x DH20. This highlights the effect of substrate stoichiometry on

the diffusion of water molecules in the ultraconfined hydrophilic environments. On

average, the self-diffusivity of water in the interlayer spacing inside C-S-H particles

is a thousand times slower than that of bulk water. This emphasizes that part of the

mobile interlayer water diffuses with significantly slow dynamics but distinguishable

from immobile water and hydroxyl groups. Bordallo et al. [48] briefly mentioned

existence of a dynamics slower than that of glassy water and attributed it to proton

exchange in the interlayer. Perhaps, based on the present description of water mobility

in C-S-H, this dynamics might be related to diffusion of mobile water in the interlayer.

The diffusion of mobile interlayer water is different from inter-particle water molecules
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and those on the surface of larger pores.

The values of self-diffusivities presented in this study are at least one order of

magnitude less than that measured by Proton Field-Cycling Relaxometry (PFCR)

approach by Korb et al. [181] and Incoherent Elastic Neutron Scattering measure-

ments of Fratini et al. [118]. Recent ENS experiments suggest that slow self-diffusion

in the paste is associated with inter-particle water [194]. PFCR experiments are in-

terpreted to capture the dynamical behavior of water adsorbed on the pore surfaces

[180]. In particular, Kalinichev et al. [168] reported MD simulation of adsorb water

on [1001 surfaces of anomalous Tobermorite with self-diffusions comparable to that

of Korb et al. [180]. Since the inter-particle pore-size distribution is shown to be

significantly larger than interlayer spacing [219], the significant difference in charac-

teristic length of confinement explains the difference between the self-diffusion inside

and in between C-S-H grains. Recently, Coasne et al. have critically reviewed the

state of the art of water in mesoporous systems [76] which sheds light on the dy-

namics in mesopores in between C-S-H particles. The contrast between the intra-

and inter-particle water is also observed in hydrated bundles of imogolite nanotubes

[85]. Having explained the difference between intra- and inter-globular diffusion, it is

of scientific interest to explore the correlation between the structural and dynamical

properties of confined water.

Studying properties of bulk water has led to identification of several unusual be-

haviors known as anomalous features of water [200]. Prielmeier [270] discovered an

anomaly in which self-diffusivity of bulk water increases with increasing pressure with

a maximum at 200MPa. Later Scala et al. [299] showed that for supercooled water

at 220K, the self-diffusivity of bulk water increases with increasing density with a

maximum at 1.15 g/cm 3 . This anomalous behavior was also shown to exist for Si0 2

glassy structure as well [110]. Figure 3-7.b presents the correlation between the den-

sity and self-diffusivity of water in the interlayer of C-S-H. Having many features

in common with supercooled liquids, the self-diffusivity of water in the interlayer of

C-S-H increases with the density. However, these anomalies have different sources

in supercooled liquids and ultraconfined water in between hydrophilic surfaces. In
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supercooled water, the collapse of hydrogen bond network under external pressure is

believed to increase the diffusivity of water [92]. However, the physical reason behind

the peculiar behavior in C-S-H is related to the increase in probability of escaping

cage. As described in the inset of Figure 3-7.b, the correlation between the prob-

ability of escaping cage, P(d > dcage), and relative self-diffusion, DC-S-H/DH2o is

fairly linear passing through the origin (P(d>dcage) = 400 x DC-S-H/DH 2o). This

emphasizes that as the probability of mobility approaches to zero, the self-diffusivity

tends to zeros as well. On the contrary, as the effect of surface stoichiometry becomes

negligible through screening effect, the mobility increases leading to an increase in

self-diffusivity. In fact, both of these mechanisms directly affect the diffusion en-

ergy barrier. This energy barrier is equal to the kinetic energy required for a water

molecule to break its surrounding cage and diffuse in the ultra-confined medium. This

diffusion energy barrier can be estimated via Arrhenius relation

(-Ub'
Dc-s-H = DH20 X exp KBT (3.9)

where Ub, KB and T are diffusion energy barrier, Boltzman constant and temperature,

respectively. In molecular dynamics, Ub can be estimated by gradually increasing the

temperature of the system and monitoring the logarithm of self-diffusivity as function

of the inverse temperature. To measure Ub in C-S-H models of varying stoichiometry,

five simulations were performed in the range of 300 K to 420 K for four C-S-H models

with Ca/Si ratios equal to 1.2, 1.5, 1.75 and 2.05 (Fig3-7.c). It is highlighted that

in (Dc-s-H) scales linearly with the inverse temperature which means that Arrhenius

relation is still valid in describing diffusion in nano-confined environment. The slope

of these lines are proportional to Ub which are plotted in the inset of Fig3-7.c. The

energy barrier is in the order of 0.12 eV at low Ca/Si ratios (Ca/Si=1.2) and decreases

to 0.08 at high Ca/Si ratio (Ca/Si=2.05). This further clarifies the abovementioned

anomalous behavior in self-diffusivity of nano-confined water in which despite the

increase in density, the diffusion energy barrier decreases. The reduction in the energy

barrier fully explains the increase in self-diffusivity as it describes the increase in the
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probability of escaping the cage with increasing Ca/Si ratio.

3.7 Conclusion

This chapter was dedicated to study the properties of confined water in the inter-

layer spacing of a class of defective calcium-silicates. The properties of water were

carefully studied using atomistic simulation method in a set of 150 samples with the

stoichiometry of (CaO),,(SiO 2)(H 20)L structura (H2 ) y2" . The C-S-H sub-

strate directly affects the structural properties of ultraconfined water such as bond

length, dipolar moment, density and average number of hydrogen bonds. It is found

that the dipole moment, Voronoi density and the number of hydrogen bonds per water

molecules are higher at high Ca/Si ratio. These enhancements are directly attributed

to the increase in the hydrophilicity of the substrate with increasing Ca/Si ratio.

However, the screening effect between water molecules and calcium-silicate backbone

was found to alleviate these enhancements. The dynamics of water is also strongly

affected by both the confinement size and hydrophilicity of lamellar sheets and in-

terlayer cations. The water dynamics in the interlayer spacing was characterized as

quasi two-dimensional in which the diffusion in the direction of layers is the domi-

nant mode. The mean square displacement shows a four stage dynamics reminiscent

of those in supercooled liquids and glassy phases. In addition, both MSD and Van

Hove space-time correlation function indicated significant heterogeneity in the water

dynamics. The mean hopping distance was found to be around 2.8A, roughly a size

of a water molecule, comparable to that observed in supercooled water. The decom-

position of van Hove function into mobile and immobile contributions shed light into

the dynamics of immobile waters and revealed the possibility of backward hopping

from the first hopping site to the dynamical cage.

More significantly, it was shown that the mobility of water is strongly composition-

dependent and increases at high Ca/Si ratio. The increase in the probability of

escaping the dynamical cage with increasing Ca/Si ratio physically explained the

composition-dependent mobility. Furthermore, this was related to the absence of
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dangling silica groups into the diffusion channel. This brought forward the notion

of "pocket-like", "patch-like" and "channel-like" diffusion at low, medium and high

Ca/Si ratios, respectively. The self-diffusivity of mobile interlayer water is found to

be one thousandth of that of bulk water. Both the strong interaction with the C-S-H

hydrophilic surfaces and the sub-nanometric diffusion channel dimensions effectively

reduced the self-diffusivity of the structural water. The self-diffusivity of water is three

times higher in high Ca/Si ratio with regards to low Ca/Si ratio. Furthermore, it was

found that the self-diffusivity of water in the interlayer is roughly ten times smaller

than those observed in elastic neutron scattering and proton field-cycling relaxometry.

This is mainly because these experiment probe the dynamics of inter-particle water.

In fact, the size of inter-particle pores is one order of magnitude larger than inter-

layer spacing reducing the electrostatic interaction with substrate through screening

effect. Finally, the correlation between the structural and dynamical properties was

brought to attention through correlation between density and self-diffusivity. Similar

to the anomalous behavior of bulk water, the self-diffusivity of water increases with

increasing the density. Unlike the case of bulk water in which breakage of hydro-

gen bond network increases the mobility, the confined water is shown to have higher

self-diffusivity because of increase in the probability to escape the dynamical cage

due opening diffusion channels. Overall, this chapter paves the way to further under-

stand the nuances in the properties of confined water in a broad range of C-S-Hs at

nanoscale aiming to shed light on the design of more durable materials.
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Chapter 4

Thermal Properties of Cement Paste:

From Nano to Macro Level

Being well-known for its appreciable load-bearing capacity, concrete is a material of

choice in design and construction of structural units. Despite their importance, the

thermal properties of cement paste and concrete are always overshadowed by their

mechanical properties, namely stiffness and strength. The thermophysical properties

of concrete are important during both construction and use phases. In the course

of construction, early-age cracking can occur which would compromise the longer

term servicability of the structures. Among various sources of the stress that can

initiate such cracking, thermal stress is one of the most influential factors. These

stresses are the direct consequence of cement's exothermic hydration process. Ba-

sic dimensional arguments assert that the thermal stress is inversely proportional

to the thermal diffusivity of hydrating paste. During the use phase, the thermo-

physical characteristics of concrete (and all the other construction materials) affect

the heating and cooling energy consumption of the building via either heat conduc-

tion through the envelope (transient, quasi-steady state and steady state) or thermal

mass of buildings, i.e. the tendency of a building to maintain a constant tempera-

ture despite outdoor temperature oscillations [6]. Notwithstanding the importance

of thermal properties of concrete, such studies are truly scarce and are limited to

the macroscopic measurement of thermal properties of concrete [90, 173, 94, 95] and
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cement paste [39, 367, 230, 214, 363, 5]. In fact, the interplay between chemistry and

molecular properties of cement paste's constituents and their relation to the macro-

scopic properties remain obscure. This requires an in-depth understanding of atomic

and molecular processes contributing to thermal properties at the nanoscale along

with proper consideration of morphology and multi-phase nature of cement paste as

a multiscale porous material.

The main focus of this chapter is to understand the thermo-physical properties

of cement paste starting from nanoscale and upscaling them all the way to the en-

gineering macroscale. In fact, we attempt to answer long-standing questions about

the physical origins of the macroscopic thermal behavior of a complex material such

as cement paste. This chapter is organized into seven sections. Section 4.1 describes

the complex multiscale multiphase structure of cement paste. Section 4.2 covers the

details of molecular structures of calcium silicate phases in cement paste including

cement clinkers and hydration products. Section 4.3 includes the very details of atom-

istic simulations and discusses the transferability of the inter-atomic potential utilized

in this study in comparison with available experimental data and other force fields.

Section 4.4 describes vibrational density of state of different phases in cement paste

and discusses the existence of boson peak in C-S-H. Section 4.5 presents specific heat

capacities of all phases at constant volume and pressure. Section 4.6 explores the

nanoscale non-equilibrium thermal properties such as thermal conductivity and the

mean free path of phonons for different phases using Green-Kubo relations. Subse-

quently, section 4.7 is dedicated to the upscaling of the nanoscale thermal properties

to the macroscale (Level 3) and their comparison with macroscopic observations.

Section 4.8 draws final conclusions and summarizes the findings of this chapter.
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4.1 Multiscale Multiphase Porous Structure of Ce-

ment Paste

Cement paste is a complex material which is the result of the hydration of cement

clinkers. The ordinary Portland cement (OPC) clinker is comprised of different phases

such as alite (C 3 S), belite (C 2 S), calcium aluminate (C3 A), tetracalcium aluminofer-

rite (C 4 AF), gypsum and minor other phases, where in cement chemistry notation

[328] C, S, A and F stand for CaO, SiO 2 , A12 03 and Fe20 3 , respectively. C 3 S is the

major component of OPC, which accounts for 70% of its weight and C 2 S is the second

most important phase in OPC. Here, we focus on the calcium silicate phases since

they are more abundant in OPC. The hydration reactions of C 2 S and C 3 S can be

summarized as:

C2S + xH ÷ C1 7SH. 9 + 0.3CH + (x - 2.2)H'"c (4.1)

C3 S + xH -+ C1 7 SH.9 + 1.3CH + (x - 3.2)H'"c (4.2)

where x is the number of water moles used in the hydration and C1 .7 SH'., CH and H

are calcium silicate hydrate (CSH), portlandite and water, respectively. The s, i and

c superscript are utilized to emphasizes the pore size distribution in the cement paste

accommodating (s)tructural, (i)nter-particle and (c)apillary water molecules, respec-

tively. The pore size distribution in the cement paste ranges from the nanoscale to the

macroscale. The presence of multiple porosity scales makes a multiscale bottom-up

approach the method of choice to study this material.

The hierarchical multiscale models have shown to be effective in portraying a

consistent picture of the physical properties of materials with multiple heterogeneity

scales ranging from nano to macroscale [142, 273]. These models are based on the no-

tion of the separability of scales, meaning that the heterogeneity at each scale should

be significantly smaller than the size of the representative elementary volume (REV)

at the larger scale. This approach can be used to study the properties of complex
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Figure 4-1: A 4-level homogenization thought-model utilized for upscaling the ther-

mal properties of concrete from nano to the engineering scale. a) snapshot of a

nano-texture of CSH at Ca/Si=1.5. The brown and cyan spheres represent intra- and

inter-layer calcium ions. The Si-O bonds are shown by yellow-red sticks. The water

molecules and hydroxyl groups are depicted by red-white sticks. The XY plane is par-

allel and Z axis is perpendicular to the calcium silicate sheets. b) The meso-texture

of CSH constructed by agglomeration of randomly oriented CSH nanoparticles with

size poly-dispersity. c) The micro-texture of hardened paste including anhydrated

clinker phases (3-C 2 S and C3 S), hydration products (CSH and CH) and pore space

(saturated or dry). d) The macro-texture of cement paste at the engineering scale.

materials such as cement paste. Here, we employ a 4-Level hierarchical model to

investigate the thermal properties of cement paste, see Fig. 4-1. At Level 0 or the

nanoscale (Fig. 4-1.a), we calculate the molecular properties of crystalline phases

(C 2 S, C 3 S and CH) and CSH. Understanding molecular properties of CSH is rather

important because this phase is the binding component of the cement paste and is

responsible for its strength and durability. Unlike crystalline phases, the molecu-

lar structure of CSH is rather complex[260, 310] ranging from crystalline to glassy

depending on its stoichimetry [7]. The amorphous structure of the solid backbone

of CSH (at high Ca/Si ratios) along with the presence of mobile water molecules

[274] inside its nanostructure further prohibits the application of Cauchy-Born rule

[9, 172, 13, 1711. Therefore, atomistic simulation is critical to reveal the underly-

ing atomic processes governing the thermo-physical behavior of cement paste at the

nanoscale.

Both neutron scattering [17, 67] and statistical nanoindentation experiments [821
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provide growing evidences that CSH has a nanogranular meso-texture (see Fig. 4-

1.b). In this light, the CSH gel at Level 1 is considered to be formed of poly-disperse

nano-scale CSH globules [215]. The space between the CSH particles, known as inter-

particle spacing can be empty, filled with the previously mentioned inter-particle

water or partially saturated depending on the relative humidity level. The physical

properties of CSH gel can be explained via statistical micro-poromechanics theory [99.

The tools of micro-thermo-poromechanics yield the equivalent thermal properties of

the CSH matrix at Level 2 (microscale). In fact at the microscale, the CSH gel is

regarded as a continuous paste that holds unhydrated cement clinkers and the other

hydration products together (see Fig. 4-1.c). As mentioned before, the capillary

pores prevail at this scale which can have different saturation degrees depending on

the humidity level. Therefore, cement paste at the microscale can be viewed as a

multifarious composite material. Similar to Level 1, micro-thermo-poromechanics

theory and simple mixture laws can be employed to upscale the thermal properties to

Level 3 (macroscale). At the macroscale, we regard the cement paste as an isotropic

homogeneous material.

4.2 Calcium Silicate Phases in Cement Paste

The molecular structure of solid phases in the hardened cement paste vary from

crystalline to glassy depending on the phase and chemical composition (in the case

of CSH). The anhydrated clinker phases (alite and belite)' and portlandite are crys-

talline. From a crystallography viewpoint, alite is a chemically modified form of pure

tricalcium silicate (Ca3 SiO5 or C 3S) exhibiting series of reversible phase transitions

upon heating and cooling 171, 203, 328]. The atomic structure of Alite polymorphs

are similar, differing in the orientation of isolated silica tetrahedra (SiO-), coordina-

tion of calcium (Ca2 +) and oxygen (02-) atoms in ionic sites, and hence symmetry

groups [247, 43]. In the present study, we choose the M3 polymorph of C 3 S, the most

abundant polymorph in cement clinker, refined from single crystal by De la Torre et

al. [89]. Belite is similar to alite in many aspects. It is a chemically modified form of
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dicalcium silicate (Ca 2SiO5 or C 2 S) which also exhibits sequences of reversible phase

transitions with temperature [26, 328]. The atomic structure of belite consists of

isolated SiO- groups surrounded by Ca 2+ cations. Belite has several polymorphs

such as a', aL and # which are derived from the a form by decreasing symmetry

because of disorder in silica groups and subsequent modification of calcium atoms

positions [114, 312, 165]. In the present study, we have employed the -C 2 S poly-

morph after Midgley [228] as it is the most dominant polymorph in the ordinary OPC

systems [154, 106]. The M3 C3 S and 3-C 2 S phases are rarely found in pure forms

and usually contain minor Al+3, Mg+ 2 and Fe+ 3 substitutions that modulate their

stability, solubility and chemical reactivity [210]. These substitutions are neglected

in the present study as they are attributed to a relatively small mass fraction of the

OPC clinker. Beside clinker phases, portlandite (Ca(OH) 2 or CH), one of the major

hydration products in OPC systems, is also crystalline and is a fairly well-known

mineral. It consists of a stack of Ca-O planes with dangling hydroxyl groups pointing

to the interlayer spacing. In this work, we adopt a crystalline structure of portlandite

after Henderson et al. [148] which has identified the position of protons via the 1H

NMR.

Unlike the above crystalline phases, the nano-texture of CSH strongly depends on

its chemical composition measured in terms of calcium-to-silicon ratio (Ca/Si). To

realistically describe the atomic structure of CSH, we utilize the set of 150 molecular

models in Chapter 2 constructed to cover a wide range of calcium-to-silicon ratios

spanning from 1.1 to 2.1 [274]. These models are consistent with the averaged sto-

ichiometry of CaSiO 2.75(OH)Ca5(1) (OH)SiX1+5[0.8(x-1)+0.31H 20, where x is

the Ca/Si ratio and (OH)ca and (OH)Si represent hydroxyl groups coordinated to

inter-layer calcium atoms and silica groups, respectively. The collective topological

observation of these 150 models indicates that, while at low Ca/Si ratios CSH exhibits

lamellar crystalline structures with strong transversely isotropic mechanical response

[7], the structure of CSH at high Ca/Si ratios (pertinent to the hydration of OPC sys-

tems in eqs. 4.1 and 4.2) is fairly amorphous [33] expressing isotropic characteristics

with no significant preferential direction in elastic properties.
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Table 4.1: Investigation of the CSH-FF transferability to other calcium silicate sys-
tems by comparing 3-C 2 S, C3 S and CH's lattice parameters against experimental
measurements and calculated values via the core-shell potential.

Method a(A) b(A) c(A) a () (0) y( 0 )

CSH-FF 5.44 6.62 9.13 90.5 95.0 90.0
/3-C2 S core-shell [209] 5.51 6.92 9.94 90.0 94.0 90.0

Exp. [228] 5.50 6.76 9.32 90.0 94.1 90.0
CSH-FF 34.70 6.69 18.43 90.0 95.0 90.0

C3 S core-shell [209] 33.45 7.12 18.91 90.0 94.9 90.0
Exp. [89] 33.08 7.02 18.50 90.0 94.1 90.0
CSH-FF 3.48 3.48 4.82 90.0 90.0 120.0

CH core-shell [209] 3.55 3.55 4.94 90.0 90.0 120.0
Exp. [148] 3.59 3.59 4.91 90.0 90.0 120.0

4.3 Transferability of CSH-FF Potential to Other

Phases

In this chapter, atomistic simulation techniques including molecular dynamics (MD),

energy minimization and phonon analysis are utilized to study thermal properties of

clinker phases and hydration products using LAMMPS [2671, Gulp [123, 124] and

a series of in-house codes. In MD, the equations of motion were integrated via the

Velocity-Verlet algorithm with periodic boundary conditions applied in all directions.

After performing extensive convergence studies, the suitable time steps were found to

be as small as 0.1 for CSH and portlandite and 1 fs for clinker phases to appropriately

capture the behavior of autocorrelation functions at small scales. Initially, all the 150

CSH samples and the crystalline phases were relaxed in isobaric isothermal ensemble

(NPT) at room temperature and pressure of 0 atm. To exclude the impact of fictitious

forces on the trajectories of atoms affecting velocities and heat fluxes along the MD

trajectory, all 150 samples are transferred to microcanonical ensemble (NVE). In order

to properly calculate the statistical errors for each model, 10 independent simulations

are performed, each 106 time steps long. Core-only potential CSH-FF [306], which

is a Clayff-like potential [86], is used in the calculations. This potential is shown to
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Table 4.2: Comparing elastic properties of #-C 2 S, C3S, CH, C1.0SH0 .5 and C 1.75SH 2.0
calculated using CSH-FF potential against experimental measurements and calculated
values via the core-shell potential.

Method k (GPa) g (GPa) v

CSH-FF 122.3 47.2 0.33
3-C 2 S core-shell [209] 111.0 53.1 0.30

Exp. [352, 12] 116 8,110+8 54+4,50 4 0.30
CSH-FF 104.9 55.0 0.28

C3 S core-shell [209] 103.0 54.5 0.28
Exp. [352, 12] 112 6,122+4 52 2,56 2 0.3

CSH-FF 28.8 12.4 0.31
CH core-shell [209] 31.1 13.4 0.31

Exp. [236, 356, 36, 12, 81] 29.4-60.7 13.6-28.0 0.315

C1.0SH 5  CSH-FF 68.0 35.0 0.28
Exp. [7] 60.5+3 38.3 2 -

C1.75SH2.0  CSH-FF 55.1 25.3 0.30
Exp. [7] 52.5 7.5 24.5 3.5 -

reproduce the structure and mechanical properties of CSH at various Ca/Si ratios

[7] and has shown to be in good agreement with density functional theory (DFT)

calculations on crystalline CSHs such as Tobermorite polymorphs [306]. To avoid

the computational expenses incurred by the calculation of coulombic interactions

in real and reciprocal spaces, such interactions are calculated via the wolf method

[357]. To investigate the transferability of CSH-FF potential to the crystalline phases

in cement paste, we juxtapose its predictions including structure and mechanical

properties against that of other force fields and experimental measurements. To

this end, we compare the crystallographic lattice parameters [89, 228, 148] against

atomistic simulation predictions by core-shell [209] and CSH-FF potentials as shown

in Table 4.1. The CSH-FF predictions of crystallographic parameters (a, b, c, a, # and

y) after proper energy minimization at constant volume and pressure are very close to

those calculated by the core-shell potential and measured experimentally. Therefore,

we conclude that CSH-FF can appropriately predict the structure of crystalline phases

in the hardened cement paste. There are a few methods to measure the elastic

properties of solid phases in the cement paste including nano-indentation [7, 81, 352],
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resonance frequency method [352], Brillouin spectroscopy [236], compacting powder

samples of different porosity [356, 36] and multiscale micromechanical inverse analysis

[12]. These elastic properties include bulk, k, shear, g, and indentation, M, moduli

along with Poisson's ratio, v. In the case of nano-indentation measurements, k and

g are estimated from indentation modulus, M, and Poisson's ratio reported in the

literature [81] using k = M x (1+ v)(1 - v)/3 x (1 - 2v) and g = M x (1 - v)/2. To

further explore the transferability of CSH-FF potential, we compare the experimental

elastic measurements to those calculated from the atomistic simulations. To avoid

misinterpreting the saddle points as local minima in the molecular simulations, we

used rational functional optimization (RFO) which ensures the positive-definiteness of

the Hessian matrix during the energy minimization process [123, 124]. Subsequently,

the full elastic tensor, Cijkl, is calculated from the second derivative of the potential

energy Cijkl = 1/V (& 2Urat/&EijO6kl) where Ujat is the lattice potential energy and Eij

is the second order strain tensor. In the atomistic simulations, the equivalent isotropic

bulk and shear moduli are calculated within the Voight-Reuss-Hill bounds from the

full elastic tensor. The Poisson's ratio is measured from bulk and shear moduli using

v = (3k - 2g) /2 x (3k + g) transformation for isotropic media. These elastic properties

are presented in Table 4.2. The CSH-FF potential correctly predicts the experimental

elastic properties of the crystalline phases which are in full agreement with core-shell

potential. Particularly for portlandite, we note that the simulation measurements

via both CSH-FF and core-shell potential are close to that of Brillouin spectroscopy

rather than powder compaction method. This is mainly because of the crystalline

nature of portlandite which is fully accounted for in both atomistic simulation and

Brillouin spectroscopy but rather missing in powder compaction experiments. In

addition to crystalline phases, the CSH-FF potential appropriately predict the elastic

properties of CSH at different Ca/Si ratios as presented in Table 4.2. Following this

extensive transferability study, we ensure that CSH-FF can be properly utilized in

the study of bulk properties of the crystalline calcium-silicate phases in the hardened

cement paste.
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4.4 Vibrational Densities of States of Calcium Sili-

cate Phases

In solids, the vibrational motion of atoms at low temperature around their equilibrium

positions can be approximated as harmonic oscillations which increasingly become

anharmonic with rising temperature. These collective harmonic vibrations, the so-

called phonons, characterize thermodynamic properties of solid materials such as free

energy, heat capacity and thermal conductivity. Vibrational density of states, also

known as phonon density of states, over frequency, g(w), characterizes the number

phonons having a frequency in the range of w and w + dw:

g(w) = 1 3N
3N- 3 6(w s) (4.3)

s=4

where N is the number of atoms and w, is the 8 h eigen vibrational frequency. The first

three frequencies are neglected as they are associated with the translational motion of

the solid. Within the harmonic approximation theory (i.e. small atomic displacements

from equilibrium positions), g(w) can be computed via two different approaches. The

first method is eigenvalue decomposition of the dynamical matrix (EDDM) which is

based on the notion of the normal mode analysis [229]. Any atomic vibration can

be considered as a linear superposition of normal modes, i.e. the eigenvectors of the

dynamical matrix {en, n = 1, .. , :

n 2 n(4)

p,a/33 eo ~ p

where p and q denote the atoms, a and # are the Cartesian coordinate indices and

D is the dynamical matrix defined as:

1 02 UlaD=q,o k) =k) eikr (4.5)
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Figure 4-2: Vibrational Density of State (VDOS) for 3C 2 S, C3S, CH and a CSH
sample with Ca/Si=1.5. VDOS calculated via the eigenvalue decomposition of the
dynamical matrix (EDDM) and Fourier transformation of the velocity autocorrelation
function (VACF) for a) 3C2 S, c) C3 , e) CH and g) CSH. The insets shows the
evolution of VACF spanning four orders of magnitude. Decomposition of the VDOS
to contributions from different atomic and molecular species for b) #C 2 S, d) C3 , f)
CH and g) CSH.
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where mp is the mass of p"t atom, UIa is the lattice energy and eikr corresponds to

the phase factor. There are a number of possible choices for the set of k-points in

the first Brillouin zone, the primitive cell in the reciprocal space. Although CSH

supercells are relatively large containing roughly 500 atoms, a fine 15*15*15 grid of

k-points with Monkhorst-Pack scheme [235] is utilized to ensure proper sampling of

the Brillouin zone.

The other method to compute g(w) is via the Fourier transform of the velocity

auto-correlation function (VACF) over a long enough molecular dynamics trajectory:

( =j (v (t).v (0)) eiwdt (4.6)
j=1 -

where w is the frequency, kB is Boltzman constant, T is temperature, vj(t) is its

velocity and . denotes dot product. As shown in the inset of Fig. 4-2.a, due to the

oscillatory nature of VACF ((vj(t).vj(0)) / (vj(0).vj(0))) femtosecond and even sub-

femtosecond resolution is required to fully capture g(w) (see the VACF insets in Fig.

4-2).

Fig. 4-2.a, 4-2.c, 4-2.e and 4-2.g present the VDOS of /-C 2 S, C3S, CH and a

CSH model with Ca/Si=1.5, respectively. As can be seen in these figures, the two

approaches, VACF and EDDM, yield almost identical results for all the molecular

models. To better classify the different atomic bonds' contribution to the VDOS

in a complex materials such as CSH, we divide the phonon spectrum to five dis-

tinct vibrational bands, denoted numerically by I through V in Fig. 4-2.g. We

recognize the underlying atomic and molecular vibrations populating the aforemen-

tioned bands by decomposing the VACF to its partial contributions, VACF, where

-y = {Si, Ca, 0, OH, H20}. These partial contributions to VDOS are presented in

Fig. 4-2.b, Fig. 4-2.d, Fig. 4-2.f and Fig. 4-2.h for #-C 2 S, C3S, CH and CSH,
respectively. The VDOS partial contributions unanimously assert that the peak in

I band is clearly attributed to the vibration of Ca-O bonds. This is in full agree-

ment with the near-infrared spectroscopy experiments of Yu et al. [369] associating

L < 400 cm- 1 to stretching of Ca-O bonds. Unlike Ca-O phonons, vibrations of
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SiO4 units extend over a large band from 0 up to 35 THz. As studied in details

for amorphous silica [327], the Si-O frequencies in I band is related to the acoustic-

like rigid-body rotation of SiO 4 tetrahedra units in the silica network. In the case

of #-C 2 S and C3 S, this is associated with the isolated rigid-body rotation of silica

monomers. However, in the case of CSH, these vibrations are related to the coupled

rotation of SiO4 units in the silica chains. The simulation results indicate that the II

band, 400 cm- 1 < w < 750 cm- 1 , is dominated by the vibration of silica tetrahedra

units. This is in agreement with mid-infrared experiments [369] relating this band to

stretching of Si-O bonds, and symmetric and asymmetric bending of Si-O-Si angles.

Taraskin and Elliot [327] express that the vibrations in this frequency window are

associated with a complex hybridization of acoustic and optical modes manifested in

quasi-localized internal stretching and bending of SiO 4 units in silica glasses. The III

band in the range of 750 cm-1 < w < 1200 cm- 1 is also populated with the silica

tetrahedra vibrations. In #-C 2 S and C3 , these vibrations are accumulated into peaks

that are associated with highly localized longitudinal and transverse optical modes

that correspond to stretching and bending of silica monomers. In particular for CSH,

the III band is mainly associated with the vibration of Q, and Qo sites containing

silanol groups (Si-OH) due to the strong presence of THE OH signal in the partial

VDOS. The vibrational frequencies in the IV region belong to the in-plane bending

of H-0-H angle in water molecules because it is only present in the partial VDOS of

water molecules and it is absent in the VDOS of portlandite. The V band represents

both the symmetric and asymmetric stretching of O-H bonds in water molecules,

stretch of hydoxyl groups coordinated to both Ca and Si atoms in CSH and stretch

of hydroxyl groups in portlandite.

One of the most striking features in the VDOS of glasses, glass-forming and su-

percooled liquids is the presence of a universal excess of states (EoS) compared to

that predicted by the Debye model (gD OC W2 ) in the low frequency region [304]. This

EoS is responsible for the anomalies of the heat capacity and thermal conductivity

of glasses at low temperatures [373] and is highlighted by a broad peak in the THz

region (<5 THz) when plotting g(W)/W 2 and is referred to as the Boson Peak (BP).
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Figure 4-3: Boson peak identification in a CSH sample with Ca/Si=1.5. The inset
demonstrates the impact of CSH density on the location (WBP) and intensity (IBP)

of the Boson peak.

The BP can be experimentally identified via Raman spectroscopy and one-phonon

scattering cross section in inelastic neutron scattering 1316]. Despite decades of work

on the origin of the BP, it remains an open question in condensed matter physics and

material science [307]. The present theoretical models explain the BP via different

mechanisms such as phonon-saddle transition in the energy landscape [1351, local vi-

brational modes of clusters [100], locally favored structures [324], liberation of molec-

ular fragments 154, 136], vibrations in anharmonic potentials [258], and anomaly in

transverse phonon propagation related to loffe-Regel limit [3071. Exhibiting common

features of disordered and amorphous materials [7, 33], the VDOS of CSH presents

a BP in the THz region as shown in Fig.4-3. BP is characterized by the peak posi-

tion, WBP, and the peak intensity, IBP. As observed in many glass former materials

such as polybutadiene, polystyren [316], LiCl [3261 and B 2 03 [109], WBP is usually

shifted to the lower frequencies with increasing temperature. Being an exception to

this rule [355], WBP in silica is left shifted with decreasing density [321, 166]. The
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Table 4.3: Equilibrium properties of #-C 2 S, C3S, CH, C1 .oSHo.5 and C1 .75SH 2.0 in-
cluding density, compressibility, coefficient of thermal expansion, constant volume
and constant pressure specific heat capacities calculated using CSH-FF potential and
compared against available experimental measurements.

c' (J/g/K) p (g/cm3) 0 (1/Pa) & (1/K) c, (J/g/K))

Sim. Sim. Exp. Sim. Sim. Sim. Exp.
O-C 2 S 0.69 3.55 3.31 [217],3.36 [228] 8.18E-12 4.99E-5 0.72 0.71 [217],0.75 [338]
C3 S 0.68 3.57 3.13 [217],3.55 [89] 9.53E-12 4.95E-5 0.71 0.72 [217],0.75 [338]
CH 1.14 2.25 2.25 [217],2.08 [148 3.47E-11 9.91E-5 1.14 1.15 12171

C 1.0SH0.5  0.87 2.55 2.48 [335],2.46 [284] 1.47E-11 4.50E-5 0.89 -
C1.75 SH2 .0  0.95 2.40 2.47 [2421,2.60 [17] 1.82E-11 4.50E-5 0.97 -

analysis of all CSH models indicates that the composition affects both positions and

intensities of BPs. As expressed in terms of density in the inset of Fig. 4-3, CSH's

WBp decreases with increasing density and its Ip behaves conversely. The correlation

between CSH's density and its BP properties are similar to pressure-dependence of

BP observed in silica [321], Na2FeSi3 O8 [233], and polymers [1491. To our knowledge,

this is the first example of a composition-driven BP shift.

4.5 Nanoscale Heat Capacity Measurements of Cal-

cium Silicate Phases

Heat capacity is a thermal property of materials at equilibrium that links variations

of internal energy (U) and temperature.The internal energy of an insulating solid

is the sum of lattice, Uiat, vibrational, Uri, rotational, Urot, and translational, Utra,

energetic contributions. At low temperatures, considerably below Debye temperature

[1751, the contributions from Urot and Utra are negligible compared to the other two

components, hence U ~ Uat + Uib- Urib can be described as the number of phonons

occupying a particular state, n(w), times their vibrational energy level, hw. This is

written as:

Uvib = hw x n(w) + - dw (4.7)
o 2

where h is the Plank constant and hw/2 is zero point energy contribution. Following
1

Bose-Einstein statistics, fBE(W _h)/k)T _ 1 is the probability distribution of a
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boson particles occupying a specific quantum state in thermal equilibrium. Thus,

the occupation level is the degeneracy of the vibrational state, described through

g(w), times the probability of presence of phonons at that specific state, n(W) =

g(W) x fBE(W). This yields the kinetic energy in terms of vibrational density of

states in eqs. 4.3 and 4.6. The specific heat capacity at constant volume can be

calculated, cV = (U) = (&ib), noting that Ujat does not depend on T at

constant volume. Experimental measurement of c, is rather difficult as it requires

maintaining constant volume throughout the experiment. Therefore, the laboratory

measurement of specific heat capacity at constant pressure, cp, is more popular. From

thermodynamics, cv and c, are related via:

a 2

c--cv=Tx - (4.8)

where p is the density, a = 1/V (&V/&T)p is the coefficient of thermal expansion and

# = -1/V (&V/&P)T is the compressibility which is the reciprocal of bulk modulus.

These two coefficients can be calculated via finite difference approach in an isobaric-

isothermal (NPT) ensemble. To this end, three 10 ns-long simulations are performed

on a number of CSH samples, Q-C2 S, C 3 S and CH at (300 K, 0 atm), (310 K, 0

atm), and (300 K, 100 atm). The results for #-C 2 S, C3 , CH and two CSH models

with stoichiometry of C1 .OSHO.5 and C 1.75 SH 2.0 are summarized in Table 4.3. The

compressibility of the crystalline phases are almost identical to those calculated at

zero temperature and presented in Table 4.2. The densities of the crystalline phases

are compared to experimental values of bulk measurements 12171 and crystallographic

density 189, 228, 148]. Since the effect of porosity and impurities are neglected in our

atomistic simulations, our densities are rather close to crystallographic measurement

than those in bulk measurements. CSH's compressibility increases with increasing

Ca/Si ratio, 1.5 x 10-" Pa-1 < #CsH < 1.8 x 10-" Pa- 1 . These results are in

full agreement with zero temperature calculations of CSH's bulk modulus [7], kCSH,

indicating decrease in 'csH with increasing Ca/Si ratio, 55 GPa < kCSH < 65 GPa.

CSH's coefficient of thermal expansion is calculated to be 4.5(t0.9) x 10- 5 K- 1 which
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Figure 4-4: The effect of Ca/Si ratio on specific heat capacity values at constant
volume and pressure for dry and hydrated CSH models and 1lATobermorite. The
black and blue lines are fitted to the atomistic simulation data. These lines intersect
at a point corresponding to the heat capacity of amorphous silica [1471. The inset
indicate the relation between the density of the nanoconfined water and its appar-
ent heat capacity measured as the difference between the heat capacity of dry and
hydrated CSH.

is in agreement with 4.2 x 10- 5 K 1 obtained from micro-thermo-poromechanics back

analysis [128]. CSH's density is found to decrease with increasing Ca/Si ratio, 2.55

g/cm 3 > PCSH > 2.35 g/cm 3 . At low Ca/Si ratio, the density is close to that of

experimental density reported for Tobermorite minerals [284, 335J. The density of

CSH at high Ca/Si ratio, is slightly lower than those measured by neutron scattering

117] and close to the recent experimetal values reported by Muller et al. [242] after

subtracting the mono-layer of water adsorbed on the external surface of CSH nano-

particles. Having computed a, 3 and p, the difference between cp and c, is calculated

to be in the range of 0.002 - 0.025 J/g/K for different calcium-silicate systems close

to experimental reported values for minerals.

Table 4.3 presents the specific heat capacities at constant volume and pressure

for #-C 2 S, C3 S and CH. The atomistic simulations prediction of constant pressure

heat capacities are in very good agreement with low temperature heat capacity mea-
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surements [338] and those calculated from fitted cP-T relations [217] . This can also

be regarded as another validation for the transferability of the CSH-FF potential to

other calcium-silicate systems that allows refining not only structural but also vi-

brational properties. Fig. 4-4 displays the specific heat capacity of both dry (all

molecular inter-layer water removed), cd"Y, and hydrated, cly"d, CSH as a function

of Ca/Si ratio. The specific heat capacities in both dry and hydrated samples in-

crease almost linearly with Ca/Si ratio with a minor scatter due to the polymorphic

structure of CSH [7]. Similar to the experimentally observed increase in the heat

capacity of rocks [74] and Vycor glass [339], the heat capacity of hydrated CSH is

higher than that of dry samples. The constant pressure specific heat capacities can

be written in the form of dy= 0.66x + 0.75 and chyd = 1.OOx + 0.75, where x is the

Ca/Si ratio. The two lines intersect at 0.75 J/g/K at Ca/Si ratio equal to zero which

is the experimental heat capacity of amorphous silica (devoid of calcium) at room

temperature [147]. The specific heat capacity of CSH is less than those observed for

cement pastes with different water to cement ratios and saturation degrees [39]. The

heat capacity of cement paste is a composite response of different phases including

unhydrated clinker, portlandite, and water which will be discussed in sec. 4.7.

The difference between dry and hydrated samples indicates the effect of inter-layer

water on the heat capacity of CSH. In fact, the apparent heat capacity of nanoconfined

water can be considered as the difference between the specific heat capacities of

wet and dry CSH, Acp = ciYd - CPY = 0.34x. According to the average chemical

composition (see section 4.2), the inter-layer water content scales with AM, = 0.8x.

Since Acp/AM. < 1, then the heat capacity of the nanoconfined water decreases with

increasing Ca/Si ratio. It is more rational to present the variation of the heat capacity

of nanoconfined water in terms of its density rather than Ca/Si ratio. To this end,

the density of inter-layer water is measured via the Voronoi tessellation algorithm,

which finds a portion of space that is closer to a given water molecule than any other

atoms in the molecular structure [274, 273]. The inset of Fig. 4-4 shows the relation

between the normalized apparent heat capacity and the density of the nanoconfined

water. The heat capacity of water in the ultra-confining interlayer spacing of CSH
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(d < 1.0 nm) is noticeably smaller than that of bulk water at room temperature,

roughly 4.2 J/g/K 11861. This is in full agreement with Bentz's postulate stating that

the heat capacity of chemically and physically bound water with the hydration gel

should be significantly lower than that of bulk water [391. Similar to the dynamical

properties [274], the heat capacity of the nanoconfined water in CSH and its trend

with density behaves like supercooled water. In fact, although being at the room

temperature, Acp is in the order of those observed at 150 K 1191. This is mainly due

to the strong interactions between the water molecules and the substrate [2741.

4.6 Nanoscale Heat Conductivity Measurements of

Calcium Silicate Phases

The thermal conductivity, K, of a dielectric material is a second order tensor relating

the temperature gradient, VT, to the heat flux, q, through Fourier's law, q = K.V7T.

There are three methods to calculate K of an insulating solid via MD simulation.

These approaches are the Green-Kubo (GK) which is an equilibrium method, a direct

application of Fourier's law within the steady state conduction regime in a non-

equilibrium framework (known as direct method) and a transient non-equilibrium

method. We utilize the GK approach as it is less size-dependent, does not involve

imposing unrealistic temperature gradients in the simulation cell and yields the full

thermal conductivity tensor. Heat flux in a multi-particle systems can be simply

written as [2221:

1 N
q - V d riHi (4.9)

i=1

where ri and Hi are the position vector and total Hamiltonian (kinetic plus potential

energies) of the ith particle in the system and the V is volume respectively. To exclude

the numerical errors arising from the calculation of time derivative in finite difference

approach, the above expression can be rearranged considering the mathematical form

of the inter-atomic potential. Assuming that the angular contributions in the CSH-

FF potential are equally distributed among all atoms in a water molecule, Hi can be
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expressed in terms of its components via [300]:

Hi = mivivi + ILU2(rij) + u3(Ojik) (4.10)
kj

where U2 represents pairwise energy terms between the i h particle and its jth neighbor

located rij apart from each other which includes Van der Waals, Coulomb interactions

via Wolf summation method, and bond stretching terms. The u 3 energy term consid-

ers the bending energy of the central 0 ijk angle in water molecules. By substituting

eq. 4.10 in eq. 4.9, an alternative expression for heat flux is achieved:

q = - Z [eiv, - VSi.vi] (4.11)
Vi=1

where ei is the kinetic energy and Si is the atomic Virial stress tensor which can be

expressed in terms of two- and three-body potential terms as [192]:

1 Np,Nb N(

2V = rij 0 Fij + - (rij + ri) 9 Fijk (4.12)
j=1 i=1

where 0 is dyadic product in tensor notation, Fij is the force due to pair potentials,

and Fijk = - Vi u3 (Ojik) is a three-body force term. We have readily implemented

the above heat flux formulation in Gulp [123, 124] source code. In equilibrium, the

net heat flux q(t) fluctuates around zero along the molecular dynamics trajectory.

To measure thermal conductivity at the equilibrium, the GK approach links K to

the dissipation rate of heat flux fluctuations at the atomic scale via the fluctuation-

dissipation theorem. The GK formalism for an anisotropic material can be written

as [222]:

K = (q(t) (9 q(0)) dt (4.13)
kBT2

where '1(t) = (q(t) 0 q(0)) / (q(O) 0 q(0)) is a second order tensor generally known

as heat flux auto-correlation function (HFACF). HFACF elements are unity at the

origin and subsequently decays to zero with characteristic time scales proportional to
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Figure 4-5: The power spectra of different components of the thermal conductivity
tensor in frequency domain (Fourier transform of the heat flux autocorrelation func-
tion) for -C 2 S, CAS, CH, and a CSH sample with Ca/Si=1.5. The insets in black and
red correspond to the heat flux autocorrelation function and the thermal conductiv-
ity in time domain, respectively, exhibiting pronounced oscillations in long time-scale.
The zoom-in inset shows the fitting procedure adopted here to estimate the thermal
conductivity at the zero frequency which corresponds to Green-Kubo relation.

the thermal conductivity of the material. Since the length of the MD trajectory is

finite, the numerical estimation of K is usually truncated after convergence of HFACF

to zero, tM, and it is calculated via [341]:

Ki tm=At X V M 1 8 -qi(m+n)q.(n)
kT _ s - n=1 (qi(O)qj(O))

(4.14)

where At is the heat flux outputting time step which is different from the molecular

dynamics time step 6t, s is the total number of output steps, tM is given by MAt,

and qj (n) is the jth component of the heat flux at nth output step.
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A number of complications arise when calculating the thermal conductivity using

eq. 4.14. First, due to the finite value of s, imposed by limitations on the disk

space and computational expense, thermal conductivity might be erroneously shown

to be non-symmetric. However, K is mathematically shown to be both positive semi-

definite and symmetric [269, 88]. This is the artifact of the numerical calculation

of HFACF, C = INij(t) - dPj(t)j > 0 | for i f j. E can be minimized by increasing

s which requires excessive computational expense. Another way to exclude E is to

enforce symmetry via Tij = (4 tij + 'I 3j)/2. In fact, the ergodicity of the equilibrium

processes requires 'I' = iij, and, therefore the symmetry approach is more logical

in this sense. Second, as shown in the insets of Fig. 4-5.a-d, some oscillations of

HFACF might still be present at large time scales (t > 10' fs). To better understand

the nature of these oscillations, we note that GK relation (eq. 4.13) can be expressed

in frequency space:

K (w) = kVT2 I (q(t) 9 q(0)) eiwtdt (4.15)

where the thermal conductivity can be regarded as the limit of K (w) at the zero

frequency. Fig. 4-5.a-d present different elements of K (w) for #-C 2 S, C 3 S, CH and

a CSH model with the Ca/Si=1.5, respectively. It is noted that the high frequencies

in the IV and V bands defined in VDOS (Fig. 4-2) are absent in K (w). This simply

means that the hydroxyl groups and water molecules do not contribute in the oscilla-

tions of heat conduction. This is due to the dangling nature of hydroxyl groups which

do not contribute to the propagation of phonons, discussed later in this section. In the

case of K1 and K22 for -C 2 S and C 3 S, the contributing frequencies to the oscillation

of thermal conductivity extend over 1, 11 and III bands and exhibits distinct peaks.

By decomposing eq. 4.9 into q, = 1/V XN 1 viUi and qk = 1/V X:N ri i, Landry et

al. [187] associated the oscillation in K(t) to optical zero wave vector phonons. This

explanation is consistent with our observation of the absence of such peaks at low

frequencies in #-C 2 S and C 3S pertaining to the longitudinal and transverse acoustic

phonons. The heat conduction across the interlayer spacing of CH and CSH is more
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sophisticated. The absence of bonded interaction between the layers, also evidenced

in elastic properties (C > C33 and C22 > C33 following Voight notation), makes the

measurement of K33 more complicated. As presented in Fig. 4-5.c-d, the optical zero

wave vector phonons contributing to the oscillations of K33 (w) are only present at

two sharp peaks in I and II bands. However, unlike 3-C 2 S and CS, significant peaks

emerge at low frequencies. This is an evidence of complex interplay between acoustic

and optical phonons which is also observed in the study of VDOS of amorphous silica

[327]. As shown in the zoomed insets of Fig. 4-5.a-d, Kii (w) decays smoothly at

small enough frequencies to its limit value. To estimate this limit thermal conduc-

tivity (kij), we fitted a power function of the form Kij (w) = Kij + x wC where

Kij, and ( are estimated using the least square approach. In addition, 10 inde-

pendent simulations with different initial conditions are performed for each molecular

model and the mean and standard deviation of thermal conductivity tensor are com-

puted subsequently. Each simulation is 10 ns long and q(t) is recorded every 0.1 fs

for CH and CSHs and every 1.0 fs for #-C 2 S and C3 S). The thermal conductivity

calculated using this method is found to be close to the average value of thermal

conductivity in the time domain. Finally and particularly for CSH, the value of the

thermal conductivity is dependent on At, the resolution in which q(t) is recorded.

In fact, the HFACF plunges very quickly to zero and this suggests the necessity of

capturing short time-scale behaviors of T(t). To this end, we measured the thermal

conductivity of CSH with different At resolutions using the above method. The true

thermal conductivity of CSH is then the limit of the Kij(At) at infinitesimally small

At values. We find that the thermal conductivity of CSH is linearly dependent on

At, Kij(At) =* At +K9. Therefore, the intercept at the origin is considered to be

the actual thermal conductivity value of CSH, Kij = lim , Kij (At). Following the

above procedure, the full thermal conductivity tensor is computed for all models. In

the case of 3-C 2 S and C3 S, we find K to be diagonal (Kij = 0, i $ j). Therefore, the

[100],[010] and [001] are the same as the principal thermal conductivity directions. For

CH and CSH models, we generally find that K11 > K2 2 > K12 and K12 >> K13, K23-

Therefore, the thermal conductivity of CH and CSH in Cartesian coordinate system,
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Table 4.4: Transport properties of 3-C2 S, C3 S, CH, C 1.0 SH0 .5 and C1.75 SH2 .0 including
principal thermal conductivity values, volumetric thermal conductivity, longitudinal,
transverse and volumetric acoustic velocities and the mean free path of phonons
calculated using CSH-FF potential.

K, (W/m/K) K11 (W/m/K) Kill (W/m/K) K, (W/m/K) S, (km/s) St (km/s) S, (km/s) im (A)
O-C2S 3.45 0.4 3.45 0.4 3.45 0.4 3.45 0.4 21.4 12.0 13.3 3.2

C3S 3.35 0.3 3.35 0.3 3.35 0.3 3.35 0.3 22.4 12.6 14.0 2.9
CH 2.00 0.2 1.20 0.2 0.75 0.2 1.32 0.2 14.1 7.0 7.9 1.7

C1.oH0o.5  1.25 0.2 0.95 0.2 0.74 0.2 0.98 0.2 19.9 10.2 11.4 1.4
C1.75SH 2.0  1.25 0.2 0.95 0.2 0.74 0.2 0.98 0.2 19.2 11.67 12.9 1.6

where 1, 2 and 3 directions are respectively [100], [010] and [001] crystallographic

directions, can be approximated as:

k1i k 1 2  0

K ~ k12 k 22  0 (4.16)

0 0 k33

The form of the thermal conductivity tensor presented in eq. 4.16 is not only sym-

metric but also positive-definite because of the magnitude of K 3 elements. Tensor

of thermal conductivity can be expressed in terms of its principal thermal conduc-

tivities, the eigenvalues of the K tensor. The principal thermal conductivity values

for 3-C2 S, CS, CH and two CSH models are summarized in Table 4.4. The three

principal conductivity values for CSH models, KII1 < K 1 < K, are presented in

Fig. 4-5.a-c. While the eigenvectors corresponding to K, and K 1 are located in

the 12 plane (calcium silicate layers), the 3 axis (across the interlayer spacing) is

fully aligned with eigenvector associated with KIII. Similar to anisotropic nature

of mechanical properties in CSH f71, the heat transport properties also show strong

anisotropy such that the thermal conductivity in the defective calcium-silicate sheets

(12 plane) is statistically larger than that of out of plane direction (3 axis). While

the XY plane is populated with fairly heat conductive Si-O bonds, looser Ca-O bonds

and water molecules in the interlayer space scatter phonons and diminish the heat

transport along the z direction perpendicular to the layers.

Despite the clear presence of anisotropy in heat transport properties, we find no

correlation between the chemical composition and thermal conductivity of CSH. To
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Figure 4-6: The anisotropic nature of thermal conduction in CSH and the effect
of stoichiometry on the principal thermal conductivity values a) K1 , b) K 1 and c)
KII, compared against the experimental values of thermal conductivity of amorphous
silica measured by Cahill et al. [55] and Ratcliffe [280]. d) The mean free path of
phonons (1in) in CSH compared against mean free path of phonons in amorphous
silica as measured by Cahill et al. [55, 56] and Si-O bond length.

this end, we investigate the absence of such correlation via a comparative analysis with

crystalline phases. The volume thermal conductivity of CSH does not alter with Ca/Si

ratio and it is close to that of 11A Tobermorite, see Table 4.4. The above K, values

for CSH are close to those measured experimentally [280, 340, 112, 551 and calculated

numerically [167] and theoretically [18, 571 for amorphous silica. Since the variation

of Ca/Si ratio was merely achieved by removing Si0 2 groups in the preparation stage,

it can be viewed as a parameter that is inversely proportional to the defect content.

In the absence of interface and boundaries in the bulk material, there are two phonon

scattering mechanisms: phonon-phonon and phonon-defect scattering. Assuming that

different scattering processes are independent, Matthiessen's rule combines the two

scattering mechanisms to an effective process using:

1 _ 1 1
-- - (4.17)

tm tph-vacancy ph-ph

where 1m is the mean free path of phonons, and, 'ph-vacancy is the mean phonon-

vacancy scattering length, a distance that a phonon can propagate prior to being

scattered off a vacancy defect. 'ph-ph is the mean phonon-phonon scattering length,
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a distance that a phonon travels before being scattered through an Umklapp (U-) or

normal (N-) process. The U- and N-process explain the temperature-dependence of

thermal conductivity and their l-1 scales with T' x el/T [268, 14] and Tm [40],

respectively, where m and n constants are material specific and are identified by

fitting Callaway's model [581 to the experimental data or the results of numerical

simulation. The Matthiessen's rule specifies two limiting regimes for phonon trans-

port in a material: vibration-dominated (ph-,p < 'ph-vacancy) and defect-dominated

(Iph-vacancy < ph-ph) regimes. Therefore, if a material is in the vibration-dominated

regime, then the population of defects would not affect the heat transport proper-

ties. In such case, the kinetic theory formulation of heat transport can be used to

investigate the characteristic length scale of phonons [3741:

1
K= pCV x Sv x im (4.18)

3

where S, is the speed of sound and is estimated by averaging the longitudinal and

transverse sound velocities, S, and St, respectively, using [42]:

= - + -- (4.19)
3 1 tS)

4g+3k g
where S+ = and St = - are the polycrystalline averages of these

3p p
acoustic velocities computed from the bulk, k, and shear, g, moduli and the density

presented in Tables 4.2 and 4.3. The acoustic velocities and mean free path of phonons

for 3-C 2 5, CA5, CH and two types of CSH are provided in Table 4.4. The mean free

path of in CSHs and CH is almost half of that in #-C 2 S and C3 S. The space filling

structure of the clinker phases explains their relative high thermal conductivity and

the mean free path of phonons. The thermal conductivity values observed for 8-C 2 S

and C3 S are close to the thermal conductivity of crystalline silica [280]. However,

the layered structure of CSH and CH scatters phonons across the interlayer spacing

and significantly reduces the heat transport properties. Since 1.n is in the order of

Si-O and Ca-O bond lengths (ds-o = 1.62A and dCa-0 = 2.42A) across the range

of considered Ca/Si ratios in CSH, it can be safely assumed to be in the vibration-
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Figure 4-7: The effect of hydration degree on the macroscopic specific heat capacity of
hydrating cement paste for three water-to-cement ratios (w/c). The simulation results
derived from atomistic simulation and mixture laws are compared with experimental
measurements of Bentz [39] for w/c=0.3 and 0.4 and De Schutter et al. [90 for
w/c=0.5.

dominated regime (Fig. 4-6.d). Based on experimental data, Cahill et al. [55, 57]

concluded that 1m of amorphous silica at room temperature is in the order of two

Si-O bonds.

4.7 Upscaling of Thermal Proprties

In sections 4.5 and 4.6, we explored the effect of chemistry on the nanoscale equi-

librium and non-equilibrium thermo-physical properties of various calcium-silicate

phases present in the cement paste along the dissolution-precipitation reaction path

up to the hardened cement paste. In this section, we aim at linking the nanoscale

properties of individual constituent phases of cement paste to that observed for their

mixture at the macroscale.
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4.7.1 Upscaling Heat Capacity from Nano to Macro Scale

The upscaling of specific heat capacity from the atomic scale (Level 0) to the macroscale

(Level 3) is rather straightforward. Since energy and volume are extensive thermo-

dynamic quantities, they can be written as the sum of those quantities for individual

phases in a composite material. Therefore, the constant pressure specific heat ca-

pacity of a composite can be considered as a linear combination of that of individual

phases. This would also hold true during the course of chemical reaction involving m

reactive agents (Ri) and n reaction products (P):

cz 1R1 + - + arRm -4 31Pi + --- + nPn (4.20)

where ac and fi are the number of moles of reactants and products in the balanced

stoichiometry, respectively. Investigations on the properties of a mixture of reactants

and products can be performed in terms of reaction degree 77, i.e. the mass of reactants

at a given time divided by total mass of reactants and products. Hence, the constant

pressure specific heat capacity of a mixture of reactants and products in terms of

reaction degree can be written as:

C," = 71y) X k p ,* +q x p. ( pri (4.21)
i=1 i=1

where c i and cp are constant pressure specific heat capacities of ith reactant and

product, respectively. q, = aiMRj/ 2 aiMR% and qpi = iMpi / ZE #,3Mp, are the

mass fractions of the ith reactant and product with molar mass of MR, and Mp,,

respectively. In the light of eqs. 4.20 and 4.21, the constant pressure specific heat

capacity of hydrating cement paste can be expressed in terms of hydration degree.

Eqs. 4.1-4.2 and and Table 4.3 provide the chemical reactions and individual specific

heat capacities required for such calculations.

Fig. 4-7 presents the constant pressure specific heat capacities of three hydrating

cement pastes with water-to-cement ratios (w/c) of 0.3, 0.4 and 0.5 and their com-

parison with macroscopic experimental measurements of De Schutter [90] and Bentz
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[39]. According to eq. 4.21, simulation results are necessarily linear in terms of 7

and are in good agreements with the experimental measurements. This agreement is

rather qualitative for the case of w/c=0.5. We note that the materials employed in

the study of De Schutter (w/c=0.5) contain significant sources of blast furnace slag

and thus the stoichiometries of reactants and hydration products are subjected to be

different from eqs. 4.1-4.2. This might specially explain the slight difference between

the experimental and simulation values at 7 > 0.5. Both simulation and experiments

indicate that the heat capacity of the paste decreases with increasing hydration de-

gree. This can be understood by proper consideration of the role of water during the

course of hydration. The specific heat capacity of bulk water is considerably high

(4.18 J/g/K) which makes the heat capacity of the mixture of water and clinker rela-

tively high. Throughout the hydration process, the water is consumed to precipitate

CSH, which has a significantly lower specific heat capacity (see Fig. 4-4). Also, part

of this water is trapped within the CSH's molecular structure which exhibits features

of supercooled water with a considerably lower specific heat capacity compared to

that of room temperature bulk water (see the inset of Fig. 4-4). Following the same

line of thought, we would infer that the heat capacity of cement paste would increase

with increasing w/c ratio. This is confirmed by both simulation and experiment and

can be rationalized in the sense that the portion of water that does not contribute in

the hydration is trapped in the inter-particle and capillary pores. The large specific

heat capacity of unreacted water in such pores increases the heat capacity of cement

paste.

4.7.2 General Micro-thermo-mechanics Formulation

Since heat flux is an intensive thermodynamic quantity, simple composition-based

mixture rules would not be suitable for upscaling heat transport properties in compos-

ite materials. Fortunately, homogenization techniques present a consistent mechano-

physical framework to upscale such properties in multiphase and multiscale materi-

als. These approaches associate the homogenized thermal conductivity, Khm (X),

at Level 1 + 1 to that of constituent phases, K, (x), at level 1, where X and x are
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position vectors at Level 1 + 1 and 1, respectively. In micro-thermo-poromechanics, a

continuum point at Level 1 + 1 is characterized by its temperature, T, temperature

gradient, E = VT, and the associated heat flux, Q. Similarly, a continuum point

at Level 1 is defined by its temperature, r, temperature gradient, 0 = Vr, and its

relevant heat flux, q. The temperature gradient and heat flux at Level 1 + 1 are

essentially the average of those observables at Level 1. This requires the compatibility

of heat flux, Q = (q), and temperature gradient, 6 = (0), between the two scales.

The (.) represents the spatial averaging operator defined as (o) = If o(x)dv, where

V is the volume of representative elementary volume (REV), and o is an arbitrary

observable at Level 1. According to homogenization theory, temperature gradients at

levels I and 1+ 1 can be assumed to be linearly related via a second order temperature

gradient localization tensor or simply localization tensor, A (x):

0(x) = A(x) : O(X) (4.22)

The compatibility condition requires (A) = I. The constitutive relation, here Fourier's

law, can be exploited to relate q and E, q (x) = K,(x) : A (x) : 9 (X). By spatially

averaging the former identity, the homogenized thermal conductivity is expressed in

terms of the localization operator and thermal conductivity of constituent phases at

Level 1:

Khaym (X) = (Ki (x) : A (x)) (4.23)

The mathematical form of the localization tensor is required for the linear upscal-

ing scheme introduced in eq. 4.23. The seminal work of Eshelby [111] revealed that

the strain localization tensor is constant for an ellipsoidal inclusion embedded in an

infinite matrix. Analogous to the elasticity problem, Hatta and Taya [143 found the

localization tensor, A,, for heat conduction through an isotropic medium with an

elliptical anisotropic inclusion:

A1 = (I + S : (KM RKIRT - I)) (4.24)
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where S is the Eshelby-like tensor, I is the unit tensor, KM and KI are the thermal

conductivity of the matrix and inclusion, respectively. The principal thermal conduc-

tivity directions in the inclusion might not necessarily coincide with the ellipsoid's

semi-axis. The rotation matrix R is used to transform the local to global coordinate

systems. The analytical form of the second order Eshelby-like tensor S is found via

the Green's function approach:

Si = aa2a3  1 ds (4.25)
2 fo (a? + s) V/ 1[|1( +s

where a,, a2 and a3 are semi-axes of ellipsoidal inclusion. It is remarkable to note

that S is strictly diagonal and independent of the position vector x. Therefore, the

localization tensor is simply a function of geometrical features at Level 1. The above

solution for a two-phase matrix-inclusion system can be extended to incorporate nP

phases. Furthermore, to include the effect of morphology, we consider a volume V

with thermal conductivity of KO surrounding the pth inclusion phase. In this case,

the localization tensor can be written as:

A, = (I + Sp : (KO RKpRT - I))- ((I + Sm : (KOlRKmRT - I))1)-1 (4.26)

where K, = (KO, K1 ,... ,K,) in (Vo, V1,... Vs,), respectively. The choice of KO

leads to two distinctly different morphological descriptions of microstructure at Level

1. In the case of matrix-inclusion morphology, the natural choice of the reference

thermal conductivity is that of the matrix. This approach is known as the Mori-

Tanaka (MT) scheme:

A MT = (I+ Sp : (K-jRKpRT - -))1 ((I + Sm : (KQRKmRT - I)) )-1 (4.27)

In the absence of any dominating matrix-inclusion morphology, all phases may play

the role of surrounding homogeneous material. Therefore, an appropriate choice for

the reference medium is the homogenized material itself, Khom = KO. This approach
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is known as the self-consistent (SC) scheme:

ASC = (I + Sp: (K-' RKpRT - I)- ((I + Sm : (K-1mRKmRT - )-

(4.28)

where Sm is the Eshelby tensor of the m'h inclusion phase. As demonstrated in

eqs. 4.27 and 4.28, the localization tensors and the resultant homogenized thermal

conductivity values depend on the orientation of the inclusions within the matrix

through R. In fact, an arbitrary observable x can be viewed as a random variable

that follows a joint probability distribution function (PDF) P(X((P1, V2, W3) where

V1, W2 and V3 denote the Euler angles [143]. Upon the absence of a preferential

orientation for inclusions, the joint PDF becomes uniform with the value of . The

orientation average of a random quantity x is denoted by ((.)) and follows:

2) = r8fX22 X(IPI, (P2, 3)sin (So2) doid 2d 3 = -tr (X) I (4.29)

where tr(.) denotes the trace operator and the so-called "x2 " convention is utilized in

the definition of the rotation matrix (see Mura [243 for details). The orientation av-

eraging can be applied to rotate both the principal thermal conductivity axes and the

ellipsoidal inclusion itself. From the homogenized conductivity view point, the sys-

tem of randomly oriented anisotropic ellipsoidal inclusions embedded in an isotropic

matrix, Kr, is indistinguishable from the system of spherical inclusions with a vol-

ume thermal conductivity K,. Therefore, after proper orientational averaging, the

homogenized Mori-Tanaka thermal conductivity K would reduce to:

KMT -_ fM K + E>n fsKvAPh
Kr" + S __1 8 -"P (4 .30)

V + :S JSZX

where fs is the volume fraction and A ph = 3Km/(2Km + Kv) is the spherical lo-

calization factor of the sh phase. Similarly, the homogenized self-consistent thermal
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Figure 4-8: The effects of CSH mesostructure (packing density) and saturation degree
of mesopores on the thermal conductivity of CSH paste calculated via probabilistic
micro-thermo-poromechanics. The error bars are calculated via the Monte Carlo
uncertainty propagation method.

conductivity KC would reduce to:

KsC - dS= fSKBP

ZflBfsBP
(4.31)

where BPh = 3KSC/(2Ksc +K,) is the spherical localization factor of the sth phase.

It is instructive to note that the mathematical formula for KVsC has an implicit nature

requiring an iterative procedure to obtain the solutions.

4.7.3 Upscaling Heat Conductivity from Nano to Macro Scale

As discussed in section ?? and schematically shown in Fig. 4-1.b, the CSH paste at

the mesoscale is comprised of randomly oriented polydisperse CSH particles with an

average size of roughly 5 nm. The characteristic length of these nanoparticles are

much smaller than the size of the microscale REV and much larger than the mean

free path of phonons in the order of Si-O and Ca-O bonds. This means that the con-

ditions of scale separability are fully met between the nano, meso and microscales.
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Therefore, the micro-thermo-poromechanics formulation introduced above is suitable

for homogenization of thermal conductivity of CSH at the mesoscale. Based on the

results presented in Fig. 4-6, the principal thermal conductivity values of CSH are

normally distributed and uncorrelated. Hence, we can treat eq. 4.31 in a probabilis-

tic fashion by randomly choosing the principal thermal conductivity values of the

CSH particles from normal distributions. Here, we utilized Monte Carlo uncertainty

propagation scheme to measure both the expectations and standard deviations of the

homogenized thermal conductivity values at the microscale. Fig. 4-8 presents the

homogenized thermal conductivity of CSH paste at microscale for two limiting cases

of fully saturated and dry mesopores as a function of the CSH's packing density,

( = 1 - p, where W is the mesoporosity. Since the bulk thermal conductivity val-

ues of air and water are lower than that of CSH, the thermal conductivity of CSH

paste decreases with increasing porosity. Note that in nanoporous media in contact

with the outside air, the composition of confined air will not be that in the outside.

In the realm of engineering CSH's heat conduction properties, there are two design

parameters: the mesostructure design and the saturation degree of the mesopores.

Constantinides and Ulm [821 showed CSH nanoparticles coalesce at 64% and 76%

packing fractions attributing them to the low density (LD) and high density (HD)

CSHs. Given the two limiting saturation levels and the two packing fractions, the

upper and lower bounds of the CSH paste's thermal conductivity can be identified.

These bounds are displayed by numbered red and black rectangles in Fig. 4-8. While

the saturated HD (rectangle 1) and dry LD (rectangle 4) CSH have the highest and

lowest thermal conductivity values, respectively.

The cement paste at microscale can be assumed to be a multiphase composite

consisted of CSH paste embracing anhydrated clinker phases, portland and the fluid

inside capillary pores (see Fig. 4-1.c). The micro-structure of cement paste at this

scale is akin to that of matrix-inclusion morphology. Therefore, the Mori-Tanaka

scheme would be the method of choice for upscaling the thermal conductivity of

individual phases at the microscale (Level 2) to that of macroscale (Level 3). Over the

course of cement hydration (see eqs. 4.1,4.2,4.20), the volume fraction of individual
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Figure 4-9: The effect of w/c ratio, saturation degree and the type of clinker phase on
the thermal conductivity of hydrating cement paste. The simulation results calculated
via micro-thermo-poromechanics are compared against experimental measurements of
Bentz [39] for hydrating cement pastes.

phases (fi) (reactant or product) are known from the reaction degree 77 and their

mass density pi (see table. 4.3). Therefore, the homogenized thermal conductivity of

cement paste can be implicitly expressed in terms hydration degree and the thermal

conductivity values of individual phases (table 4.4) through eq. 4.30. Fig. 4-9

presents the thermal conductivity as a function of hydration degree for the resulting

cement pastes produced from the hydration of C 2 S and C 3 S pure clinkers at different

w/c ratios (w/c=0.3 and 0.5) and two limiting cases of fully saturated and dry meso

and micropores compared with experimental measurements of Bentz [39] for cement

of varying w/c ratio and curing conditions. Generally, we observe that the thermal

conductivity of cement paste decreases with increasing hydration degree. This is

consistent with experimental observations of Mounanga et al. [239]. This is due to

the fact that the thermal conductivity of clinker phases are higher than those of the

hydration products (CSH and CH). Also, the thermal conductivity of cement paste

decreases with w/c ratio, in agreement with recent experiments of Maruyama and
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Igarashi [214]. The reason is that while the volume fraction of CH decreases with

increasing w/c ratio and the volume fraction of capillary water increases with it; and

since the thermal conductivity of bulk water is less than that of portlandite, then the

thermal conductivity of the overall cement paste decreases with increasing w/c ratio.

The thermal conductivity of dry cement paste is lower than that of saturated paste

because the thermal conductivity of the relatively negligible thermal conductivity of

air.

4.8 Conclusions

The thermal properties of cement paste were studied via a multiscale approach, start-

ing from properties of individual constituent phases at the nanoscale and upscal-

ing them all the way to the macroscale via the mixtures rules and micro-thermo-

poromechanics theory. At the nanoscale, the phonons density of states of CSH, CH,

O-C 2 S and C 3 S and their components are studied in detail via the diagonalization of

the dynamical matrix and the velocity autocorrelation functions. Analogous to glassy

materials, CSH was found to exhibit an excess of vibrational states characterized by

the Boson peak at the lower frequencies region. The position of the Boson peak is

found to be shifted to higher frequency values with increasing CSH density. The con-

stant volume and pressure specific heat capacities are calculated for each individual

phase. We found that the specific heat capacity of dry and saturated CSH increases

linearly with Ca/Si ratio. The apparent heat capacity of nanoconfined water in the

interlayer spacing of CSH is found to be significantly lower than that of bulk water

at room temperature due to strong interaction with the calcium-silicate substrate.

The full thermal conductivity tensor of each individual phase was measured using the

autocorrelation of heat flux and the Green-Kubo relation. The Fourier transforma-

tion of the heat flux autocorreltion function revealed long-lasting sharp frequencies

associated with optical phonons that do not contribute to the thermal conduction of

these complex calcium-silicate systems. In addition, the mean free path of phonons

in different phases are estimated to be in the order of Si-O and Ca-O bond lengths.
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The small mean free path of phonons in the cement paste constituent phases meets

the condition of scale separability required for upscaling of the thermal properties

to larger scales. We employed simple mixture laws to demonstrate the variation of

the heat capacity of cement paste at the macroscale as function of the hydration de-

gree for different water to cement ratios. With no fitting parameter, the macroscopic

heat capacity values calculated via our multiscale approach are in good quantitative

agreement with experiments. The homogenized heat conductivity of CSH paste at

the microscale was calculated via the self-consistent theory and is shown to be only

affected by the packing density and the saturation level of CSH's mesopores. This ho-

mogenized thermal conductivity was subsequently exploited to estimate the thermal

conductivity of hydrating cement paste at Level 3. Our analysis indicates that the

heat conductivity of cement paste decreases with increasing w/c ratio and hydration

degree in agreement with experiments. Overall, this work paves the way for ther-

mal engineering of multiscale porous materials by providing a seamless connection

between their properties at the nano and macroscales.
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Chapter 5

Heat Loss Analysis: From a Single

Buildings to the Entire City

The most immediate application of heat capacity and heat conductivity of materials

is in heat loss in buildings. Depending on the climate, building heat losses constitute

one of the significant portions of building's total energy consumption. The energy con-

sumption patterns of residential, commercial, and transportation sectors are driven

by human activities, public perception and decisions and physical constraints. The

common urban energy models utilize micro-simulations to predict future energy usage

by emulating behavior of urban dwellers (agents) and converting their decisions to

respective energy demands 138, 69]. Thus, a building's energy usage becomes a func-

tion of the choice of technology (e.g. insulation conditions, or efficiency of the heating

system), its utilization (e.g. choice of the internal temperature set point), and addi-

tional extrinsic variables such as weather and neighborhood patterns, which affect a

building's energy performance [2811. Limiting heat losses from building envelope, i.e.

the act of retrofit, is primarily concerned with the choice of technology, namely the

insulation to enhance the thermal resistance of its envelope (walls, windows, doors,

roof, and floors) and to reduce losses due to heat conduction, Qwnd, and infiltration,

Qisp. Here, we aim to identify, based on building energy simulation and data analysis,

the most influential set of physical parameters that affects heat loss of buildings and

the associated shortest path to reduce heat losses at the city level [41, 179].
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This chapter is divided into seven sections. Section 5.1 explains why we should

care about heat losses in buildings. Section 5.2 discusses the factors that affect heat

losses in buildings and their associated uncertainties. Section 5.3 aims at finding the

most influential parameters by performing global sensitivity analysis on the space

of all parameters that affect heat losses in a single building. Using these influential

parameters, section 5.4 constructs two types of metamodels, based on dimensional

homogeneity and machine learning techniques, that estimate the heat losses in a

building. We use different machine learning techniques in subsection 5.4.1 to emulate

the response of a famous building energy loss modeling software, Energyplus. In sub-

section 5.4.2, we construct a mechanistic model based on conservation of energy and

dimensional analysis to predict energy losses at the building level. Subsequently, we

use our knowledge on the heat losses at the single building level to better understand

energy losses at the city scale. To this end, we first analyze energy consumption

of more than 6,200 buildings in Cambridge, MA for three consecutive years during

2007-2009 in section 5.5. Afterwards, we combine the results of data analysis with

our surrogate models presented in section 5.4 to find the shortest path to minimize

heat losses at the city level. Section 5.7 summarized our findings and concludes the

paper.

5.1 Why Does Heat Loss Matter?

In 2012, the aggregate home energy expenditure of the 130 million households in the

United States [2] topped $250 billion 13], nearly 37% of which was wasted due to heat

losses. This translates to an average of $1,000 per household spent on space heating

and cooling. With over 85% of population concentrated in urban areas, governments

have embraced important initiatives to reduce this waste and the associated carbon

footprints of cities by providing stimulus funds to adopt energy efficiency programs.

These programs, however, operate with limited financial resources; and can renovate

only a selected number of buildings per year. These limitations call for fast and

accurate methods to inform smart, citywide retrofit plans that pinpoint to buildings
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with the greatest energy saving potential in order to maximize returns on investment.

One challenge is to develop reliable methodologies and toolsets to estimate en-

ergy losses in buildings. There is a vast body of literature on this subject since the

1970's. The readers are referred to Swan, and Ugursal 1323], Kavgic et al. [169]

and references therein for a comprehensive review of various modeling techniques.

Another important challenge is concerned with developing a quantitative framework

that supports informed decisions on energy-saving policies relevant to retrofitting at

the urban scale. Such framework requires a scalable and sufficiently representative

description of urban energy consumption that avoids redundant details while carrying

enough physical information at the building level to inform retrofit options. This pa-

per is motivated by the latter challenge. Current approaches to evaluate retrofits use

rating or audit tools to help energy-saving investments. Bardhan et al. [27] present

an updated review of current practices and methods. The level of complexity and re-

quired information of these methods vary significantly. The general results to inform

policy are presented in terms of scores, characterizing the relative energy efficiency

of a house in the region, or the recommendation of actions and the estimate of their

consequent energy savings.

Current tools are often best suited for building-wise assessment. Upscaling the

results to the community level relies on considering a "typical" or "average" house

as a building block. For instance, in the Home Energy Saver (HES) designed by

the Lawrence Berkeley National Laboratory, cities are analyzed at the zip code level

within a sizeable resident population from each urban area. These models are used to

estimate annual energy consumption of standardized house in cities, to provide up-

grade recommendations and to perform cost-benefit analysis of each specific retrofit.

Although these tools show promise -in helping energy-saving investment by filling the

informational gap to a great extent, there are limitations in their accuracy and scal-

ability when used to inform retrofitting energy efficiency at city scale. These limita-

tions deter their application as an effective and robust decision support methodology

at urban scale. We herein propose a novel ranking algorithm that allows upscaling

energy consumption from relevant information on building level to the size of na-
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Figure 5-1: Dry and wet bulb temperatures at a) 2007 to 2009 period, b) in Febru-
ary 2007 and c) hourly data for 2/1/2007 measured by the National Oceanic and
Atmospheric Administration (NOAA)'s weather station at Boston Logan Interna-
tional Airport. The time period for the weather data corresponds to the same period
as energy consumption readings.

tional and global sustainability goals. We perform analysis of variance combining

data from energy bills, building footprint and physical simulations to avoid statistical

bias introduced by "typical houses". We use this information to construct a simple

yet efficient physics-based description of heating energy demand based on a model

reduction scheme that encloses the most relevant parameters for the observed con-

sumption. The model provides means to identify buildings with the greatest potential

for improvement, and quantifies the aggregated energy savings.
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5.2 Factors that Affect Heat Loss at the Building

Level

Several internal and external factors affect heat losses in buildings. The most im-

portant external factor is climate or in other words the thermal loading. In fact,

the monthly energy consumption or heat loss in buildings is highly correlated to the

average outdoor temperature. In this work, we only concentrate on the climate of

Cambridge, MA, as we have partial access to energy consumption of roughly 6,200

buildings during 2007-2009. Therefore, we construct hourly energy consumption data

from the weather records provided by National Oceanic and Atmospheric Adminis-

tration (NOAA) [?] for Boston Logan airport for the period that corresponds to the

available energy consumption readings. Fig. 5-1 provides an example of Tdb and

Tdp at yearly, monthly and daily scales. We employ this weather record in all heat

loss calculations using Energyplus software [84]. Appendix F provides the theoreti-

cal background behind building heat loss modeling in Energyplus software and the

readers are encouraged to review that section before proceeding to read this chap-

ter. The other set of external factors that affect heat losses of existing buildings are

their sizes, namely their equivalent length, width and height. For a given building,

dimensions have rather a deterministic nature. However, at large scales, we can think

of building dimensions in a probabilistic fashion. In fact, the size distributions in

the city of Cambridge MA, for which we have the monthly energy consumption, is

highly correlated (see Fig. 5-2). By analyzing the GIS data (Fig. 5-2.a), It turns

out that both building length (L,) and width (L.) follow bi-lognormal distributions

(Fig. 5-2.b). However as suggested by Fig. 5-2.c, the joint probability distribution

function P(LX, L.) is highly localized meaning that L, and L. are highly correlated.

As shown by Fig. 5-2.d, building height (L,) is also bi-lognormally distributed and it

is highly correlated to L, and L.. Therefore, the building size distributions are both

non-uniform and correlated.

Another set of external parameters that affect heat losses is the urban texture that

a building is embedded in. We rationalize this urban texture in terms of inter-building
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energy consumption in the absence of neighbors.

distances that affect shadowing between buildings. Lighting and shadowing in the

other aspects that affect heat gains in buildings. Therefore, the number of neighbors,

their arrangement in the neighborhood and their relative distance influences energy

consumption. Then, we would wonder up to how many neighbors should we consider

around a building to properly estimate the effect of neighbors on heat gains. In other

words, if the closest building is labeled as l4 and second closest as 2 nd and so on and

so forth up to the n'h neighbor, what is the value of n for which heat losses approach

their asymptotic values. To address this problem, we utilize a one-at-a-time (OAT)

sensitivity analysis to understand the effective system size for modeling heat loss of a

single building embedded in an urban environment (readers are referred to Appendix

C for a brief introduction to sensitivity analysis). To this end, we consider two building

arrangements namely rectangular and triangular lattices as depicted in Fig. 5-3.a and

5-3.b. The inter-building distance d denotes the closest distance in between a building

and its first neighbors, which is kept constant over the entire lattice. The buildings

are considered to be three stories tall 10mx 10mx 10m with single-pane window in all
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walls covering the 20% of the wall. The thermal resistance of the building envelope

is set to 4m 2 K/W and infiltration rate (air change per hour) is assumed to be 1/h.

In the OAT analysis, all the above design variables are kept constant except d which

is systematically increased from 0.2m to 10m. Fig. 5-3.c presents the effect of inter-

building distance and the number of neighbors on the energy consumption of the

building. First, we observe that energy consumption reduces with the increase in

the inter-building distance. This is intuitively correct because in cold climate the

unblocked direct and diffuse solar radiations increase the temperature of the outer

surface of the wall and solar radiation reached inside the zone through the windows.

Secondly, once the buildings get enough distant from one another, the heat losses

will not be affected by the neighborhood pattern and reach an asymptotic value of

Easymptote. Therefore, beyond a certain distance (d/L > 1) buildings do not interact.

Finally, OAT analysis shows that the number of shell of neighbors considered in the

model affects the heat losses of a building. The heat loss with considering only 4

neighbors (first shell of neighbors) is different from considering 8 neighbors (first and

second shell of neighbors). However, the heat loss would not change in either of the

patterns by adding extra neighbors (third, forth and fifth shell of neighbors).

The above sensitivity analysis indicates that considering the first eight neighbors

would be enough for modeling energy consumption in the urban environment. This

significantly reduces the computational cost associated with modeling building heat

transfer at the city-scale. In fact, similar to the building dimensions, we can consider

inter-building distances for the eight closest neighbors in a probabilistic fashion. As

shown in Fig. 5-2.e, the closest distance between a building and its ith neighbors

di is distributed following a lognormal distribution. Since di should be less or equal

to di+ 1 , these lognormal distributions are not independent. We can heuristically

resolved this dependence by noting that COV(di, dj) is negligible and hence sampling

independently from dij = dj - di instead of di and dj. As it was mentioned before, d,
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follows lognormal distribution:

y = P(XIu, a) = x exp 2 (5.1)

where p and a are 3.8 and 25.0m, respectively for the dl. The distribution of difference

between neighbor distances di follows an exponential distribution:

y = P(x4p) = - x exp ( -) (5.2)

where p is 2.8, 3.9, 3.4, 2.9, 2.6, 2.4 and 2.3, respectively correspond to d12 , d23 , d34 ,

d45 , d56, d78 and d78 .

In addition to the climate, building size and neighborhood texture, heat losses

are affected by several other parameters ranging from building thermal properties to

human behavior. The comprehensive list of all parameters employed in our study is

provided in Table. 5.2. This list includes and is not limited to the thermal properties

of wall, roof, separator, partition, floor, slab, characteristics of the windows, HVAC,

temperature set points, air infiltration rate, and number of residents. For each of the

envelope sections, we consider roughness, thickness, thermal conductivity, specific

heat capacity, density, thermal adsorptance, solar adsorptance, and light adsorption

in the visible range. These parameters can be deterministic or probabilistic depending

on our knowledge about them. For instance, if we measure the thermal properties of

a wall, they are known to us and hence we can treat them as deterministic variables.

Otherwise, they are unknown and can be assumed to have probabilistic nature. In

practice, after proper sampling (measuring the thermal properties of enough number

of walls), we can identify the probability distributions describing those properties. In

the absence of such samples usually due to practical reasons, we can use engineering

judgment to identify minimum and maximum bounds for those parameters and as-

sume that such parameters are distributed uniformly in between those bounds. Such

assumptions directly influence the outcome of any probabilistic study and, therefore,

they should be treated with special attention. In the following section, we use the list
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Num Name PDF Min Max Num Name PDF Min Max
1 Wall Roughness Uniform 1 5 38 Partition Roughness Uniform 1 5
2 Wall Thickness (m) Uniform 0.1 0.4 39 Partition Thickness (m) Uniform 0.1 0.2
3 Wall Conductivity (W/mK) Uniform 0.05 2 40 Partition Conductivity (W/mK) Uniform 0.05 2
4 Wall Specific Heat (J/KgK) Uniform 500 3000 41 Partition Specific Heat (J/KgK) Uniform 500 3000
5 Wall Desnsity (Kg/m) Uniform 1500 3000 42 Partition Desnsity (Kg/m) Uniform 1500 3000
6 Wall Thermal Absorptance Uniform 0.55 0.85 43 Partition Thermal Absorptance Uniform 0.55 0.85
7 Wall Solar Absorptance Uniform 0.55 0.85 44 Partition Solar Absorptance Uniform 0.55 0.85
8 Wall Visible Absorptance Uniform 0.55 0.85 45 Partition Visible Absorptance Uniform 0.55 0.85
9 roof Roughness Uniform 1 5 46 floor Roughness Uniform 1 5
10 roof Thickness (m) Uniform 0.1 0.4 47 floor Thickness (m) Uniform 0.3 0.5
11 roof Conductivity (W/mK) Uniform 0.05 2 48 floor Conductivity (W/mK) Uniform 0.2 2
12 roof Specific Heat (J/KgK) Uniform 500 3000 49 floor Specific Heat (J/KgK) Uniform 500 3000
13 roof Desnsity Uniform 1500 3000 50 floor Desnsity (Kg/m3) Uniform 1500 3000
14 roof Thermal Absorptance Uniform 0.55 0.95 51 floor Thermal Absorptance Uniform 0.55 0.85
15 roof Solar Absorptance Uniform 0.55 0.95 52 floor Solar Absorptance Uniform 0.55 0.85
16 roof Visible Absorptance Uniform 0.55 0.95 53 floor Visible Absorptance Uniform 0.55 0.85
17 Seperator Roughness Uniform 1 5 54 floo Roughness Uniform 1 5
18 Seperator Thickness (m) Uniform 0.1 0.2 55 Shared Slab Thickness (m) Uniform 0.1 0.2
19 Seperator Conductivity (W/mK) Uniform 0.05 2 56 Shared Slab Conductivity (W/mK) Uniform 0.05 2
20 Seperator Specific Heat (J/KgK) Uniform 500 3000 57 Shared Slab Specific Heat (J/KgK) Uniform 500 3000
21 Seperator Desnsity (Kg/m

3
) Uniform 1500 3000 58 Shared Slab Desnsity (Kg/m) Uniform 1500 3000

22 Seperator Thermal Absorptance Uniform 0.55 0.85 59 Shared Slab Thermal Absorptance Uniform 0.55 0.85
23 Seperator Solar Absorptance Uniform 0.55 0.85 60 Shared Slab Solar Absorptance Uniform 0.55 0.85
24 Seperator Visible Absorptance Uniform 0.55 0.85 61 Shared Slab Visible Absorptance Uniform 0.55 0.85
25 Window Type Dummy 1 2 62 Angle w.r.t North (*) Uniform 0 180
26 Window Percentage Uniform 0.2 0.4 63 Distance from 1" Neighbor (m) Lognormal - -

27 Internal Mass Uniform 0.5 2 64 Distance from 2 'd Neighbor (m) Exponential - -

28 Number of Residents Uniform 1 5 65 Distance from 3 "' Neighbor (m) Exponential - -

29 Lighting Power (W/m') Uniform 10 40 66 Distance from 4" Neighbor (m) Exponential - -

30 Air Infiltration Rate (ACH) Uniform 0.3 3.5 67 Distance from 5' Neighbor (m) Exponential - -

31 Set Point Temperature (*C) Uniform 12 25 68 Distance from 6 ' Neighbor (m) Exponential - -

32 Air Infiltration per Resident (ACH) Uniform 0.005 0.015 69 Distance from 74 Neighbor (m) Exponential -
33 Ground Temperature (*C) Uniform 15 25 70 Distance from 8 ' Neighbor (m) Exponential -
34 Number of Attached Buildings Dummy 0 2 71 Max Supply Heating Temperature (*C) Uniform 30 50
35 Building Length (m) Correlated Data - - 72 Min Supply Cooling Temperature (*C) Uniform 10 20
36 Building Width (in) Correlated Data - - 73 Max Supply Heating Humidity Uniform 0.012 0.018
37 Building Height (in) Correlated Data - - 74 Min Supply Cooling Humidity Uniform 0.005 0.015

Table 5.1: The list of the random variables including the type of the distribution

and their min and max if they are uniformly distributed.

of variables in Table. 5.2 to construct a probabilistic heat loss model. This proba-

bilistic model will be crucial in determining the number of influential parameters that

affect heat losses the most among all these 74 variables.

5.3 Heat Loss Sensitivity Analysis at the Building

Level

Now that we have identified parameters that affect heat loss, we can proceed and con-

struct a probabilistic model that relates the uncertainty in parameter domain to un-

certainty in the heat loss domain. To this end, we employ the Energyplus Software, a

fairly standard deterministic heat loss calculation package. The "deterministic" term

means that if the software is executed several times with the same input parameters,
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Figure 5-4: The geometrical configuration of the probabilistic model. a) The top
view of the models indicating the central building in red and the neighbors in grey.
The inter-building distances are shown by d. with i ranging from 1 (closest) to 8
(furthest). The pre-processor can generate different configurations ranging from b)
single-story detached house, c) multiple-story buildings, d) unattached buildings e)
attached building in one side c) attached buildings in two sides of the building.

it yields exactly the same results. Therefore, our probabilistic model is constructed

by feeding uncertain input parameters into this deterministic software and collecting

the output, so they have a probabilistic nature. Here, we have defined the type of the

distribution in the column next to the variable in Table 5.1. If the variable is assumed

to follow a uniform distribution, then we have included the minimum and maximum

of that variable in the two columns in front of it. In addition to characteristics of

building properties, the human behavior, HVAC specifications, angle of the building

with north direction, and ground temperature are also assumed to be uniformly dis-

tributed. As mentioned in Section 5.2, the neighborhood texture has a probabilistic

nature and such a probabilistic nature can affect heat loss. The distribution of inter-

building distance follows lognormal and exponential distributions as discussed in Sec-

tion 5.2. We also demonstrated that building heat gains are only affected by its first

eight immediate neighbors. Therefore, this suggests that we can build a probabilistic

model for a single building embedded in an urban environment with only considering

eight neighbors that surround it and such information should be sufficient to describe

the urban texture which affects the energy consumption. The size of the buildings are
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also identified as discussed in Section 5.2 by sampling from correlated data derived

from the analysis of GIS data. Fig. 5-4.a provides the schematic of our probabilistic

model for modeling heat losses considering the neighborhood surrounding a building.

The central building for which the heat loss is calculated is shown in red. The rest

of the buildings which only affect the shadowing in the model are shown in grey. We

have considered several combinations in our automatized modeling procedure. The

pre-processor designed to generate Energyplus inputs can produce both single- (Fig.

5-4.b) and multiple-story (Fig. 5-4.c) buildings. Considering the neighboring build-

ing, the model allows detached (Fig. 5-4.d), only one attached building (Fig. 5-4.e)

and two attached buildings (Fig. 5-4.b) in modeling a group of buildings. Therefore,

if such a model is sampled enough via Monte Carlo uncertainty propagation method,

the superposition of model together would yield a probabilistic picture of heat loss in

buildings.

The above probabilistic model can provide an invaluable insight about energy loss

at the building scale. This includes the answer to the very fundamental question

regarding the degree of importance of these 74 variables. Do they have the same

strength in altering the heat loss are some of them more influential than others?

This is achieved here by combining the Global Sensitivity Analysis (GSA) technique

with the probabilistic simulation approach of the block of nine interacting buildings

(see Fig. 5-5.a for schematic explanation and Appendix C for definition and differ-

ent flavors of GSA). To reduce the dimension of our parameter space, we perform

a sampling-based sensitivity analysis using the Monte Carlo method to propagate

the uncertainty from all parameters containing all possible building sizes and spec-

ifications (Fig. 5-5.a) into energy consumption space. This Monte Carlo sampling

provides a probabilistic mapping necessary to infer the contribution of each uncertain

variable to the variance of heat loss using analysis of variance (ANOVA). In partic-

ular, we employ the Spearman Rank Correlation Coefficient (SRCC) to characterize

the sensitivity of energy loss norms with respect to all uncertain variables. Having

proposed a neighborhood energy consumption model and the pertinent ranges for un-

certain variables (see Table. 5.1), we perform a Monte Carlo simulation to propagate
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uncertainty from building and neighborhood property space to energy consumption

space. At this stage, we generated 75,000 input samples and calculated the relevant

heat loss values using Energyplus.

Having access to the input-output relation for this probabilistic energy loss model,

we perform GSA on the outcomes using the SRCC method as presented in Fig. 5-

5.b. As presented in Fig. 5-5.b, building size contributes the most to the variance

of the energy loss. Therefore, the energy loss by itself cannot be informative about

the efficiency of a building as it contains more information about the size of the

building (L,y,z) rather than building thermal properties. However, building heat loss

per envelope surface area is more informative as it is less affected by the building size

and hence contains more information regarding thermal resistance of the envelope
d

(Renv = -e" where deny and kenv are equivalent thickness and thermal conductivity
kenv

of building envelope), air infiltration rate (Ien), internal temperature set point (Tset),

window type (Wtyp which identifies the number of glazing used in the window) and

whether the building is attached or detached (Nc). Therefore, we note that while

the largest contribution to the variance of heat loss (E) is accounted through the

variability in building size, the Spearman Rank Correlation Coefficients (SRCC) in

heat loss per surface (E/S) is mainly the result of the interplay between individual

activity and envelope properties (Tset, ienv, Renv). Therefore, E/S is more informative

about the thermal efficiency of the building envelope per se. Second, most of the

contribution to the variance of Esummer/S is attributable to the consumer's set point

temperature, Tet. This is likely the result of the fluctuating temperatures of the

summers in the northeastern United States. In other words, the average monthly

temperature is close to Tamf, making the temperature difference between the inside

and outside sensitive to individual choices and not the building's thermal efficiency.

However, the average monthly temperature in cold seasons drops significantly and

steadily below Tcornf, which, as shown in Fig. 5-5.b, results in winter heat loss (Ewinter)

that can be expressed in terms of building variables (Ienv, Ren) and different choices

per building (Tset). When inspecting analysis of variance's (ANOVA) results of Reff,

we notice that Reff has the same characteristics as Ewinter/S with the exception of
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Figure 5-5: Reducing the complexity and
rameters in the building heat loss via the
representation of Monte Carlo uncertainty

identification of the most influential pa-
analysis of variance. a) The schematic
propagation method. Given the proba-

bilistic nature of building characteristics at the city-scale denoted by 82 squares (C1
to C82 ), the energy consumption can be viewed as an uncertain parameter. Here,
building heat loss modeling bridges the gap between the building characteristic space
and the heat loss space. We randomly sample from the building characteristic space
and calculate the relevant heat loss (denoted by triangles). b) Identification of the
most influential parameters from the global sensitivity analysis on different heat loss
norms. While the gas consumption is strongly affected by building volume and sur-
face (V, S), the gas consumption per surface contains more information about the air
infiltration rate (Ienv), thermal resistance of walls (Renv), and Window type (WP).
Unlike winter energy consumption, the summer consumption depends strongly on the
internal temperature set point (Tset) due to the proximity of the outdoor and indoor
temperatures. More importantly, Tset does not affect Reff because if Tset is relatively
constant inside a building then the temperature gradient is only due to the variation
of the outdoor temperature.
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being completely independent of residents' choices (Tset). This reflects the preferences

of households to maintain Tset regardless of Tot. As a consequence, the gradient of

energy consumption as a function of Tt is independent of Tset and captures solely

the building efficiency properties. Thus, we confirm from ANOVA and heat loss

simulations that Reff is the most convenient norm of choice for capturing the physical

response of buildings, reducing the consumption to only six physical variables in

buildings.

5.4 Heat Loss Surrogate Modeling at the Building

Level

At this stage, we have identified the influential parameters and the relevant compo-

nent of heat loss to the energy efficiency of a building. However, the relation between

influential parameters and the heat loss value still remains unknown. We have compre-

hensively addressed this issue in the current section using conventional approaches in

surrogate analysis also known as metamodeling, emulator design, and response func-

tion theory. Subsection 5.4.1 discusses the application of machine learning techniques

which establish the input-output relation in a mathematical sense without consider-

ing principles of physics. On the other hand, subsection 5.4.2 provides a mechanistic

model based on dimensional analysis enriched with a simplified surrogate function

which not only establishes the input-output relation but also provides a physical

understanding of the underlying heat loss process.

5.4.1 Response Surface Models Based on Machine Learning

The purpose of Response Surface Modeling (RSM) is to construct a relation, either

parametric or non-parametric, between design variables (influential parameters or

factors) and observations (see Appendix D for fundamental definitions and different

flavors of design of experiment ). The literature on RSM and Machine Learning (ML)

contains several approaches for relating inputs and outputs in a mathematically rig-
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orous fashion. In Appendix E, we provide the basic definitions of response surface

methodology and three main falvors of it, namely polynomial regression (PRG), Krig-

ing and Multiple Adaptive Regression Splines (MARS), which are employed in our

study. Readers are encouraged to review this Appendix before proceeding to read

the rest of this subsection. The challenge here is to identify the most reliable and

cost effective ML method that is suitable for heat loss modeling. Researchers have

compared different machine learning techniques to predict heat loss of buildings. Re-

cently, Tso et al. [342] compared the performance of PRG, decision tree and neural

networks. Here, we aim at comparing the performance of the above three methods

and discover their advantages and disadvantages.

As thoroughly discussed in section 5.2, we can identify the most influential pa-

rameters affecting energy consumption and related heat loss norms. Here, we employ

the aforementioned machine learning techniques to relate these influential parame-

ters to heat loss per surface. We have performed a comparative study to analyze

the performance of linear polynomial, pure quadratic polynomial, linear Kriging, cu-

bic Kriging, linear MARS and cubic MARS against results of energy consumption

modeling provided by Energyplus. To this end, we performed Pseudo-Monte Carlo

sampling in the reduced space of the most influential parameters. As discussed in

sec. 5.2, this critical parameter space consists of building envelope thermal resistance

(Ren), the air infiltration rate (Jenv), envelope temperature set point (Tset), build-

ing length, width and height (L., LY and L,), window type (Wtp) and umber of

buildings sharing a wall (Nc). The rest of parameters are kept at their mean values

provided the table 5.1. Subsequently, we have created a database of 80,000 Monte

Carlo samples to study the performance and convergence of different learning tech-

niques. We split the database into two groups: learning set and validation set. The

learning set was solely used for training purposes and was not used for the validation

of meta models. We have used sample sizes of 100, 200, 500, 1000 and 5000 for this

study. The validation set was used to evaluate the prediction power of the surrogate

models upon the absence of the training set. Fig. E.2 provides the learning curves

for the above surrogate models. Fig. E.2.a displays the coefficient of determination
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as a function of the size of the training set. Generally, for all surrogate models, R2

increases with the size of the training set and reaches a plateau at large values. Also,

we find that in each type of the surrogate model, the higher order (quadratic and

cubic) versions perform better as they can smoothly describe the curvature of the

space. Among all metamodels, linear and cubic Kriging and cubic MARS perform

exceptionally even with training sets as small as 100 samples. With training sets as

large as 5000 samples, both cubic MARS and Kriging achieve R2 values in the order

of 0.99. Linear Kriging also performs well and reaches an R2 of 0.96 at 5000 sam-

ples. The R 2 of Linear MARS increases significantly with the training set size and

reaches 0.88 for the largest size. However, R2 analysis indicates that the polynomial

models cannot precisely describe the variation of energy consumption in the reduced

space. This is readily seen in the magnitude of RAAE as function of the size of the

training set provided in Fig. E.2.b. In fact, only the three surrogate models in the

fast learning region reach the acceptable level of 95% accuracy within the range of

simulated training sets. In fact, linear and pure quadratic polynomials do not have

sufficient degrees of freedom to explain the variability of heat loss in the design space.

To further investigate the performance of the surrogate models, we have plotted the

performance of the surrogate models in Renv-Ienv space. Fig. 5-7 compares the color

maps of cumulative heat loss per surface (E/S) in Renv-env space. While Figs. 5-

7.a,b,c display the color maps of the quadratic polynomial, cubic Kriging and cubic

MARS, respectively, Fig. 5-7.d provides results obtained by performing the analysis

in Energyplus. In fact, Fig. 5-7.d can be regarded as the true response while the rest

of the plots are different approximations to the exact evaluations. As can be seen in

Fig. 5-7.a, the pure quadratic polynomial completely fails to approximate the true

response due to fictitious curvature imposed by its parametric form. Fig. 5-7.b in-

dicates that cubic Kriging performs nicely. However, from the iso-performance lines,

we can clearly notice that it is an extension of the pure quadratic model. This is

resonated in the change of curvature at high R-values which is reminiscent of pure

quadratic model behavior. In fact, the Kriging formulation is intended to provide

a mathematical framework for the description of deviation from simple polynomial
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Figure 5-8: Application of building surrogate models in identifying building ther-
mal characteristics and residents' choices from monthly energy consumption data.
a) Building iso-performance surface derived from MARS surrogate model. The iso-
performance surface indicates all triplets of (Renv,Ienv, Tset) that flourish the same
monthly energy consumption patterns. b) The predictions of MARS surrogate func-
tion at the corners of the iso-performance surface compared against actual energy
consumption data.

models. The visualization indicates the effectiveness of such an approach. Despite

its powerful predictive strength, Kriging suffers from a significant disadvantage. To

calculate the optimal Kriging coefficients, we need to find the inverse of a N, x N, (N,

is the size of the training set) non-sparse matrix which is computationally demand-

ing and requires a lot of memory for construction of models with a relatively large

number of observations. As shown in Fig. 5-7.c, cubic MARS can predict almost

identical responses produced by Energyplus. Cubic MARS is not only more accu-

rate than Kriging but also computationally much less intensive. This makes cubic

MARS a great candidate for constructing response surfaces for the purpose of heat

loss modeling and optimization. After controlling the quality of the surrogate models

through performance metrics, we can utilize these high fidelity models such as MARS

or Kriging for fast and accurate estimation of heat losses in different contexts such

as system identification and strategic scenario planning. We denote these surrogate
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models in a functional form:

= - (q nIne st L, L, Lz, Wtyp, Nc) (5.3)

where I is the verified surrogate model. A properly trained MARS surrogate func-
Etion addresses the direct analysis ((Renv, Ienv, Tet, Lx, LY, Lz, Wtyp, Nc) -+ -). How-

ever, in retrofit planning (reducing heat losses), we aim at linking E/S to the ac-

tual building specifications (Ienv, Renv, Wty) and individual choices (Tset). Such an

objective involves an inverse analysis analogous to problems in the system iden-

tification domain [197]. For a building with a given set of dimensions and at-

tached neighbors, the inverse analysis maps heat losses to the envelope properties

(E/S L(,LT,LzN, set, 'env, Renv, W The resulting multi-dimensional inverse

problem can be solved via the gradient-based contour schemes following [91]. Here,

we minimize the L2-norm of the goodness of the fit, |V - E/S1 2 , to search for the

admissible solutions of parameters. Similar to the majority of the multi-dimensional

inverse problems, the solution to this heat loss identification problem is non-unique.

In fact, for a given window type, there are a range of (Ienv, Renv, Tet) triplets that
E

correspond to a fixed E. As shown in Fig. 5-8.a, the set of admissible triplets forms

a 3-dimensional plane known as an iso-performance surface [91]. In fact, the sets of

parameters located on the iso-performance surface respond identically to the thermal

loading at the monthly scale. For instance, corner points in Fig. 5-8.a denote four

iso-performance points, with different infiltration and conduction rates. As denoted
E

in Fig.5-8.b, the - - T relation predicted by the direct evaluation of the MARS
S

surrogate function at these four points is the same. Therefore, a building can have
E

infinite states (Ienv, Renv, Tset, We, corresponding to an identical -S

5.4.2 Mechanistic Model Based On Dimensional Analysis

The main argument against machine learning methods for predicting the behavior of

physical systems is that it does not provide physical insight and its predictions might

even violate the principles of physics. This is actually true as machine learning meth-
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Figure 5-9: Estimation of building energy consumption in dimensionless space via

the response surface methodology. a) Construction of the surrogate model in dimen-

sionless form. Considering a dense full-factorial grid in (Ienv, Ren,, V/S) space (as
denoted in the inset), Reff can be calculated at each point via building energy sim-
ulation using Energyplus. For a building with a given Wty and Nc, the dimensional

analysis yields that there only exist two dimensionless quantities relating Reff to the
rest of the influential parameters: Ienv, Ren, V/S and Cvff (volume heat capacity

of air) which are 1 = Ref f/Renv and [12 = 'en x Renv x Cair x V/S. A surrogate
model of the form f1l = 1/(A 1 + A 2 x 12) as shown by the blue line is fitted to
the simulation results. b) Building thermal properties identification from monthly

gas consumption data using the surrogate model. The solution of inverse problems
to identify the building characteristics such as Ienv and Renv is non-unique. For in-

stance, the surrogate model predicts the same Reff value at the two alternative cases

of (Ienv = 0.4 1/h, Renv = 2 m 2K/W) and (Ien, = 0.9 1/h, Ren, = 10 m2 K/W)
located on an iso-performance line. c) Estimation of retrofit energy savings at the

building level. Given the monthly gas consumption of the building, Reff is esti-

mated by fitting a line denoted in black. The associated Reff attributes to the black

iso-performance line in the inset in (Renv Ienv) space.
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ods are only designed based mathematical arguments rather than physics principles.

In this subsection, our task is reduced to quantitatively describe Reff as a function of

physical properties of each building and to quantify the impact of retrofits at the city-

scale. From a dimensional perspective, the effective thermal resistance of an envelope

with dominant conduction and infiltration heat transfer mechanisms can be written

as Ref f = 7P (Renv, I em, V, S, C,). Dimensional analysis reduces this functional form

to a simple relation between a reduced number of dimensionless parameters. This

is achieved here by rationalizing the problem through a dimensional analysis of the

physical quantities involved that possibly affect Reff, namely the effective thermal re-

sistance of the building envelope (Renv), the air infiltration rate (Ienv), the volumetric

heat capacity of air (Cair) emphasizing that the heat exchange is performed through

air, and the building's characteristic dimension expressed by the volume-to-surface

ratio (V/S). The rank of the exponent matrix, the matrix formed by the exponents

of variables' dimensions, is 4. Thus according to the f-theorem [511, there is only

one independent dimensionless variable among the initial six parameters. Therefore,

dimensional analysis allows us to further reduce the dimension of the problem to a

1-parameter relation between the dimensionless thermal resistance and the ratio of

infiltration (Qin!) to conduction losses (Qcand).The dimensionless relation is:

r1- Reff F 112 = Renv X Ienv x Cir - Qin (5.4)Renv V Qcand

where LIj is the ratio of the effective thermal resistance of the system to the conduction

resistance of the envelope and r12 will be shown to be the ratio of the infiltration heat

transfer to the conductive heat transfer. This implies that a simple functional form

of Hi = F(r12 ) is sufficient to describe the physical response of the system without

the need of extensive simulations. Therefore, dimensional analysis effectively reduces

the number of variables but it does not quantify the relation between them. To this

end, we utilize the conservation of energy law to propose a functional form of F.

To determine this functional relation, a full factorial design in the (Renv, Ienv, V/S)

space is performed by means of simulations (Fig. 5-9.a). The conservation of energy
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for the control volume (volume inside an envelope), which exchanges heat with the

surrounding media through conduction and infiltration, can be written as:

A 1 x S x AT
Qto0 = + A 2 x 'env x x V /x T (5.5)

Renv

where Qto, is the total heat loss through the envelope and thus is equal to (S x

AT)/Reff, which can be rearranged in the following form:

i Re (5.6)
Renv (A 1 + A 2 X 12)

where A1 and A 2 are the degrees of the freedom in the model. These parameters

need to be calibrated with the results of physical simulations in the urban settlement

under consideration. Here, we used Energyplus software to numerically estimate

these coefficients. We have performed a full factorial simulation varying Renv, Ienv

and V/S. Re!! is computed as the derivative of predicted heat losses with respect

to average monthly temperature. The results are plotted in the H1 - H2 space and

A1 and A 2 are derived by fitting eq. 5.6 to the results via the least-square approach.

For instance, for the case of detached buildings with double-glazed windows; A 1 =

0.49 and A 2 = 0.30; see Fig. 5-9.a. The dimensionless form (eq. 5.6) provides

insights into a building's thermal properties and energy performance from reading

its monthly energy consumption data alone. For instance, as shown in Fig. 5-9.b,

higher energy efficiency at the building scale can be equally achieved by increasing

the thermal resistance of the envelope or by decreasing the air-infiltration rate. That

is, all retrofit solutions are located on an iso-performance line [91] in the (Ren, Ienv)

space where any point corresponds to a unique value of Re!!. This conclusion was

further tested via standard machine learning methods, namely by means of Multiple

Adaptive Regression Splines (MARS) [119], well suited for capturing response surfaces

of multi-parametric problems [291, 226]. These results demonstrate that given the

nature of heat loss response to the parameters space, the response of the system as a

surrogate function is always solvable.
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5.5 Data Analytics of Heat Loss at the City Level

The first step in analyzing city scale heat loss is to understand the sensitivity of en-

ergy loss of the city's building stock to changes in temperature. Utility companies

record the total monthly energy consumption, E, per parcel in kilowatt-hour (kWh)

across the entire city. Herein, we use a 3-year-long record (2007-2009) collected for

billing purposes and anonymized by the data source, capturing the consumption pat-

tern of more than 6,200 individual residential buildings in Cambridge, MA. When

matching this record, for each home, with the buildings' footprint using data from

geographic information system (GIS), and the average monthly temperature calcu-

lated by averaging hourly temperature records from the closest weather station [?],

the energy loss is found particularly to exhibit a characteristic piecewise linear form

(Fig. 5-10.a), separated by a cut-off temperature, To. We found no statistically

significant correlation between electricity consumption and the outdoor temperature

at the building level, most likely the result of insufficient record length. Whereas

the gas-related energy demand increases almost linearly below this outdoor cut-off

temperature, it does not vary significantly for higher temperatures; thus defining a

temperature-insensitive baseline gas consumption (EO), which is most likely due to

hot water production. We identify this cut-off temperature, as the temperature below

which consumers turn on the home's heating system to maintain indoor spaces at a

desired comfort temperature, Tamf. In other words, the outdoor cut-off temperature

is representative of individual choices or behavioral patterns. The probability density

function of To for the analyzed building sample (Fig. 5-10.b) sheds some light on

this behavioral pattern, in the form of three major peaks at 13, 15 and 17 (with 1'C

standard deviation) elucidating the core of the distribution (93% of the overall distri-

bution, while the remaining 7% have medians at 4.7, 8.5 and 23'C). These empirical

findings give us means to account in energy simulations at city scale for distributions

of the comfort temperature as a function of the external temperature.

Interestingly, each building has a constant rate in the increase of heat loss below

the offset temperature, suggesting a linear form between the heating energy and
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Figure 5-10: Data assimilation and analysis by integration of various data sources
including buildings footprints, weather data, and energy consumption bills. a) Gas
consumption per surface as a function of monthly average temperature for more than
6204 buildings in a period of 2007-2009 in Cambridge, MA. The average city consump-
tion per surface is shown in dashed black line. Five sample buildings are highlighted
based on their effective thermal resistance defined in eq. 5.7. The gas consumption of
buildings exhibits a piecewise linear trend with energy consumption increasing below
a certain temperature threshold. b) Distribution of the cutoff temperature indicating
the variability of consumers' perception of and resistance to cold weather. c) Dis-
tribution of effective thermal resistance for all the buildings. The Gaussian mixture
analysis identifies the three major populations of the consumers that turn on their
heating system at 17, 15, and 13'C on average. The distribution of effective normal
resistance follows a lognormal distribution, with an average value of 1 m2K/W. d)
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are not correlated.
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outside temperature in excess of the baseline gas consumption (EO), in the form:

1
E - EO (To - Tost) x AT x S (5.7)

Reff

where S is the building's envelope surface area and E is the heating energy necessary

to maintain an inside temperature of Tcornf when the outside temperature T,t is

bellow To during the time interval of exposure, At, corresponding to the numbers of

hours between two consecutive energy readings (E) by the utility company. Moreover,

the linearity between the temperature difference To - Tst and the heating energy

defines a linear coefficient, Ref (in m 2 K/W), that can be viewed as an effective

thermal resistance representative of the energy efficiency of a building. Unlike the

consumption coefficient in the degree-day approach [294, 207], we have shown that

Ref is the most effective heat loss norm and depends only on physical attributes

of a building's envelope; namely heat transport, and infiltration properties. For the

sample of 6,204 homes in Cambridge, MA, the effective thermal resistance that is

obtained by a linear fitting of the energy readings according to eq. 5.7, is found

to follow a lognormal distribution (Fig. 5-10.c). The fact that this distribution is

uncorrelated with residents' preference for temperature (Fig. 5-10.d), establishes a

means to separate behavioral and physical attributes in the choice of retrofitting at

city scale.

5.6 Minimizing Heat Losses at the City Level

It is precisely this data analysis combined with a reduced model with a single param-

eter that allows us to employ the dimensionless model, eq. 5.6, to explore scalable

retrofit options of buildings at city scale in function of collected records of energy con-

sumption. We start at the building level, by considering the gas consumption of an

arbitrary building and its pertinent linear fit (Fig. 5-9.c). The so obtained effective

heat resistance, R-, is situated on an iso-performance line (black solid line in the

inset of Fig. 5-9.c), which captures the current energy performance of the building
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in terms of envelope heat resistance (Rev) and infiltration rate (Ienv) according to

eq. 5.6. Any retrofit option, such as increasing insulation (Renv), reducing air infil-

tration rate (Ienv) or installing multiple-paned windows (Wt), while retaining the

preferred behavioral choices (same value of To in Fig. 5-9.c) would entail an increase

of R-f --+ R+, to higher iso-performance levels (smaller slope of energy consumption

in Fig. 5-9.c), and thus, in the light of eq. 5.7, to an energy saving after retrofitting

of AE = E - E+= (I - Reff (E- - EO), which is independent of the particular

choice of retrofit. eff

This simple form provides a straightforward means to upscale the heat loss re-

duction potential from the building to the city scale in view of urban policy choice

and implementation. That is, the challenge pertaining to city-scale strategic retrofit

planning is concerned with finding the shortest retrofit path that achieves the highest

energy savings with the least number of retrofitted buildings. In this regard, an im-

portant feature emerges from the ranking of the potential energy savings of buildings

(Fig. 5-11.a); in that the rank and magnitude of energy saving follows over a large

range a power law with an exponent of 0.75; much alike Zipf's law [122, 751. While

the deviation of the tail from Zipf's law attributes to buildings with insignificant

energy savings, the tail of the energy saving distribution follows a power law with

the exponent of 2.2 (inset of Fig 5-11.a). Given the significance of a Zipf-type data

distribution, it appears to us that such a ranking based on energy saving potential

will provide the shortest path for city scale energy savings. To test our hypothesis,

we compare this ranking with other selection criteria associated with urban policy

choices; starting with a random retrofit of buildings at city scale, performed upon

requests of building owners, in which case the achieved energy saving scales linearly

with the number of retrofits. The results of this analysis displayed in Fig. 5-11.b

show that an informed selection based on ranking the energy saving of buildings

(rank (AE)) provides indeed the highest rate of energy saving per retrofit; followed

by an informed selection based on ranking of building energy-per-surface consump-

tion: rank E E) rank _I . By way of example, if Cambridge, MA
S Reld

targeted a 60% overall energy reduction related to heating, it would suffice, with such
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an informed selection process, to retrofit 16% of the entire building stock as mapped

in Fig. 5-11.c in order to achieve a 40% reduction of current energy use; in contrast to

67% of buildings with a random selection procedure to achieve the same target. That

is, the proposed selection scheme based on ranking potential energy savings provides

an efficient means to achieve the shortest path for substantial energy savings at city

scale.

5.7 Conclusions

To conclude, we propose a method of analysis that combines data on energy, climate,

and buildings footprints with surrogate energy modeling. This powerful framework

reduces the complexity of the problem to a simple functional form to estimate the

thermal response of buildings. Calibrated with utility data, this functional form al-

lows us to easily estimate potential energy savings per building under different retrofit

scenarios with minimal computational expense. When applied at the urban scale, we

can make informed selections towards the reduction of the energy consumption foot-

print by identifying the shortest path to the desired goal. This approach has profound

environmental implications for the associated greenhouse gas emissions of energy con-

sumption and its global warming potentials. The method is portable to any city in

the world, requiring solely data that is readily available for billing and urban planning

purposes. More generally, similar model reduction approaches combining large data

with statistical analysis and physical simulations to gain predictive understanding of

the system's response appear to us most promising for urban energy solutions such

as patterns of hourly electricity demand and the adoption of alternative sources for

generation of electricity. These data driven methods have the premise to help cities

optimize decisions that make them more environmentally and economically sustain-

able.
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Chapter 6

Conclusions and Future Works

6.1 Defects Really Matter.

Actually, there is a common theme that glues our findings in different chapters to-

gether. Regardless of the system and its size, whether it is the molecular structure of

C-S-H or heat losses at the city scale, defects are of high importance. Let us remind

ourselves that the accumulation of defects in the C-S-H is responsible for decreas-

ing mechanical properties of C-S-H's nanostructure. These defects not only reduce

the stiffness of molecular network but also diminish its strength properties. These

defects are also responsible for creating adsorption sites that increase water content

with increasing Ca/Si ratio. Although it is not influenced by atomic-scale defects,

the thermal conductivity of C-S-H is strongly affected by meso- and microscale poros-

ity values. The sensitivity analysis at the city level identifies the infiltration as the

most important factor for reducing heat losses in buildings. In fact, excessive infil-

tration rate is rather a construction defect that should be limited during the design

phase or retrofit process. Therefore, to reduce energy losses in buildings, one might

simultaneously increase the defects to intentionally scatter conduction of heat and

decrease construction defects to restrain excessive energy losses through other heat

loss mechanisms. Defects at the material level are a bit more complex and entail other

consequences with them. While mechanical properties, elastic and strength, are max-

imized with lowering defects, the thermal properties are minimized with increasing
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the defect content. Therefore, a sound material design relies on characterizing the

optimum defect content at each scale rather than simply maximizing or minimizing

it across all length scales.

6.2 The Notion of C-S-H As a Quasi-glass.

After reading previous chapters, one might conclude that the biggest contribution

of this thesis is providing a realistic molecular structure of C-S-H at varying Ca/Si

ratio. In fact, this has some truth to it as this step brings together many pieces

of experimental data from different research groups in the past two decades. We

showed that high-throughput combinatorial molecular modeling can explain drying,

elastic and inelastic neutron scattering, nuclear magnetic resonance, extended X-ray

Absorption fine structure, transmission electron microscopy and coupled nanoinde-

nation and wavelength dispersive spectroscopy analysis. Without this database of

molecular structures, it would have been impossible to study the evolution of mechan-

ical properties, structure and dynamics of ultraconfined water, coefficient of thermal

expansion, heat capacity and heat conductivity of C-S-H, the binding phase of ce-

ment paste. However, the creation of this database, its verification against available

experimental data, and analysis of various physical properties serve as a means for a

greater purpose.

The contribution of this work is finding similarities between cement science and

other branches of materials science and engineering. This relieves cement from the

scientific barriers that have held it back for many decades by placing it in the same

footing as glassy materials and supercooled liquids. There are five figures in the thesis

that support this claim. Figures 2-4 and 2-5 are the fist set of computational obser-

vations that support the presence of intermediate phases similar to that of rigidity

transition window in binary glasses. To support this notion, ideas from topological

constraint theory were applied to the C-S-H database. This revealed that the interme-

diate phases pertain to those molecular structures having three constraints per atoms

analogous to isostatic molecular structures of glasses at the transition window. In
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addition to this, the presence of the Boson peak as presented in Figure 4-3 in the low

THz region reconfirms that C-S-H has a lot more in common with glassy structures

than crystalline materials. The inhomogeneous diffusive motion of inetrlayer water

with anomalous dynamical properties, summarized in Figures 3-3 and 3-7, is akin to

that of glassy phases and supercooled liquids.

There are some evidences that do not allow C-S-H to be fully considered as a

glassy material. The most notable example of which is Figure 2-3 indicating that

even at large Ca/Si ratios, C-S-H still retains some layered order. We emphasize

that quantitative indices indicate that the magnitude of this order is very small. For

this reason, we would rather adopt a conservative position by classifying C-S-H as

a "quasi-glass ". We coin this term for the molecular structure of cement paste to

highlight a potential connection with glass physics. Indeed, exploiting the ideas of

glass science in studying cement paste could be a promising research direction in the

future.

6.3 The Road Ahead.

This work would benefit in many ways from follow-up research studies. As for the

molecular structure of C-S-H, there are a lot more to be done. The mechanical

properties calculated in this work are at zero temperature. Therefore, it would be

very insightful to measure these properties at finite temperature. Also, these molec-

ular models provide a robust foundation for elemental incorporation in C-S-H. This

elemental substitutions may include aluminum, magnesium, mercury and even ra-

dionuclide elements if possible. The mobility and transport of ions in the structure

of CSH remains to be further investigated in the future. With possible advancement

of computational speed in the near future, full scale first principle calculations of

C-S-H models will become computationally more tractable. This flow of quantum in-

formation opens a new horizon for studying electronic structure, charge distribution,

magnetic properties and polarization phenomenon in C-S-H to name a few. At the

city-scale, the energy loss simulations were performed using the most simple HVAC
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system. These studies would strongly benefit from coupled building and HVAC mod-

eling to identify both static and dynamic scheduling schemes.
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Appendix A

Recipe for Constructing Realistic

C-S-H Models

This appendix is intended to explain the details required to reproduce the results of

the atomistic simulations provided in Chapter 2. We have described in details different

stages in construction of realistic C-S-H models. Furthermore, we have extensively

discussed how these numerical samples can be utilized to calculate elastic properties,

strength, free energy, structure factor and total X-ray pair correlation function.

A.1 Atomistic Simulation and Model Construction

The computational strategy used here, aiming to vary Ca/Si systematically and ex-

plore resulting properties, is a combination of several classical atomistic simulation

techniques. These methods are deployed at different stages of the model preparation.

The complex hydrate materials have different types of atoms with varying chemical

environments, which is discussed in details in following subsections. These simula-

tions, which have classical nature, are performed using ReaxFF [212] and CSH-FF

[306] potentials. As schematically presented in Fig. A-1, there are eight explicit

stages to construct a proper molecular structure of calcium-silicate-hydrates (C-S-

H). To eliminate the finite size effect in computational modeling, a super-cell of the

molecular structure of Tobermorite iA due to Hamid [139] is prepared in the first
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Figure A-1: The eight stages of model construction. These stages are strictly followed
150 times to produce C-S-H samples with varying Ca/Si ratio ranging from 1.1 to
2.1.
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step. 11A Tobermorite has no hydroxyl groups and the length of its silica chains is

infinite. In the second step, the entire water molecules are removed from the inter-

layer spacing. In the third stage, 150 numerical models are constructed by randomly

cutting the silica chains (removing charge-neutral SiO 2 groups). This increases the

Ca/Si ratio (C/S) of the models. This provides a wide range of C/S to investigate

the effect of stoichiometry on physical properties of C-S-H. At this stage, first the

interlayer calcium atoms and subsequently all the atomic species and cell dimensions

are relaxed using energy minimization at 0 K. In the next stage, water molecules are

adsorbed back to the interlayer spacing and nano-voids created by removing Si0 2

groups using the Grand Canonical Monte Carlo simulation. At this point, the inter-

layer water is reacted at 500 K with the defective calcium-silicate backbone of C-S-H

using ReaxFF potential. In this stage part of the interlayer water dissociates in to

hydroxyl groups and proton. Minor condensations of silica chains are also observed

in some samples. In the sixth stage, a comprehensive topological analysis is per-

formed to identify the local environment of each atom. This facilitates the transfer

of model from reactive environments provided via ReaxFF potential to non-reactive

environment in CSH-FF force field. In stage seven, a 3ns long simulated annealing is

performed on each individual sample to reduce the temperature from 500 K to 300 K

at ambient pressure. Finally, the samples are relaxed and proper sampling of energy

space is performed to measure elastic constants, hardness measurements, free energy,

medium-range order and total X-ray pair correlation function.

Table A.1: partial charges of species in C-S-H-FF potential.
spec charge
Si 1.722357
Ca 1.435466
Cw 1.705529
Ow -0.820000
Hw 0.410000
H 0.425000
0 [-1.15,-1.26]
Oh [-0.93,-0.971
Ob [-1.01,-1.13]
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A.2 Descriptions of Atomic Species

Although minor impurities might be existing in C-S-H [9, 210], the main binding

phase in hardened cement paste is generally considered to be consisted of Si, Ca, 0

and H atoms. These atoms adopt different characteristics depending on their local

chemical environments. To appropriately address such variations, classical potentials

utilize different labels for a given element to describe these chemical environments.

However, ReaxFF potential shows the ability to calculate the interatomic interactions

without the need to designate different labels for various chemical environments. For

instance, due to charge compensation, the O-H bonding would be different inside

a water molecule and a hydroxyl group. Therefore, for classical simulations using

CSH-FF potential, one requires the a priori knowledge about the local atomic envi-

ronments in the molecular structure of material. More specifically, CSH-FF uses nine

labels to describe the four types of elements in C-S-H. Our convention for these nine

labels is as follows: Ca (intralayer calcium), Cw (intralayer calcium), Si (silicon), Oh

(oxygen in hydroxyl group), H (hydrogen in hydroxyl groups), Ob (bridging oxygen

in silica chain), 0 (non-bridging oxygen in silica chain or calcium layers not in a

hydroxyl group), Ow (oxygen in water molecules), Hw (hydrogen in water molecule).

The partial charges of all species are provided in Table B.1. The partial charges of

all species are constant except oxygen atoms. In fact, the partial charges of oxygen

species in calcium-silicate layers are set to vary in order to ensure charge-neutrality

within numerical samples. Since ReaxFF calculations are performed using electroneg-

ativity equalization method (EEM) [238] and the species of atoms are subjected to

change as a result of chemical reactions, the unit cells might not be charge-balanced

after reactions. A comprehensive sensitivity analysis on the elastic properties is care-

fully performed with different charge-balancing schemes. Due to the small charge-

imbalance in the samples, charge-neutralization schemes do not strongly affect the

elastic properties. In this work, the excess charge is equally distributed among 0, Ob

and Oh atoms. Interatomic Potentials In this work, we use two interatomic poten-

tials: ReaxFF and CSH-FF. ReaxFF is a reactive force field originally developed on
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the same notion as bond order potentials [331, 52, 10] and it is further enriched with

polarizable charge model [238]. ReaxFF is a powerful tool for modeling formation and

breakage of bonds during chemical reactions and modification of charge distribution

during molecular dynamics (MD) simulation. In this force field, the total potential

energy is written as a sum of various energetic contributions:

EtotaxFF = Eco + Evdw + Eradial + Eangular + Elp + EOverC + EUnnderC (A.1)

where Ecol, Evdw, Eraial, Eanguiar and Elp are Coulomb, Van der Waals, radial bond

stretching, angular bond bending and lone pair contributions to the potential energy,

respectively. Eoverc and Eunnderc are defined as over- and under-coordination energy

contributions to impose energetic penalties for high and low coordination numbers.

Each of these terms depends on the local environment of atoms described via a bond

order expression. In addition, a screened taper function is applied on the non-bonded

Coulomb and Van der Waals interactions. In addition to previously defined Si-OH in-

teractions [116], ReaxFF was further developed to include Ca-OH interactions. This

was particularly done to incorporate calcium within ReaxFF framework. This facili-

tates the description of chemical reactions within C-S-H ultraconfined medium. For

more detailed discussion on the ReaxFF potential, interested readers are referred to

the work of Russo et al. [292].

The CSH-FF interatomic/intermolecular potential is a core-only model for hy-

drated calcium-silicates, in which atoms are described as interacting points through

Coulombic and short-range potential functions. The total interatomic potential for

CSH-FF potential reads:

EtHoFF = ECo1 + Ei + Eradial + Eangular (A.2)

where Ecol, Eli, Eradial, and Eangular are the electrostatic, short-range Van der Waals

in the form of Lennard-Jones potential, bond stretching and bond bending contribu-

tions to the potential energy, respectively. CSH-FF potential is a customized force

field for hydrated calcium-silicates, and it is not transferable to other oxides with dif-
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all simulations, respectively.

ferent chemical environments. Therefore, CSH-FF can be seen as an improved version

of the generic ClayFF potential [861 (originally developed for structural properties of

clay minerals) for hydrated calcium-silicates such as cement hydrates. To describe

the molecular structure of water and its interaction with other water molecules, both

CSH-FF and Clay-FF potential models are built around the flexible SPC model for

water. In particular, CSH-FF was designed to reproduce both structural and elas-

tic data of Tobermorite minerals obtained from ab initio calculations 1306]. This

was achieved by adjusting a set of 29 potential parameters as described in Ref 15.

The original form of CSH-FF was employed in the stage 1 through 4 of the model

preparation where the hydroxyl groups were absent in the model.

In order to extend the predictability of the CSH-FF model, the latter was slightly

modified to include a couple of new features. Primarily to reduce the computational

costs incurred by the calculation of long-range forces, the columbic interactions are
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calculated using Wolf method [357]. In Ewald summation scheme, the inverse distance

in electrostatic interaction is rewritten as its Laplace transformation and then split

into two moderately fast converging summations between real and reciprocal spaces.

The distribution of the summation between reciprocal and real space is controlled by

y. The final Ewald expression reads:

-G2

Ecwald _ E G2 qi~qexp (-iGrij) + (qiqerfc (2ri )) (A.3)
G ij ij

where q is charge, r is the interatomic distance, V is the volume of the crystal's unit

cell and G is a vector of the reciprocal lattice. The erfc stands for complimentary error

function in mathematics. The notion of Wolf summation is based on the idea of charge

neutralization of a spherical subset of atoms in condensed ionic systems. Originally,

Wolf proposed a two-body real space summation, which significantly reduces the

computational cost of Ewald summation in real and reciprocal spaces. The Wolf

summation reads:

wolf ( erf (Y1/2rij) erfc (-1/2ri)
Col 2 . .( ri (rij-4Rc) ri )

ij(rij <R,)

( erfc(-y 1/ 2 ri3 ) + 2

2Re + 7r./2 i (A.4)

where N is the number of atoms in the unit cell, q is the charge, r is the interatomic

distance, R, is the cut-off distance for which the neutralization technique is imposed

and q is the damping factor. While Ewald summation scales with O(N3 / 2 ), Wolf

summation scales with O(N). This is computationally advantageous, especially for

extensive MD studies involving thousands of simulations. However, the success of

the Wolf summation is tied to the proper identification of the Wolf's free parameters,

R, and r7. To obtain the proper values for C-S-H's molecular structure, the absolute

difference between the Ewald and Wolf summations is calculated for different values
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of R, and 77. The normalized error is given as:

E Ewald _ Ewolf
A = Eg"7'l -"'fJ (A.5)

( ECad

As it is shown in Fig. A-2, A is quite negligible (in the order of 10-4) in the window of

IIA< R, <14A and 0.2< 7 <0.25. To apply a uniform cut-off radius in the simulation

box for both long- and short-range interactions, R, is set to 12A. The damping factor,

q, is set to 0.25 in all simulations. The second modification in the CSH-FF potential

pertains to incorporation of hydroxyl groups. The force field parameters for hydroxyl

groups are included in the extended form of the CSH-FF potential.

Table A.2: c and o for all species in modified C-S-H-FF potential.
speci spec e (Kcal/mol) o- (A) speci spec c (Kcal/mol) - (A)
O Ca 8.694E-04 4.365 Oh Oh 6.180E-02 3.448
Ca Ob 7.057E-04 5.452 0 Ob 4.543E-02 3.626
Ca Oh 8.694E-04 4.365 0 Oh 4.543E-02 3.626
O Cw 1.460E-03 4.365 Oh Ob 6.180E-02 3.448
Cw Ob 1.040E-03 4.446 Ca Ow 8.763E-04 4.365
Cw Oh 1.040E-03 4.446 Cw Ow 6.042E-04 4.472
O Si 5.604E-04 3.270 0 Ow 5.258E-03 4.241
Si Ob 5.950E-04 3.261 Ow Ob 8.717E-01 2.895
Si Oh 5.950E-04 3.261 Ow Oh 8.717E-01 2.895
O 0 1.243E+00 2.735 Ow Ow 1.540E-01 3.163
Ob Ob 6.180E-02 3.448

The short-range interactions in CSH-FF and ClayFF force fields are described via

Lennard-Jones potential:

[2 6Elj = 4c 7)12 0 6 (A.6)
i J>i . i r.

where - and e have the dimensions of distance and energy, respectively. These param-

eters are provided for short-range interactions between pairs of elements in the model.

The potential parameters are provided in Table B.2. Similar to ClayFF potential, the

hydrogen species do not have short-range interactions.

The radial and angular excursions in water molecules and hydroxyl groups are
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Table A.3: radial stiffness and equilibrim bond length in O-H bonds.
speci spec k, (Kcal/mol/ 2) ro (A)
Hw Ow 554.135 1
H 0 554.135 1

Table A.4: angular stiffness and equilibrim angle in H20 molecules.
speci spec speck ko (Kcal/mol/O2 ) 0

Hw Ow Hw 45.770 109.47

described via simple harmonic potentials:

NOH

Eradial = k, (rij - ro) 2  (A.7)
i= 1

NH 2 0

Eanguiar = ko (Oijc -- 0)2 (A.8)
i=

where kr and ko are radial and angular stiffness, respectively. Parameters ro and 0 0 de-

note the equilibrium hydroxyl bond length and Hw-Ow-Hw angle in water molecules,

respectively. NOH and NH20 are the total number of O-H bonds in hydroxyl groups

and water molecules and total number of water molecules, respectively. The radial

and angular constants are provided in the Table A.3 and A.4.

A.3 Generating different C/S

In this work, the C-S-H models describe cement hydrates as defective calcium-silicates

with short- to medium-range order. These models are suggestive of Tobermorite

layer-to-layer long-range correlations. In contrast to Tobermorite polymorphs, cement

hydrates have a different stoichiometry with significantly larger calcium (and water)

content: C/S in Tobermorite is unity or smaller while it is around 1.7 for ordinary

Portland cement hydrates9. This large C/S can be achieved by engineering the silica

chains lengths (these chains are infinite in the case of Tobermorite minerals). In

other words, the C-S-H model of cement hydrates contains many defects and also

a larger water content compared to that of Tobermorite polymorphs. Silica chain
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defects in the C-S-H models were implemented by randomly removing Si0 2 groups

from an anhydrous 11A Tobermorite crystal so the targeted C/S was obtained. This

is precisely the strategy that was deployed in the present work aiming at exploring

the effect of varying this C/S on texture and mechanical properties. It is fairly well

known that in real cement paste the C/S spans majorly in the range of 1 to 2.1.

In this section, we implemented the above strategy to impose a given chemistry

in terms of C/S. As for all the C-S-H models, we started from a periodic simulation

box containing 2 x 3 x 1 unit cells of Hamid's structure of 11A Tobermorite 1139].

At this stage, we constructed an anhydrous version of this super-cell as we were only

interested in creating the solid backbone of the model itself; the addition of water

was carried out at the fourth stage using Grand Canonical Monte Carlo simulation

utilized to describe adsorption/desorption processes [245]. The simulation boxes are

large enough to accommodate silica dimers, pentamers and even octamers as these

types of silica chain are known to be dominantly present in real cement paste. One

can map out each initial infinite silica chain onto a line that contains "1" for pairing

tetrahedral and "2 for the bridging ones. In Tobermorite, bridging and pairing silica

tetrahedrals form the so-called Drierketten pattern that in this simple notation writes

" 112". Thus within our periodic simulation box, silica structure of Tobermorite writes

"112112112 ". Juxtaposing all the eight chains (2 per side of each layer, two layers), we

can assemble the following matrix for the abovementioned 1 ATobermorite super-cell:

2 1 1 2 1 1 2 1 1

2 1 1 2 1 1 2 1 1

1 2 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1
(A.9)

2 1 1 2 1 1 2 1 1

2 1 1 2 1 1 2 1 1

1 2 1 1 2 1 1 2 1

1 2 1 1 2 1 1 2 1

Note that the above super-cell contains 72 calcium and silicon atoms (C/S=1). To
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construct a model with a give C/S, we first developed a simple computer program

that uses a random number generator to replace some elements of the above matrix

by "0" with the constraint of matching a given C/S (within +0.1) and producing

as much dimers ("0110") pentamers ("0112110") and octamers ("0112112110") as

possible. For instance, the "cutting" matrix for C/S=1.30 can be written as:

0 1 1 0 1 1 0 1 1

2 1 1 2 1 1 2 1 1

1 2 1 1 0 1 1 2 1

1 0 1 1 2 1 1 0 1
(A.10)

0 1 1 0 1 1 0 1 1

2 1 1 2 1 1 0 1 1

0 0 1 1 0 1 1 2 1

1 2 1 1 0 0 1 0 1

The second step is to realize the combinatorial aspect of the approach, as there are

many ways to "cut" for a given stoichiometry. Here, we considered 10 to 15 different

samples for each C/S value. Second, each "cutting matrix" is projected onto our

simulation box. Each "0" corresponds to a silicon atom that has to be removed along

with two of its neighboring oxygen atoms. Since Si0 2 is a charge-neutral group, the

unit-cells electro-neutrality is maintained. We have made sure that silicon in ending

sites (Q1 in solid state NMR nomenclature) had the necessary four oxygen neighbors.

The preparation of monomers in C/S>1.5 is only plausible if the pairing sites are

removed from the silica chains. In fact, upon removal of all the bridging silica sites

from the initial crystalline structure, the C/S ratio is found to be 1.5. Therefore,

some monomers, Qo, inevitably exist in the initial solid skeleton of C-S-H samples.

However, the percentage of monomers in the samples is reduced via reactive modeling

through which condensation of silicate chains is energetically plausible.
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A.4 Grand Canonical Monte-Carlo technique for wa-

ter adsorption

In this work, we first produced an anhydrous version of C-S-H models by removing

all the interlayer water. We subsequently calculated the maximum amount of water

that can be accommodated in its pore voids via the Grand Canonical Monte-Carlo

(GCMC) simulation technique. GCMC is a well-suited technique to study adsorp-

tion/desorption processes in nanoporous materials. GCMC determines the properties

of a system at a constant volume V (the pore with the adsorbed phase) in equilibrium

with an infinite fictitious reservoir of particles imposing its chemical potential P and

its temperature T 27. For different values of Iij, the absolute adsorption isotherm can

be determined as an ensemble average of the adsorbed atom numbers in the system

versus the pressure of the gas reservoir P (the latter can be obtained from the chem-

ical potential according to the equation of state for the bulk gas). The adsorption

and desorption processes can be respectively simulated by increasing or decreasing

the chemical potential of the reservoir; the final configuration of a simulation is the

initial state for the next point. Periodic boundary conditions were used in all direc-

tions of space as for the energy minimization procedure. An equal number attempt

for translation, rotation, creation or destruction of molecules has been chosen. The

isotherm has been calculated for 300 K. Acknowledging the very restricted available

space in between Tobermorite layers, one should not expect capillary condensation

to occur by contrast to larger pore systems such as Vycor [271, 272] or in the larger

inter C-S-H grain pore space [47]. In our case, the adsorption/desorption process is

expected to be close to that observed for microporous zeolite as far as water adsorp-

tion is concerned [272]. We did not calculate the entire water adsorption/desorption

isotherm but perform a single GCMC simulation with the water chemical potential

fixed to a value that corresponds to the bulk liquid phase with a density of 1 g/cm3

at room temperature (p=0 eV for flexible SPC water model). CSH-FF potential was

used in all GCMC calculations via Gulp [124, 123].
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A.5 Reactive and Non-Reactive MD in the NPT and

NVT ensembles

All reactive simulations are performed using LAMMPS [267]. We employ the ve-

locity Verlet algorithm for our time integration schemes. In order to appropriately

describe chemical reactions, the time step is set to 0.1 fs. To further trigger chemical

reactions, ReaxFF simulations are carried at 500 K to facilitate the reaction of wa-

ter molecules with defective calcium-silicate layers. According to Arrhenius law, this

assists the water molecules to overcome the reaction energy barriers. This reduces

the computational expense of reactive modeling by reducing the required simulation

time to reach equilibrium. Initially, all samples are relaxed in canonical ensemble

(NVT) for at 200 ps using Nose-Hoover thermostat. Subsequently, the samples are

further relaxed in isothermal-isobaric ensemble (NPT) at the 500 K and latm using

Parrinello-Rahman method [257]. The overall performance of a C-S-H sample with

Ca/Si = 1.5 is presented in Fig. A-3.

Fig. A-3.A provides the radial distribution function, RDF or g(r), of Si-0, Ca-0

and O-H bonds. Since the peaks in g(r) are intact, the slightly elevated temperature

has not affected the solid backbone of C-S-H. It should be also noted that while

Si-O and O-H RDFs have a very defined first sharp peak, the Ca-0 RDF exhibits

a wider peak. This means that the radial excursions of Si-O and H-0 bonds are

very limited. However, Ca-0 bond has a much larger radial excursion. This means

that Ca-0 bond is not as stiff as Si-O and H-0 bonds. As it can be seen in Fig.

A-3.B, in the very first few picoseconds of the simulation, a large portion of water

molecules dissociates to form OH- and H+ ionic pairs. While the hydroxyl groups

coordinate with Ca2+ ions, protons react with non-bridging oxygen atoms in silicate

groups. Non-bridging oxygen atoms are only attached to one silicon atom in the

silicate chain. No hydrogen atom was found coordinated to the bridging oxygen

shared between adjacent silicate groups. In fact, over-coordination energy penalty

makes such a reaction nearly energetically implausible. This hydrophobic behavior

was originally seen in siloxane oxygen atoms [83] and further confirmed for C-S-
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H [2091. The dissociation mechanism affects the large portion of interlayer water

molecules in the C-S-H and the dissociation percentage depends on the C/S which is

directly proportional to the number of non-bridging oxygen atoms in silicate chains.

Reactive modeling also affects the solid skeleton of C-S-H.

Figure A-3.C shows the effect of reactivity on condensation of silicate groups.

Unlike the recent work of Manzano et al. [211J, it is observed that silicate groups

condensate in a number of C-S-H models. In the sample presented in Fig. A-3, a

pair of monomers has condensed to form a dimer. This is in agreement with energetic

arguments provided by DFT calculations of isolated silicate groups by Manzano et al.

[208] showing dimers have high chemical stability index. The observed condensation

mechanism is triggered by two silicate tetrahedra pairing through which a dimer is

produced and an oxygen atom is released. The free oxygen pairs with a proton and

the resultant hydroxyl group coordinate with a Cw2 + cation to complete the reaction

path. Fig. A-3.D presents the difference in percentage of silica monomers before and

after reactive modeling for all the C-S-H models. It is observed that some samples

are intact, in some condensation occurs and dissociations of longer instable chains

increases monomer content slightly in a few samples. As shown in Fig. A-3.C, the

condensation occurs in the very first couple of picoseconds of simulation. This signifies

that due to random "cutting" of chains, some monomers have extremely unrealistic

configuration. This unrealistic state is relaxed via polymerization of monomers pro-

ducing energetically more stable dimers. The energy barriers for the condensation

of silica chains are large, in the order of a few eVs, and the relevant simulation time

required to capture such a rare condensation events exponentially increases according

to the well-known transition state theory. The methods and approaches to overcome

the barriers in energy landscape and subsequent time marching strategies such as

Activation-Relaxation Technique (ART) [281 or Autonomous Basin Climbing (ABC)

[188] are beyond the scope of this thesis.

179



1 1.5 2 2.5

I w-

(CI

3

HOW

-I -w

I -- - .-

40

30

20

10

0 .5

30

20

10

' U-

5 1 1.5 2 2.5 3 0..
r(A)

- 0-H

0
NBO-Si

NBOH-H 
NBOC

(B

- OH H

(D)

1 1.5 2 2.5

Oh -

OOH-Ca

3

5 1 1.5 2 2.5 3
r(A)

Figure A-4: Determination of the local environment of oxygen. Radial distribution
functions of Si, Ca, and H cations around Ob (A), 0 (B), Ow (C) and Oh (D). Figures
(A) and (B) show the contributions of the two nearest Si neighbors and figures (C)
and (D) the contributions of the two nearest H neighbors.

180

60

40

20

0
0

50

40

.5

1-4

30

20

10

0'
0.

- ,( Ob -
- || BO-Si..

F(A)

I



A.6 Topological Analysis

ReaxFF simulations are computationally expensive to undertake. In order to over-

come the prohibiting computational cost of reactive modeling, required for extensive

mechanical testing on each individual sample, all samples are transferred to non-

reactive environment after completion of reactions. As the direct consequence of

reactive modeling, the local environment of atoms undergoes drastic changes. This

necessitates a precise characterization of local environment of each single atom. Such

a precise analysis can be performed using the fundamental ideas of topological con-

straint analysis [31]. In C-S-H's molecular structure, Si, Ca and H cations are always

connected to 0 atoms, the latter showing different local environment (Fig. A-4). In

order to differentiate between these species, we performed a careful topological analy-

sis of the coordination of each 0 atom. Bridging oxygen atoms (Ob) are thus defined

as oxygen atoms showing exactly two Si neighbors in their O-Si first coordination shell

(FCS), which limit has been fixed as the first minimum of the go-si RDF, typically

2.5A. On the contrary, non-bridging oxygen atoms (0) show only one Si in their O-Si

FCS. Those species arise from the depolymerisation of the silicate network by Ca and

H cations and can belong to hydroxyl groups O-H (Oh) if they show an H neighbor

in their O-H FCS (minimum of the gO-H RDF, typically 1.3A ) or are connected to

Ca atoms otherwise. Remaining 0 atoms that are not part of the silicate network

have then been respectively differentiated into oxygen in water molecules (Ow) and

hydroxyl group (Oh) when they show two and one hydrogen atom in their 0-H FCS,

respectively.

A.7 Simulated Annealing

Following the topological analysis, all samples are transferred to the non-reactive en-

vironment of CSH-FF potential. Since the conditions at the reactive simulations were

performed at elevated temperature, simulated annealing technique (SAT) was used

to lower the temperature to that of ambient conditions (Fig. A-5). During SAT, each

181



600 18.8 26.5

550 18.6 1 26
500 18.4 25.5

450 18.2 1 I
- I25

400 18
24.5

350 17.8
300 17.6 24

I 23.5I250 (A) 17(4 2. (C) I

200 17.2 23 -
0 1000000 2000000 3000000 0 1000000 2000000 3000000 0 1000000 2000000 3000000

Time (fs) Time (ps) Time (ps)
-70300 - ---- --- -- - -------- -

11 2 1 3 1 4 1 5 1 6 7 8 9 10
-70350

-70400

Q -70450

a IIIIII-70500 1

-70550

(D)

-70600 I I
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (fs)
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sample is relaxed for 1 ns at 500 K using CSH-FF potential in isobaric-isothermal

ensemble with time steps of 1 fs. All samples are subsequently quenched over 1 ns

to 300K using 100 annealing steps. Finally, each sample is further relaxed in NPT

ensemble for another 1 ns at 300K. The temperature profile during the quenching

stage is provided in Fig. A-5.A. The simulation box sizes were tracked to ensure

proper convergence of SAT (Fig. A-5.B and A-5.C). We note that the most of box

length adjustments occur during the model relaxation at 500 K and not during the

quenching stage. These slight adjustments are mainly due to the discrepancies be-

tween the ReaxFF and CSH-FF potentials. However, as shown in Fig. A-5.A-C,

these differences are negligible.

A.8 Calculation of Elastic Properties

After the simulated annealing stage, all models are further relaxed for 1 ns. Next,

10 independent frames each 100 ps apart are consecutively extracted from MD tra-

jectories. This procedure is strictly followed to ensure proper unbiased statistics for

each sample. Afterwards, all samples are relaxed via energy minimization at constant

volume (CONV) [124, 1231 with rational functional optimization (RFO) [124, 1231

module for residuals less than 10-. This ensures that the Hessian matrix is positive

definite, i.e. all the eigenvalues of the Hessian matrix are positive. All the relaxed

instances of all C-S-H models are further relaxed via energy minimization at constant

pressure (CONP) [124, 123] with RFO option. Through this multi-step scheme, it is

made sure that all the available degrees of freedom, both the atomic positions and

the unit cell, are properly relaxed. Subsequently, the elastic properties are calculated

for each of 1500 abovementioned frames. The stiffness tensor, Cijkl in tensor notation

and Cj in Voigt notation, is subsequently calculated from the second derivative of

the energy density.

Ciikl= - (A.11)
V 09Cii Okl

where E and V are internal energy and volume of the unit cell, respectively. cij

denotes the strain tensor. It should be noted that positive-definiteness of Hessian
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matrix entails positive-definiteness of the stiffness tensor. A wide range of elastic

constants can be calculated from stiffness and compliance (S = C-1) tensors. Two

of the commonly used isotropic measures of the stiffness are bulk (K) and shear (G)

moduli. The Voight-Reuss-Hill bounds of bulk and shear modulus are given by:

1
KVoigt = I (C11 + C22 + C33 + 2 (C12 + C13 + C23)) (A.12)

9

KReuss = (S11 + S22 + 833 + 2 (S12 + S13 + S23)) (A.13)

1
GvOigt = I (C11 + C22 + C33 + 3 (C44 + C55 + C66) - C12 - C13 - C23) (A.14)

15

G 15 (A.15)GReuss 4 (S1 + 822 + 833 - S12 - 813 - S 23 ) + 3 (S44 + S55 + 66)

The Hill bounds are simply the average of Voigt and Reuss bounds, which are called

Voight-Reuss-Hill bounds3l. The indentation modulus (M) can be directly calculated

from bulk and shear modulus:

M = 3KG (A.16)
3K +4G

In fact these bounds are isotropic descriptions of a generally anisotropic medium. A

wide range of materials in nature including clay [101] and Tobermorite minerals [9]

exhibit anisotropic behavior due to their molecular structure.

There are numerous approaches to quantify anisotropy at nanoscale. The stiffness

of materials under the uniaxial tension is called Young Modulus. In anisotropic ma-

terials, the Young Modulus in different directions is different in uniaxial deformation

path (Y = do-ij/cdEi). Another method to assess the level of anisotropy in C-S-H is

through the measurement of orthotropic indentation modulus in the plane and per-

pendicular to the calcium-silicate layers. Following the derivation of Delafargue and

Ulm [93]:

Mi - 1C (A. 17)
C11 C44 V CnC33 + C13
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M3 = ( C C22 M1 (A.18)
M0 33 011

One can think of M1 - M3 as a measure of anisotropy in the structure of materials.
M1

There are many other ways to assess the level of anisotropy in materials such as

Thompson index based on anisotropy in acoustic velocities of materials [251]. In this

work, C" is mathematically defined by enforcing isotropic conditions on a general

stiffness tensor:

C ji = C 14 = C"= C1 + C22 + C33 (A.19)

i" = C = Cl" =C44 + C55 + C66 (A.20)
5 6 3

C112= C j" = C23 = C11 - 2C"4 (A.21)

The rest of the entries in the Ci"' are set to zero. A new index for anisotropy is defined

using Euclidean, dE, and Riemannian, dR, Norms of a general stiffness tensor from

its isotropic part, C"0, defined as:

dE(Ciso, C) C C E \It, ((Ciso - C)T (Ciso - (A.22)

n
d (CiC C) = ln C1/2 (Ciso) - 1)C1/2 E 2Aj (A.23)

where A denotes set of eigenvalues and tr() stands for the trace of the matrix.

A.9 Hardness Prediction via Biaxial Deformation

In this work, a new method is designed for assessment of hardness at nano-scale. The

notion behind this approach is originated from laboratory tri-axial testing of materi-

als. Very similar to tri-axial testing, the atomistic simulation cell can be isotropically

deformed in different deformation paths. Due to the application of periodic boundary

conditions, the simulation cell is representative of the bulk of the material. There are

six independent deformation paths to deform a material, which consists of three nor-
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mal, and three shear paths [2051. In continuum mechanics, the deformation gradient

tensor, F, describes the state of deformation in the deformed configuration compared

to the undeformed body as:

dx = FijdX (A.24)

where dX and dx denote the infinitesimal vectors in undeformed and deformed con-

figurations, respectively. The Green-Lagrange strain tensor is a rotation-independent

measure of local relative deformation defined as

1
= - (FkiFj - Jij) (A.25)

2

where 6ij is the Kronecker delta. Following the assumption of Cauchy-Born, it is

assumed that the unit cell of the material at the atomic scale deforms with the

macroscopic deformation gradient [13, 172, 171, 273]. In other words, the deformation

at the molecular scale can be stated as:

ai = Fiy Aj (A.26)

where A and a denote the lattice vectors of the original undeformed lattice and the

deformed structure, respectively. This entails an approximation due to the finite

size of the lattice. In fact, Cauchy-Born rule implies that the macroscopic deforma-

tion gradient minimizes the free energy, T, of the lattice at atomic-scale. In solid

mechanics, the Cauchy stress is defined as:

, cPntinuum =- (.7o'"""""""- dW(A.27)

The above formulation defines the stress tensor in a hyperplastic sense for energy-

conserving solid undergoing either linearly or non-linearly elastic deformation. As

defined in thermodynamics, the free energy, T = E - TS, is the sum of molecular

interaction and entropic contributions where T and S are temperature and entropy

of the system. At considerably low temperatures (below Debye temperature), both
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configurational and vibrational entropy can be assumed to be negligible. Therefore,

the stress can be measured as the derivative of internal energy with respect to strain.

In molecular mechanics, the internal energy can be stated as a function describing

interaction between particles. This gives rise to a semi-analytical formulation for

stress tensor at the atomic scale known as Virial stress:

0 irial = (if (A.28)
k 1

where Q is the unit cell volume, rk and f 1 is the distance and pair-wise force between

the pair of k"h and 1"' atom in the Zth direction. The <> sign represents the ensemble

average which is extensible to the time average under the ergodic assumption. Con-

sidering kinematic equations, eqs. A.24 and A.25, along with Virial stress , eq. A.28,

the stress-strain relationship at the scale of unit cell can be described via atomistic

simulation. The two-body form of Wolf summation makes it possible to calculate

stress for ionic systems. The concise theory presented above builds the foundation

for measuring hardness at the atomic-scale.

Due to transversely isotropic nature of C-S-H, especially at low Ca/Si ratios,

the direction perpendicular to the calcium silicate layers, z direction, shows lower

strength. This is directly attributed to the lack of covalent bonding, Q3 and Q4
sites, bridging between the layers. This suggests that the failure analysis should be

conducted in e, and the two other relevant shear strains E.z and EYz. The response

of the C-S-H against the two shear paths is almost identical as they both describe

shear localization at the interlayer spacing. Therefore, the six dimensional strain

spaces reduced effectively to a two dimensional space. This considerably reduces

the number of computations associated with calculation of hardness. Subsequently

as displayed in Fig. A-6.A, eleven independent deformation paths are considered in

EZZ - yz space. Each line is a linear combination of c,, and cyZ. The normal strain, EZZ,

covers the range of -0.2 to 0.2, which includes both tensile and compressive modes.

In fact, mutual application of shear deformation along with tensile or compressive

deformation resonates the confinement effect at the atomic-scale. This mechanism is
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at a level below the scale of friction and wear, describing how solid bodies are rubbed

against each other.

Meanwhile the processes of 1 ns relaxation during quenching process, all 150 C-

S-H models are sampled at six different frames in the phase space. Each frame is at

least 100 ps apart from the other frames making sure that the frames are statistically

independent making a total of 900 samples. Each sample is subsequently deformed

following the above 11 deformation paths in a strain-control fashion. To eliminate the

rate effect, all simulations are performed using energy minimization approach. An

extensive convergence analysis is performed to identify the size of the strain incre-

ments. It is found that strain steps as large as 10-3 are somehow large enforcing the

stress path to deviate from the equilibrium deformation path. This leads to improper

identification of the failure point. Therefore, the strain increment in all simulations

is set to 10'.

The stress-strain response is plotted accordingly for each individual deformation

test. Fig. A-6.A-B presents the stress-strain diagram in deformation path 4 and

6, respectively. Fig. A-6.A-B are instances of C-S-H under biaxial tensile-shear

and compressive-shear mixed-mode failure analysis, respectively. Both tensile and

shear modes exhibit linear elastic response before the failure point. As indicated by

circles locating the failure point, upon the irreversible deformation at the atomic scale,

the stress relaxes in both deformation modes simultaneously. This is an indicative

of plastic deformation, which can be verified by unloading the sample before and

after the yielding point and identifying the extent of residual strain by unloading

the sample to its original state. As illustrated in Fig. A-6.D, the failure analysis

identifies the strain, (E*Z, z), and stress (o, * at which the material fails upon

loading in a particular deformation path. Identification of failure is certainly subjected

to user-bias if performed manually. To eliminate such an effect from the simulation

results, a simple conditional statement is implemented such that if the slope of stress-

strain curve falls below a certain threshold, that point is taken as the failure limit.

Since the deformation is confined in the other axial directions and because of Poisson

effect, a planar stress evolves in the material while undergoing constrained biaxial
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deformation. The planar stress is direction-independent, o-* = Og, = o-*,, due to

isotropy in calcium-silicate sheets. Therefore, the stress tensor at failure point, o*,

can be viewed as:

-* 0 0

0 &*I oiz (A.29)

0 U-*z a*zz

The failure stress tensor can be stated in terms of principle failure stress com-

ponents (-* = -* = a,*,) by simply finding the eigenvalues of failure stress tensor.

Therefore, the principle stresses can be written as:

a r = c7P (A.30)

~ =1 - (orp* zi - *)2 4 (or)2 + O - Gz z (A.31)

~I ( I - *z)2 + 4 (, ) + O* - o-z*) (A.32)

The transformation of normal and shear stresses to the principle stress components is

graphically represented in the inset of Fig. A-6.D. Using the Mohr representation, the

principle components of the stress can be identified as the intersection of Mohr circles

with a- axis. The maximum and minimum of principle stresses for kth deformation

path are o-4 and o-k, respectively. These two principle stresses and enclosing Mohr

circles define the limit stress state at which atomic structures of C-S-H undergoes

an irreversible deformation. As shown in Fig. A-6.D, a set of Mohr failure circles

on independent deformation paths can define the failure mechanism and the plastic

limit of the material. Fig. A-6.D denotes that C-S-H at the atomic scale follows a

Mohr-Coulomb-like failure criterion. Application of Mohr-Coulomb in mechanics of

granular materials is prevalent due to proper description of inter-granular friction.

However, the increase in strength of C-S-H at compressive domain is attributed to

the confinement effect. There is no dissipative mechanism such as friction or wear at

the molecular scale and the increase in the strength is mainly because of elastic con-

finement effect making the failure harder for materials at high pressures. Particularly,
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in the case of C-S-H, the failure envelope is linear in the stress domains related to

nano-indentation of cementitious materials. Therefore, C-S-H at the nano-scale can

be described as a cohesive-frictional material identified via cohesion (C) constant and

friction angle (#). Cohesion is the strength of the C-S-H at zero confinement pressure.

Following the work of Ganneau et al. 1126], the hardness (H) of a cohesive-frictional

material can be stated as:

H 6(#,O) 1 N

- tano - t (ak(0) tan#)k (A.33)

where 0 is the indenter apex angle and ak coefficients are fitting parameter for given

indenter geometry. For the special case of C-S-H materials, the friction angle is on the

order of 6-9 degrees in which tan(O) is quite negligible and as a result, the hardness

can be approximated with 5.8C. In current work, friction angle, cohesion and hardness

were independently measured at 6 independent points for each sample. The reported

hardness and the error bars are the mean and standard deviations for each sample.

A.10 Free Energy Calculations

Due to vibrational entropy at finite temperature in solids, the atoms constantly os-

cillate around their equilibrium position. At low temperatures, these oscillations can

be decomposed to a linear superposition of vibrational modes known as 'phonons'.

In the case of infinite 3D solids, there are infinite numbers of phonons. The phonons

are characterized by their values at a point in the reciprocal space, usually called

k-point, within the first Brillouin zone. Hence, there are 3N phonons per k-point.

The lowest three phonons are known as acoustic branches, which tend to zero at the

center of Brillouin zone, known as F-point. The rest of the phonons belong to the op-

tical branches, which have a finite frequency at the F-point. Identification of phonons

in a 3D periodic solid involves numerical calculation of the eigenvalues of dynamical

191



0 7 8
70 80

M (GPa)
90

-2.4e+05

-2.6e+05

-2.8c+05

-3e+05

-3.2e+05

-2

--2

-2

-3

(D) Ca/Si=1 44 CaSi=1.95
I- CaSi=1.76.4e+05 - I CaSi=1.67

* Ca/Si=1 14 C'a S i1 510

.6e+05 -

.8e+05 -

-3e+05 -

'2e+05 I I I
12 14 16 18 20

MiH

Figure A-7: Polymorphism in C-S-H. (A) Free energy as function of Ca/Si ratio.
Free Energy as a function of B) and M C) H and D) M/H.

192

(A) 0 0

Ca/Si=1.95
Ca/Si=1.76 -
Ca/Si=1.67

Ca!Si=1.44

Ca/Si=1.14

-2.2e+05

-2.5e+05-

-2.8e+05

-3.0e+05-

-3.2e+051

-2.2e+05

-2.4e+05

-2.6e+05

-2.8e+05

-3e+05

Ca/Si=1.44 Ca/Si=1.95

-IT i I Ca/Si=1.67
- - Ca/Si=1. 14 Ca Si _ 50

-B Af- - -win- - - - M.

-&- -0- In- --

1.2 1.4 1.6 1.8 2
Ca/Si 5 6

H (GPa)
. (B) Ca/Si=144Ca/Si=1.95 -

- - 4 - CaSi=1.76

t- -

-. & -.-B f

-3.2

22

0 - ,

n I

2 05-4

)

-3.2



matrix at each k-point:

1 __2U

Diaj,3= ( exp (ik (rij + R)) (A.34)

where m is the mass of atom, i and j indices denote two arbitrary atoms within the

cut-off radius, a and 0 show the components in the real space, k is the reciprocal

vector and R represents the sum over lattice vectors within the cut-off radius. Hav-

ing phonons in hand, statistical mechanics can be employed as a powerful tool to

bridge microscopic energy levels to macroscopic thermodynamical observables such

as entropy, Helmholtz and Gibbs free energies and many others. The ubiquitous as-

sumption in molecular physics is that all forms of the energy are independent and as

a result the total energy can be decomposed to translational, rotational, vibrational

and the contributions to the electronic state of the system. In the special case of

solids at low temperatures (considerably below the melting point), the rotational and

translational contributions can be neglected. In atomistic simulations, the electronic

contribution is directly calculated via interatomic force field. Therefore, the challenge

simplifies to the measurement of vibrational contributions. This is achieved via calcu-

lation of partition function, Zei, in the framework of lattice harmonic approximation.

The vibrational energy level for a harmonic oscillator of the mth mode can be written

as

Uib(n, k) = (n + 1/2)hw(m, k) (A.35)

where n is the number of phonons occupying that particular energy level. The number

of phonons occupying an energy state is given by Bose-Einstein statistics:

n = (A.36)
-hw

exp ( )kB )

where T is the temperature and kB is Bolzman constant. The internal vibrational

energy, Uvib can be written as the superposition of all the energy levels by considering

that the energy at each state is the number of phonons occupying that state times
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the energy of each phonon:

Uvib = I hz +hw (A.37)
2 -hw

m k exp -

ke

where wk represents the weight of a particular point in the Brillouin zone such that

the sum of the weights equal one. To calculate the internal energy, the summation

should be over all oscillation modes, m, and reciprocal lattice vectors, k. It should

be noted that the fist term in the internal energy is just due to zero point vibrational

energy. The partition function in canonical ensemble can be written as:

-hw

Zib= Wk kBT/38)
rM k exp kT)1

It should be emphasized that the frequencies are explicit function of k and m, which

are omitted from the above equation for brevity. The Helmholtz free energy, lvib,

and Gibbs free energy, Lvib, are readily calculated using:

Tvib E1Wk Ihw +ln 1--exp hw(A.39)
m k

Lvib = Tvib + PV (A.40)

where P and V are pressure and volume of the unit cell, respectively. In practice, the

above double summation is reduced to integration over the phonon density of states

(DOS). Generally, the integration involves a numerical scheme over a discrete set of

points. Due to the lack of symmetry in C-S-H's molecular structures, the most general

set of points in the first Brillouin zone known as Monkhorst-Pack scheme is used in

this work. A set of 1099 evenly spaced mesh of k-points, given by shrinking factors

along each axis in reciprocal space, is adopted in all the simulations. Subsequently,

the DOS is distributed over 60 equal bins and all the thermodynamic observables are

calculated following the above-mentioned approach. The free energy as a function of
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C/S is presented in Fig. A-7.A. This shows that the free energy content decreases

with C/S. Fig. A-7.B-Ds present the correlation between free energy and mechanical

response of the C-S-H (M, H and M/H). They all show that at a given free energy

level, the mechanical properties can vary which is a clear sign of polymorphism in

C-S-H molecular structures.

A.11 Medium Range Order Analysis

As presented before, radial distribution functions (RDF) give insights into the short-

range order of the structure of the material, this length scale being mostly driven by

coordination numbers and bond lengths. As C-S-H polymorphs are characterized by

the same short range order but show different densities, we analyzed their medium
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range order to understand the origin of this density variability. To do so, we largely

relied on tools introduced in glass science. The medium range order can be captured

by the partial structure factors, which can be computed from the RDFs gij(r) [8, 33,

34]
R

Sii = 1 + PO 4-r2(gi(r) - 1) Qr) FL dr (A.41)
S j 4 (Qr

where Q = 27/r is the scattering length, po is the average atom number density

and R is the maximum value of the integration in real space (here R = 6 A ). The

FL(r) = sin (w- / (r) term is a Lortch-type window function used to reduce the
(R R

effect of the finite cutoff of r in the integration [359]. As discussed elsewhere [1591,

the use of this function reduces the ripples at low Q but can induce a broadening

of the structure factor peaks. Fig. A-8 shows Si-O, Si-Si, Ca-O and H-O partial

structure factors at Ca/Si=1.7, which are by all means similar to typical structure

factors observed in silicate glasses [159].

Among the different features of structure factors, the so-called first sharp diffrac-

tion peak (FSDP) has received a lot of attention in glass science. Starting from the

principal peak, which position Qp = 2/rp is associated to the nearest-neighbor

distance rp, the FSDP is defined as the next peak located at lower Q < Qp. It

is thus related to the structural correlations in the medium range order at r > rp.

This feature has been observed both in covalent [107, 317] and ionic [354] amorphous

system. In ionic systems, this medium-range order has been associated to the forced

separation between cations because of their mutual Coulomb repulsion, thus produc-

ing a pre-peak in the cation-cation structure factor58. Pre-peaks can also arise from

size effects of the atoms of the network [158]. However, the network formation itself

can have a major role since the FSDP is also observed in the monoatomic tetrava-

lent systems a-Si and a-Ge [97, 343. The FSDP origin is now usually explained by

using a void-based model [108, 372] in which ordering of interstitial voids occurs in

the structure. It is worth noticing that FSDPs are not simply the first of the many

peaks of any diffraction pattern but display many anomalous behaviors as a function

of temperature, pressure and composition [108, 227].
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The FSDPs we obtained from simulations were further studied by fitting them

with Lorentzian functions (example of fitted function can be seen on Fig. A-8). This

choice is supported by the fact that the experimental results in neutron scattering

factor of silica can be better fitted with a Lorentzian function than with a Gaussian

one 13611. It should be noted that the fit has been done on the low Q part of the FSDP

to avoid the contribution of the following peaks. This allows us to track precisely the

FSDP peak intensity, position and full-width at half maximum (FWHM) for each

sample.

Coming back to the real space structural correlations, the FSDP peak position

QFSDP is usually related to a characteristic repetition distance d = 2 7r/QFSDP and

the FWHM to a correlation length L = 27/FWHM, sometimes also called coherence

length, due to atomic density fluctuations [375]. The effect of irradiation [361, 3221,

water content [375, 375] and alkali content 54 on the FSDP have been studied, leading

to the idea that a depolymerization of the network (a decrease of the atomic order) is

associated to a decrease of the intensity of the FSDP and a decrease in the character-

istic distance [291. A global understanding of the correlation length L is still lacking

and seems to be highly system dependent.

A.12 Calculation of X-ray total pair correlation from

atomistic simulation

We calculated the total X-ray pair correlation function N. (r) from atomistic simula-

tion. N,(r) is related to the total X-ray pair distribution function G (r) via:

N2(r) = 47r2 poG.(r) (A.42)

where po is the average number density in the medium. G, (r) is related to the partial

pair correlation functions gij (r) where i and j indicate different species (Ca, Si, 0
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and H) in the simulation:

fi(Q)fy (Q)Gx(r) = Z(cicjf ( gij (r) (A.43)

where ci is the concentration of ith specie, fi(Q) is the atomic form factor describing

the Q-dependent scattering length for the ith specie and (f(Q)) = [1i cifi(Q)] 2 [318].

The atomic form factor is calculated using:

f (Q) = ajexp bi ) + c (A.44)
i4=1

where aj, bi and c are element-dependent form factor constants. Due to the broadening

effect induced by termination of X-ray structure factor at high Q values in experi-

ments, we follow the suggestion of Wright 1361, 359, 360] to calculate the broadened

molecular dynamics response G'(r) as follow:

G,(r) Gx(x) * H(r - x)dx (A.45)

where H is a Gaussian with standard deviation set to 0.055. We use Gb(r) to calculate

N2(r) from eq. A.42. Subsequently, we calculated the coordination number of Ca

atoms in the simulation using:

rmin

Nca = 47r2Pogcao (r)dr (A.46)

where po is the average number density of oxygen atoms in the simulation box.
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Appendix B

Coupled Nano-chemo-mechanical

Testing

For the purpose of this study, cement based systems with different Ca/Si ratio were

synthesized in the laboratory. Cement pastes based on the ordinary Portland cement

Class I, with water-to-cement ratio [0.4, 0.5, 0.6] and cured at room temperature

were produced as representative of the C-S-H with overall Ca/Si=1.75. C-S-H with

lower concentrations of calcium were synthesized from a mixture of Portland cement

Class G and crystalline silica, under hydrothermal conditions at the temperatures

1300 C, 175'C and 200'C and the pressure of 3000 psi. The silica flour was added to

achieve 35% by weight with the cement that resulted in the overall Ca/Si~1 of the

cementitious system.

B.1 Surface Preparation Protocol

The nanoindentation technique used requires a flat polish of the sample surface to

minimize the role of surface geometry on measured mechanical properties. This was

achieved using a semi-automatic polishing procedure developed and successfully ap-

plied to each specimen. In the first pass, cylindrical sub-samples, ~1.0cm in diameter

and 0.5cm in height, were cut from each bulk sample, with the use of the low speed

diamond saw IsoMet, Buehler (Lake Bluff, USA). The cylindrical samples where then
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mounted separately with cyanoacrylate glue on the standard AFM base (Ted Pella,

USA), to be later automatically leveled and ground in a specially designed jig and

the post system. Details of this system may be found elsewhere [11, 231]. The sam-

ple, inside the jig, was ground on a hard perforated cloth TexMetP (Buehler, USA)

with a 9pm] oil-based diamond suspension MetaDi (Buehler, USA). In case of high-

temperature cured specimens, the jig was loaded with an additional mass of 150g.

Grinding pass was perfomed for approximately 20 minutes. This preparation time

does not include the 3 min ultrasonic cleaning with n-Decane, (TCI, Tokyo, Japan)

which is performed after every 5 min of grinding. In the second step, the ground

and cleaned samples were manually polished on the alumina abrasive disks FibrMet,

Buehler (Lake Bluff, USA), with the respective reduced abrasive sizes 9, 3 and 1pm.

At each pad of different abrasive size the samples were polished for around 5min. In

this step the used pad was exachanged for a fresh one every 2.5min. These changes

of the pad, as well as abrasive size, were accompanied by 1min cleaning of the sample

in the ultrasonic bath with n-Decane. So obtained final surface was characterized by

rare occurrence of the scratches on its surface, visible under 20 and 50 x objective of

optical microscope, and high mirror-like reflectivity of the surface.

B.2 Indentation Measurement Protocol

Indentation tests in this study were conducted using the CSM Nanoindentation plat-

form, equipped with the vibration isolation table as well as an environmental chamber

to control testing conditions, temperature (18'C) and relative humidity (RH~20%),

respectively. All indentations were conducted using the Berkovich diamond indenter,

a three-sided pyramid with the half angle of 65.35 deg. and an area-to-depth function

which is the same as that of well-known Vickers probe. Certified fused silica sample,

with an elastic modulus of 73.1 0.7 GPa was used to calibrate the tip area function in

the load range 0.5-100 mN. The indentation protocol consisted of three phases: linear

loading and unloading at constant rate 8 mN/sec. This was performed to a maximum

force of 2mN, with a holding period of 5 see at the maximum load. Both properties
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of interest, indentation modulus, M, and indentation hardness, H, were determined

from the measured penetration depth-force curves according to the method proposed

by Oliver and Pharr [249, 250], with each indentation curve being corrected for point

of contact and frame compliance. All indentation measurements were conducted in

the grid fashion, with the minimum number of indentation points set up to 400 and

the grid spacing large enough for the successive measurements to be considered as

statistically independent based on prior works [80, 121].

B.3 Statistical Analysis of the Indentation Data

Statistical analysis of the indentation data was carried out in the framework of Finite

Mixture Models (see Eq. B.1) with the component probability densities of the mixture

assumed to be of Gaussian type (Eqs. B.2-B.3) [337, 221].

9 g

f (yi, IF) = ifi(yn, 00); 0 7 i < I1(i = 0, ..., 1g); 7 = (B.1)
i=1 i=1

A (yi, 00) = (yi, /pi, U0) (B.2)

0(yiIi, oa) = (2 )-'/21o- 1 / 2exp (-2 (Yi ti)T 0i(yi -pi) (B.3)

Therefore, by design of the indentation experiment, at each location on the inden-

tation grid the pair of properties under study is measured yi=(Hy,Mj) where j=1,...,N

with N the total number of measurement points. A possible outcome of single real-

ization of random variable Y is yj belonging to one of g mechanically active phases

within material microstructure e.g. residual clinker grains, calcium-silica-hydrate gel

(C-S-H). Therefore, each of such phases has a uniquely defined pair of indentation

hardness and modulus represented by the mean vector of properties Pj=(Hj,Mj), with

i=1,...,g. Additionally, in the framework of this statistical model, variances on both

phase properties as well as correlations among them are captured in the covariance
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matrices o-. The last parameter of the model, rj, represents the surface fraction of

a given phase. All unknown parameters 4I=(7ri,...g,,a-,...,g,-g) of the assumed

GMM model are estimated with the maximum likelihood (ML) fitting approach via

the expectation maximization (EM) algorithm [96]. The estimation of model param-

eters as well as the clustering of observations based on the Bayes rule of allocation is

carried out with the use of non-commercial program EMMIX[?]

Estimation of the parameters of the assumed Gaussian Mixture Model requires,

a priori, selection of the number of all g mixture components. In this study, the

selection of model order, which corresponds to the number of mechanically active

phases is assessed with Bayesian Information Criterion (BIC), Eq. B.4 [221, 96, 301].

Each grid indentation data set is analyzed for the range of components g=1,...,8, and

the one which maximizes penalized log likelihood statistics is selected as optimum fit;

kg is the number of model parameters and Lg(I) corresponds to the likelihood of a

model with g components.

logL9(qI) - 2kglog(N) (B.4)

A typical example of the applied statistical data analysis in the GMM frame-

work and the inference of the optimum model are presented on the Fig.B-1. Pre-

sented indentation results were obtained on the ordinary Portland cement paste with

w/c=0.45.

B.4 Electron Microprobe Measurement Protocol

Back-scattered electron (BSE) images, elemental X-ray maps, and chemical compo-

sitions of phases were obtained by a JEOL JXA-8200 Superprobe electron probe

micro-analyzer (EPMA) at Massachusetts Institute of Technology, Cambridge, USA.

The polished samples were analyzed by Wavelength Dispersive Spectrometry (WDS)

using an accelerating voltage of 15 keV, a beam current of 10 nA, a 1 pm beam

diameter, and 10s counting times per element with background correction at every

point. The raw data were corrected for matrix effects with the CITZAF package [22]

202



1 :

12C

80

40

) '0 4 8 12
H IT (GPa)

160

12(

8(

41

0 4 8 12
HI (GPa)

16

16C1

120

801

40

20 '0 4 8 12 16
Hr (GPa)

Figure B-1: Maximum Likelihood based deconvolution of the grid indentation data
on OPC: a) global plot of the experimental records, with a focus on the expected
domain of hydration products, b) clustering of the experimental data into four com-
ponent Gaussian Mixture Model corresponding to maximized penalized likelihood
BIC statistics, c-d) clustering of the experimental data with respect to the model
with +1 number of optimum mechanically active phases. H-indentation hardness,
M-indentation modulus, data courtesy of Dr. Matthieu Vandamme, Universite Paris-
Est.

using the #(pz)-method (stopping power, back-scatter corrections and 0(0) from Love

and Scott, mean ionization potential from Berger and Seltzer, Heinrich's tabulation

of mass absorption coefficients, and Armstrong's modified equations for absorption
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Table B.1: List of measured elements with associated standard materials and diffract-
ing crystals used in the WDS measurements.

Element Standard Crystal

Si Synthetic Diopside-Jadeite PET
Ca Synthetic Diopside-Jadeite TAP
Al Synthetic Diopside-Jadeite TAP

Mg Synthetic Diopside-Jadeite TAP
Na Synthetic Diopside-Jadeite TAP

Fe Hematite LiF

0 Hematite LDE1
K Synthetic Orthoclase PET

Ti Rutile LiF
S NiS PET

and fluorescence corrections [146, 1]. The set of measured elements, their associated

standard materials, and the diffraction crystals are presented in Table B.1.

The obtained experimental data were statistically analyzed in the framework of

Gaussian Mixture Models (eqs. B.1-B.3), as in the case of the nanoindentation results.

However, contrary to the indentation data analysis results, chemical phases were

inferred assuming multivariate model with the principal variables being four elements

dominant in concentration:Ca;Si;Al;Fe. Such selection of variables provided sufficient

"statistical contrast" for the chemical phases to be accurately inferred and clustered

on a purely probabilistic basis. An example of electron microprobe data analysis in

the assumed framework, obtained on the system cement Class G and crystalline silica

in the amount 35% by weight of cement, is presented in Fig. B-2.

B.5 Assumed Micromechanics Model of Cement-Based

Matrix, and Fitting Procedure

The intrinsic properties of the calcium-silicate-hydrate skeleton are determined from

an indentation experiment using a micromechanics model based on the assumption

of a granular solid (see Fig. B-3) [3461. The relationship between the phase hardness,

H, measured in an indentation test on a porous solid at the scale of a REV, and the
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Figure B-2: Statistical analysis of the data obtained in the grid electron microprobe
measurement on the system cement Class G with silica addition: a) a global plot of
the experimental record in the Si-Ca domain, b) Maximum - Likelihood estimation
and clustering of the experimental data into Gaussian Mixture Model corresponding
to maximized penalized likelihood BIC statistics. Data courtesy of X-CEM project,
research collaboration between Schlumberger and Massachusetts Institute of Tech-
nology.

intrinsic properties of the isotropic solid, cohesion c, and friction coefficient (friction

angle) a, is given by:

H H = FIh(a, q, 'o)
h,(c8, a) (B.5)

The dependence of H on the local packing density q, percolation threshold qo, and

friction coefficient a, is captured in the dimensionless function 1~1h. In the limiting

case, h. = h,(c8 , a) = lim,,1)H is the asymptotic hardness of a cohesive-frictional

solid phase that obeys the Drucker-Prager criterion [346, 60]. The solid hardness

relates to the solid's cohesion c, and friction coefficient, a, by the model function:

h,(c,, a) = c, x a (1 + ba + (ca)3 + (da)10) (B.6)

In eq. B.6 a, b, c, and d are the fitted parameters: a = 4.7644, b = 2.5934, c =

2.1860, d = 1.6777 respectively. The dimensionless function 4bh depends on the local
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solid packing density q and the friction coefficient a of the solid, for more details see

ref. [346, 1271.

Figure B-3: Conical indentation in a cohesive-frictional porous material half-space:
P is the indentation force, Ac is the projected contact area (projected on the initial
sample surface). The porous composite (REV) is composed of a solid phase (cohesion
cs and friction angle a) and pore space. Two solid-pore morphologies are presented:
(a) matrix-pore inclusion morphology (qO=0), (b) polycrystal morphology (770=1/2)
assumed in the present modeling, after [346].

The indentation modulus M, extracted from the indentation test, relates to the

solid modulus m, packing density q of the solid within REV, percolation threshold

qo, and Poisson's ratio v. This relation is written in the dimensionless form as:

M _

-= HM(VS, 77, 7o) (B.7)

HM(vs = 0.2,, ,o = 0.5) = 277 - 1 (B.8)

For a perfectly disordered porous material system (see Fig B-4.b), the solid percolation

threshold, representing the solid volume fraction required to provide a continuous

force path through the system, approaches qo=0.5. Assuming Poisson's ratio v,=0.2,
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this relationship reduces to linear scaling of the indentation modulus with the packing

density eq. B.8.

B.6 Fitting Procedure

The micromechanics model chosen links the measured indentation hardness H and

modulus M to the set of three intrinsic properties m,csaz and packing density dis-

tribution r/ of the solid phase. Therefore, provided the existence of the unique solid

C-S-H phase, the scaling relationships may be used to probe the microstructure sensed

in the grid indentation experiment.

The solid properties and the packing density were determined by minimizing the

quadratic error (eq. B.9) between the experimentally measured values X = (M, H)

and the model predictions using the scaling relationships. Because of different or-

ders of magnitude between measured hardness and indentation modulus, the error

minimization is carried out in the normalized space with the normalization factors

max(H, M). Such normalization prevents bias in the fitted model toward one of the

variables, since errors on both have been assigned equal importance.

N X 2

min (B.9)x(X
i=1 X=(M,H)

The orthogonal least square fitting algorithm has been coded and executed in

the Matlab environment using the trust-region-reflective algorithm for solving the

nonlinear minimization [79]. In order to minimize the risk of obtaining the solution

corresponding to local minimum, the minimization problem have been initiated from

n=50 random initial vectors of the form mo,c, aO drawn from the parameter space

m-=[0;140], co=[0;2], aI=[O;1/v5[, and the solution with minimum error was selected.

The termination tolerance on the objective function value as well as model parameters

was set to 10-7. An illustrative example of the results of error minimization procedure

is presented on Fig. B-5.
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Figure B-4: Micromechanics based inference of the skeleton solid properties m,,c,,a,
of the C-S-H dominated matrix for Class G neat cement paste with w/c=0.45 cured
at room temperature under 3000psi pressure; (a) scatter diagram of indentation re-
sults with overlaid optimum micromechanics fit m,=74.5,c,=0.57,a 8 =0.34, and cor-
responding packing density distribution with mean g=0.68 and standard deviation
s.=0.03, the estimated solid hardness of C-S-H particles is h. (c8 a, )=6.3 GPa, (b)
scaling of the indentation hardness and indentation modulus (c) with packing density,
(d) distribution of model residuals q

B.7 In-direct coupling of phase chemistry and me-

chanics: general step-by-step procedure and the

cross-validation of the results

The linking of the mechanical properties of the solid C-S-H skeleton with its chem-

istry was done via in-direct coupling procedure, in which the results of EMPA and

grid indentation are cross-validated by comparison of the estimated phase volume
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Figure B-5: Schematic of the step-by-step process of data analysis and indirect

chemo-mechanic coupling.

fractions. These two experimental techniques have different objectives, chemistry as-

sessment (e.g. Ca/Si ratio) on one side and mechanical properties (H, M) on the

other. However, because of A- reliance on probing the area large enough to be con-

sidered representative of the bulk B- material volume sensed by both techniques are

comparable (~1 .5 pm) C- shared technique for statistical modeling and analysis of the

experimental data The estimated volume fractions of the material phases obtained in
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both approaches should be in general agreement. Such cross-validation is one of the

main check-points in the general step-by-step rigorous procedure for the correlation

of the indentation results with phase chemistry assessed by EMPA, as outlined on the

flow chart on Fig. B-5. To ensure confidence, the threshold of 10% relative discrep-

ancy in the estimated volume fractions of the hydration products by both techniques

was enforced. A pair of measurements fulfilling this criterion was considered for the

micromechanics analysis. Two other validations were implemented (see Fig. B-5): i)

comparison against available literature data collected by the authors in the internal

database system and b) verification of the convergence of error minimization algo-

rithm in the estimation of solid properties. The final results reported in this work

fulfill all three criteria.

Table B.2: Experimental data for nanoindentation and EMPA/WDS analysis. Data
indicated as mean standard deviation, where standard deviation is calculated by
bootstrap method. * - This sample type is typically rich in unreacted clinker, lead-
ing to unresolved mechanical properties of C-S-H with our cluster approach. Those
samples have pronounced composite effect of CSH-clinker phases and therefore they
are in the main text. As it can be seen in possible ranges of H and M values, they
are close to those measured for clinker phases C2S and C3S 1234, 3521. ** - values
obtained from direct measurement of chemistry and indentation properties at the grid
point location on C-S-H dominated phase _

*0.78 0.28 115.8 24.7 13.8 4.9
0.88 0.06 93.3 6.6 12.4 1.8
0.98 0.04 98.1 4.9 8.2 0.7
1.69 0.11 69.0 6.8 5.3 0.9
**1.79 0.10 77.8 6.6 6.0 0.6
1.9 0.15 69.1 13.3 6.0 2.1
2.13 0.23 74.5 2.6 6.3 0.6
*2.1 0.18 100.9 8.3 8.5 1.0
**2.10 0.25 64.1 4.5 3.7 0.3

B.8 Calculation of uncertainty in M, H, and Ca/Si

In Table B.2, uncertainty is indicated in M, H, M/H or Ca/Si. For M, H we

report uncertainty as standard errors on each parameter estimated in nonlinear re-

gression analysis. The uncertainty on Ca/Si ratio is reported as sample standard

210



deviation of the experimental measurements attributed to C-S-H product, or domi-

nated by this phase. Additionally, the statistical bootstrapping [204] was employed

for selected samples in order to get more insight into the probability distribution of

investigated parameters, and estimates of standard errors. Briefly, measured set of

n nano-indentation values, [, H] representing porous composite, was sampled with

replacement in order to create m independent bootstrap samples. The size of boot-

strap samples was equal to the size of the original sample. For each bootstrap sample

the estimate of the monolithic C-S-H properties was obtained following the fitting

procedure of micromechanics model described previously. The number of bootstrap

samples, m, was typically > 50 in order to assure convergence of the standard error.

The uncertainty in the quotient M/H was obtained according to propagation of errors

theorem, assuming M and H are statistically independent and normally distributed.

B.9 TEM Imaging Conditions

The cement samples are prepared to obtain 30 microns thick blades (stuck on optical

glass blades). A micro-pincher (O'Medenbach) is used to drill 3 mm diameters cement

paste discs. Cu slots for TEM are stuck with a fine layer of araldite glue on these

discs. The unit 'disc+slot' is then unstuck from the optical glass. After drying, the

unit is subjected to ionic abrasion using a PIPS slimming ionic beam (Gatan) until

the complete drilling of the cement in the central zone of the slot. The edges of the

home are then ready for TEM Observations. Carbon metallization is not necessary

to obtain the electronic conduction of the cement paste samples. Observation are

performed on a high resolution field emission gun TEM JEOL 2010F (structural

resolution of 0.18 nm, probe size of 0.5 nm, KEVEW EDS system, GIF loss of energy

system, vacuum conditions 10-6 torr).
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Figure B-6: Scaling of the mechanical properties of cement paste with porosity
(one minus packing density) of a) strength b) indentation modulus, and c) hardness.
(Figure adapted from Ulm and Jennings [3451)

B.10 Scaling of macroscopic strength with C-S-H strength

Since the beginning of its industrialization in the early 2 0 th century, the strength

of concrete (i.e. cement paste plus sand and aggregate) has been recognized to be

determined by the strength of the binder phase [115] the cement paste. In its turn,

groundbreaking work by Powers and collaborators at the Portland Cement Associ-

ation in the 1950s and 1960s90 established functional relations between the cement

paste strength and the porosity, see Fig. B-6); while assuming a constant strength of

the elementary solid phase (C-S-H); a result that has been substantiated by means

of nanoindentation in the last decade (see. E.g. Ulm and Jennings [345]). The result

of this body of knowledge shows that for the same porosity of the cement paste, the

engineering strength of concrete is scaled - in first order - by the strength of the ele-

mentary C-S-H particle. It is this scaling we employ to forecast the impact of raising

the C-S-H strength on the environmental impact of concrete in the conclusion of the

main text.
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Appendix C

Sensitivity Analysis

The purpose of sensitivity Analysis (SA) is to measure, qualitatively or quantitatively,

the variation of the response (observation) of an experiment (laboratory or numerical

simulation) with regards to the variation of design parameters. In the realm of deter-

ministic computer simulations, one can determine the underlying connection between

the model output and the information fed into it [297, 298]. There are several reason

why both experimentalist and modelers should perform sensitivity analysis [296]. The

first reason is to clarify whether the proposed model properly represents the system

or processes under investigation. The second reason is to identify the significant and

insignificant factors (design variables) that contribute the output variability. The

third feature of SA is the ability to determine the regions in the design space, which

the variation of the response is either maximal or minimal. Finally, SA can identify

which design variables interact with each other for producing the response.

The application of SA in deterministic computer simulations aims at determining

how sensitive the model is with respect to the input parameters. When inputs are rel-

atively certain, the partial derivatives of the output with respect to the input factors.

Such a sensitivity measure can be easily calculated performing a few calculations

around nominal values and estimating the derivatives via finite difference method.

This method of SA yields the local impact of the inputs on the output and hence

these kinds of methods are classified as local sensitivity analysis (LSA). However, we
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usually want to identify which of the uncertain parameters are more important in in

determining the uncertainty in the output. This plausible only through the global

sensitivity analysis (GSA), which are usually implemented using pseudo-Monte Carlo

sampling in the design space.

C.1 Different flavors of sensitivity analysis

SA has several different flavors, each suitable for a specific class of models and differ-

ent stage of model construction. At early stages and for models with several uncertain

input factors, a screening approach such as Morris method can be applied to quali-

tatively identify the significant parameters from unimportant inputs. Also, a natural

step after MC sampling is to examine scatter plots to visually quantify the corre-

lations between the input and output parameters. Such graphical method can also

assist with identification of nonlinearity and non-monotonicity in input-output rela-

tion. For linear models, linear relationship measures like Pearson product moment

correlation coefficient (CC), partial correlation coefficient (PCC) and standardized

regression coefficients (SRC) would perform well. For monotonic nonlinear models,

measures like rank transformation like Spearman rank correlation coefficient (RCC),

partial rank regression coefficient (PRCC) and standardized rank regression coeffi-

cients (SRRC) would be suitable. For nonlinear non-monotonic models, methods

founded on the decomposition of the variance are the proper choice. The exam-

ples of such methods include Sobol's method, Jansen's alternative, Fourier amplitude

sensitivity test (FAST) and the extended Fourier amplitude sensitivity test (EFAST).

This section is divided in three parts. In the first part, we provide examples of

One-at-a-time sensitivity analysis on building energy consumption through which we

intend to build intuition on building heat transfer modeling. Based on this intuition,

we propose a general probabilistic model for quantifying the effect of uncertainty in

building parameters on the energy consumption. This includes model description,
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identification of uncertain variables and the type of uncertainty. In the last part, we

perform global sensitivity analysis via sampling based methods to identify the influ-

ential parameters on the energy consumption and other related energy consumption

norms.

C. 1.1 One-at-a-time sensitivity analysis

As mentioned earlier for LSA, all the design variables are kept constant at a nominal

value except only one. This yields the relation between that particular design variable

and response (observation) noting that the interaction with other design variables

are neglected. Since only one variable is systematically varied, this approach is also

called as One-At-a-Time (OAT) SA. Not being conclusive at all for systems with

large number of design variables, OAT can be used to provide initial insight. Sailor

and Munoz [294] performed OAT sensitivity analysis on the effect of climate on the

electricity and fuel consumption of cities across the united states.

C.1.2 Sampling-based sensitivity snalysis

Sampling methods are commonly utilized for performing SA. Eisenhower et al. [104]

performed sampling based analysis on more than one thousand parameters to identify

the influential parameters, construct surrogate models and study their effect on cost of

energy consumption. These methods are founded on the notion of generating input-

output relations via Monte Carlo sampling. Sampling methods are categorized as

the GSA approaches because these methods quantify the effect of xi design variables,

while simultaneously varying xj(j = i). In this approach, all the variables are varied

in their entire domain. In case of existence of correlation between design variables,

special attention is required as explained in sec. D.2. There exist various sampling-

based GSA methods. Scatter plots are commonly used in the early phases of post-

processing data to visually and qualitatively identify the correlations between the

input and output. In complex high-dimensional systems and as a result of interaction
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between design variables, graphical methods might turn out to be not especially

informative. In such conditions, other sampling-based methods such as regression

analysis, correlation coefficients and rank transformations are shown to be extremely

insightful.

A powerful global sensitivity measure can be obtained via multivariate regression

to fit the design variables (or their combinations, e.g. higher order terms) to a given

empirical or theoretical formula that can yield the observations (response or output)

as close as possible with minimal error. The most common regression technique for

SA is least square approach (see sec. E.1.1). Since the coefficients of regression in

linear fits are dependent on the dimension of the design variables and outcomes, the

normalized form of the regression model is used in sensitivity analysis:

i--- - N 2-1/2 &s = F 1  j 2- 1/2

*1-Y -~ i . - =~j ZN ~ & Aj = ZN(X~J
8 j=1 8 ji=1 .-Ii= N-1

(C.1)

where bar above variables represents average operator and hat indicates the estimate

of the linear regression response. In eq. C.1, subscript i permutes on the number of

observations while subscript j is varied over the k terms in the linear regression. In

GSA, the standardized coefficients (SRCs) are considered as sensitivity measures.

If xj are independent, SRCs show the significance by moving each design variable away

from its expectation value by a given fraction of its standard deviation while keeping

all other variables at their expected values. Therefore, despite performing sampling

and because of using linear regression, SRC is a local sensitivity measure rather than

a global measure.

Correlation Coefficients (CC) usually known as Pearson's product moment corre-

lation coefficients, provides a measure of the strength of the linear relation between

two variables. CC is defined as:

R(x, y) =cov(XIY) (C.2)
w-(r) x o-(y)

where cov(x, y) is the covariance between the design variable x and the response y and
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- denotes the standard deviation. Therefore, CC can be regarded as a normalized

covariance between the two sets and provides a unitless index between -1 and +1. In

fact, CC is equivalent of the coefficient of determination as defined in sec. E.2. Like

SRC, CC only measures the linear relation between two variables by neglecting the

effect of the other variables.

When more than one design variable is under consideration, like our probabilistic

energy consumption model, partial correlation coefficients (PCCs) can be used to

obtain a measure of linear relationship between the variables when all linear effects

are removed. PCC between an a design variable xi and response y can be obtained

from the use of regression models. Denoting the PCC of xi and Y by removing the

effect of Z = x(j = 1, ... , N & j # i), R(xi, y1Z), then:

R(xi, y) - R(xi, Z) x R(y, Z)
V "(1 - R2 (Xi, Z)) x (1 - tR2 (y, Z))

In fact, PCC designates the strength of the linear correlation between the input and

output after a correlation has been considered for the linear effect of the other design

variables in the model. As a result, when the input factors are uncorrelated, results

from PCC and SRC are identical.

The premise is based on the assumption of linear relationship between the design

variables and observations. Therefore, those methods will perform poorly in the

presence of nonlinearity in the model. In fact, as shown in Fig. 5-3, the inter-building

distance affects the energy consumption of a building in nonlinear but monotonic

fashion. Rank transformations are powerful tools to transform nonlinear monotonic

relationships to linear correlations. Upon utilization of rank transformations, the

samples are replaced with their corresponding ranks. The values are ranked from

the smallest to the largest and the ties are equally distributed in between the values.

Subsequently, the normal regression and correlation procedures are performed on the

ranks of the variables rather than their actual values. Standardized rank regression

coefficients (SRRC) are SRCs calculated based on ranks, spearman rank correlation

coefficient (RCC) are corresponding to calculation of CCs on ranks and partial rank
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correlation coefficients (PRCC) are PCC based om ranks. Statistics based on rank

transformations are more robust as we obtain a great insight upon the existence of

long tails in input-output distributions. The rank transformations are not only more

linear but also more additives. This reduces the complexity by relatively increasing

the weight of the first-order terms and decreasing the strength of higher-order terms

and interactions.
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Appendix D

Design of Experiment

As described in the previous section, energy consumption is influenced by several pa-

rameters ranging from building envelope properties to climate data. Here, we follow a

minimalistic strategy. The first step in such an approach involves identifying the most

influential parameters. This necessitates varying different parameters and analyzing

how much they alter the energy consumption. Researchers have proposed several

approaches to vary input parameters. These methods are classified under design of

experiment (DOE). In this section, we briefly elaborate on the basic concepts of DOE

and describe two conventional methods, namely full factorial and pseudo-Monte Carlo

designs that we have utilized in this work.

Before proceeding with the descriptions, we define a few common terms in the de-

sign of experiment literature. Design variable (factor) is any parameter or quantity

that is thought to alter the observations, hence being varied during the (laboratory

or numerical) experiment. We represent a design variable as an element of an Nd-

dimensional vector, Xi, where i = 1, 2,... ,Nd. Design space is an Nd-dimensional

space restricted by the lower and upper bound of the design variables. Typically, the

design space bounds are scaled to range from -1 to +1 or 0 to +1 to take advantage

of existing designs or avoid singularity in particular design. The domain of the design

space is denoted by [-1, +l]Nd or [0, ] Nd representing an Nd-dimensional hyper-

cube. Therefore, a design variable is considered a real vector in the design space (i.e.
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x E !RNd). Design point (sample) is a specific instance of the x within the design

space hypercube. The design variable is shown as a vector of length Nd or in an or-

dered t-tuple, (x 1 , x 2 ,... , XNd). Response (also observation or outcome) characterizes

a dependent quantity that is measured at a particular design point. A single obser-

vation is mathematically represented as y(x). A vector response, describing different

dependent attributes at a design point, are shown as y(x), Y(x) or simply Y.

DOE is a process of choosing a set of N, design points in the design space with

the intent of maximizing the information inferred from a limited number of observa-

tions [276]. The DOE strategies were originally developed for model construction in

the laboratory and field experiments usually referred to as the classical DOE. The

term "modern DOE" is rather forged more recently referring to a group of techniques

specifically developed for applications in the computational design of deterministic

computer simulations [50]. The very fundamental difference between modern and

classical DOE pertains to the assumption that the random error exists in the lab-

oratory experiments, but it does not occur in deterministic computer simulations

[131]. Usually, random error is associated with the lab observations to explain non-

repeatability in the experiments (e.g. observations in experimental chemistry and

material science). This non-repeatability is mathematically stated as:

YM(X) = yt (x) + C (D.1)

where yrn is the actual measured response, yt is the true response and C is an inde-

pendent and identically distributed random (IID) error. Due to the random term,

the repetition of the experiment at the very same design point x yields different

results. This random error is always presents due to sources such as measurement

error, inherent fluctuation in the response quantity (e.g. turbulence in experimental

fluid dynamics), or other sources. To quantify the extent of the random error e, the

classical DOE employs replicate sampling. Replicate sampling is merely repeated

measurements taken at identical design points, which permit a lack-of-fit statistical
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analysis and measurement of random term.

Usually in the classical experimental design, it is assumed that the experimenter

has a general knowledge of the underlying trends of the true response, yt(x). This

apriori knowledge is utilized to place a fixed number of samples in the design space

so as to minimize the relative influence of random error. This is ensured by spread-

ing the design points as much as possible so that the ratio of C/(yrn(xi) - ymn(xj)

is minimized. In fact, if the xi and xj sample points are close enough such that

ym(xi) - ymn(xj) becomes relatively small, then the relative error dominates resulting

in poor description of the underlying model. Therefore, in classical DOEs, the sam-

ples are located at the boundaries with a few points in the middle of the design space.

Unlike classical DOEs, the observations in the deterministic computer simulations

are repeatable meaning that the outcomes of independent simulations are identical

up to the machine precision. Another feature that distinguishes between the classical

and modern DOE is the choice of the probability distribution function (PDF) asso-

ciated with each design variable [315, 246]. In classical DOE, it is typically assumed

that the design variables are equally probable and restricted between an upper and

a lower bound. However, in the modern DOE, design variables are allowed to fol-

low uniform and non-uniform PDFs (e.g. Gaussian or Lognormal distributions). In

addition, in contrast to classical DOEs, the modern DOE methods are inclined to

insert design points in the interior of the design space, which is usually referred to as

"space-filling tendency". Despite these differences, a common feature of classical and

modern DOE is that the design points are independent meaning that the simulations

or experiments can be performed independently from one another. In the case of

computer simulations, the use of distributed processing can significantly decrease the

computational costs as it scales with the inverse of the number of processors.

To properly understand the goodness of modern or classical DOE, one should

understand different statistical errors such as bias and variance component of the
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empirical error. In what follows, we assume that the function values (observations or

data sets) have noise or random component associated with it. Bias error measures

the extent to which the metamodel estimation (i.e. f(x)) deviates from the actual

observations (i.e. f(x)) calculated over the whole set of the DOE. Considering a

quadratic loss function, the bias error is:

Ebias(X) = {EADS[f(x)] - f(x)} 2  (D.2)

where EADS denotes the expected value considering all possible data sets. Variance,

on the other hand, quantifies how the surrogate model (1(x)) is sensitive to a given

training data set D, a random selection of the total observation set. The variance is

mathematically stated as:

Evar = EADS[f (X) - EADS [fx)]] 2  (D.3)

There is a mutual trade-off between the bias and variance errors. In fact, a sur-

rogate model that tends to fit a given data set (low bias) entails a higher variance

[2761. Smoothing the surrogate function can decrease the variance. However, if sur-

rogate function is smoothed excessively, the bias increases as the surrogate function

poorly predicts the actual observations. Basically, both bias and variance can be si-

multaneously decreased by changing the surrogate model (choosing more appropriate

metamodel based on the specific behavior of the observations) to decrease the bias

and by increasing the size of training sets used to construct the surrogate model to

lower the variance error. Usually, the numbers of the observations are extremely re-

stricted because of the experimental costs or computational expenses associated with

performing each observation. In practice, the design of experiment involves finding a

balance between the bias and variance to minimize the associated costs. This balance

is achieved by minimizing bias while imposing restrictions on the model complexity

for example by using Tikhonov regularization. However, in the design of experiments

for deterministic computer simulations where the numerical noise is negligible, the

main focus is shifted to the minimization of the bias error. In fact, the space-filling
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tendency of the modern DOEs is intended to assist in minimization of the bias error.

The bias minimization can be rigorously performed for some simple cases. For ex-

ample, if the underlying model is thought to be a polynomial of a given order, there

exist a theoretical design which minimized the bias design [244, 2751. In general, the

bias can be significantly reduced if the design points are scattered uniformly in the

design space [49, 293, 325J. Although the full factorial design is relatively uniformly

distributed in the design space, the associated computational cost associated for such

a dense design brings forward the idea of choosing only an adequate fraction of the

factorial design. Such a design is usually referred to as fractional factorial. In general,

the uniformity of the design space can be ensured via maximization of the minimum

distance [1631 or minimization of a correlation measure between the design points

[156, 2541.

D.1 Different Flavors of design of experiment

The choice of the design of experiment can strongly affect both the accuracy and

the cost of the construction of the metamodel. Here, we elaborate on two DOE

strategies, namely full factorial design and psudo-Monte Carlo design as they are

commonly used in uncertainty propagation and design of experiments in problems

involving many variables and mixed dummy-continuous design spaces.

D.1.1 Full and Fractional Factorial Design

Full factorial design (FUFD) is a classical DOE in which design variables are varied

together, instead of one at a time. Therefore, FUFD is capable of capturing the

interactions between design variables. In FUFD, the upper and lower bounds of all

Nd design variables needs to be identified in advance. Subsequently, the admissible

range of each design variable is discretized at s levels. If the design variables are only
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(a) (b)

Figure D-1: The schematics of design of experiment in two dimensional space. a)
Full factorial design with seven and eight intervals in X1 and X2 design variables,
respectively. b) Pseudo-Monte Carlo sampling in X1-X2 space.

restricted to the upper and lower bounds (2-level FUFD), the FUFD consists of 2'

design points. Similarly, if the midpoints are also included in the DOE as well, the

number of design points will be 3' which is called 3-level FUFD. FUFD designs can be

employed to construct higher order polynomials (second and more) which reproduce

the interaction between design variables and the response surface curvatures. The

main drawback of FUFD is that the number of design points grows exponentially

(sNd) which for complex systems with large number of variables is intractable.

If the set of design variables becomes significantly large, only a fraction of FUFD

can be used at the cost of sacrificing the ability to capture the interaction between the

variables. This approach is called fractional factorial design (FRFD) which is exten-
1

sively used in screening stage. For a sNd FUFD, a (-)P fraction can be constructed,
S

resulting in s(Nd-p) designs.

D.1.2 Central Composite Design (CCD)

Another classical DOE is the central composite design (CCD) which can be utilized

to construct full quadratic (second-order) surrogate models. CCD is constructed of

2-level FUFD augmented by center and axial points to allow estimation of interaction
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parameters in a quadratic model. In CCD, the number of design points is (2 Nd 2 x

Nd + 1), where 2 Nd corresponds to 2-level FUFD points, 2 x Nd is the number of

composite points in each design directions plus 1 point in the center of the design.

CCD is usually viewed as an alternative for the 3-level FUFD (15 points in CCD and

27 point in FUFD). A common drawbacks of CCD and other classical DOEs is that

they tend to place design points at or near the boundaries of the design space. This

leaves the interior of the design space mostly un-explored.

D.1.3 D-optimal Designs (DOD)

As stated by Myers and Montgomery [244] for construction of modern DOE, the D-

optimality criterion enables an efficient building of quadratic surrogate models. In

D-optimal designs, the objective is to select N design points from a larger set of

potential design points. If the polynomial regression is written in the matrix form as

f = Za + E such that Z is the matrix of the values of design variables at the potential

design points (see section E.1.1 for polynomial regression), then the D-optimality

criterion states that the best set of points in the experimental design maximizes the

det(Z T Z) where the "D" stands for the matrix determinant. From a statistical point

of view, a D-optimal design is attributed to a design which minimized the maximum

variance in the predicted response. In other words, the choice of a D-optimal design

reduces the statistical error in the estimation of the coefficients of the polynomial

model. The advantages of the DOD are the ability to use irregular shapes and to add

extra design points.

D.1.4 Lattice Hypercube Sampling (LHS)

In stratified sampling, it is made sure that all the design variables are explored uni-

formly at all levels which usually leads relatively small variances [293]. The idea of

Latin squares and specially their generalization to Latin hypercube were performed

by Kishen [174]. In modern DOE, LHS [220] is a flavor of stratified sampling with

the condition that all the portions of any dimension of the design space denoted by
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Xk should be sampled. As noted by McKay et al. [220] and Queipo et al. [276] for

deterministic computer simulations, an LHS design of size N, can be constructed by

dissecting all dimensions in the design space into N, strata with each stratum having
1

a probability of to be sampled (each partition is sampled only once). An LHS

sample can be denoted by x) where k denoted the dimensionality of the design space

(k = 1,..., K) and j represents the design point (k = 1,..., N). In this case, an

arbitrary LHS sample is composed of Xk with their components being matched at

random. An attractive aspect of LHS is that it allows tailoring the number of design

points with regards to the available computational budget. While the cost of a LHS

DOE scales with O(Nd), the cost of classical DOEs scale with O(sNd). This makes

LHS very appealing in modern DOE. Although LHS provides an improvement over

unrestricted stratified sampling [320], it can produce samples with considerable range

of performances. For instance, an LHS constructed by placing the design points along

the diagonal of the design space, is not only a poor arrangement in terms of uniformity

criterion but also is co-linear (high spatial correlation) which leads to ill-conditioned

linear system of equations (e.g. least square scheme in polynomial regression, see sec-

tion E. 1.1). This is mainly because of the nature of the randomness in the distribution

of LHS design points, as they might not meet the requirements for the uniformity. As

discussed above, this shortcoming can be overcome using maximizing the minimum

distance or minimizing the correlation schemes.

D.1.5 Orthogonal Arrays (OA)

OA is a generalization of LHS which was originally suggested in the work of Ruo

[278, 279]. In the field of combinatorial design, an orthogonal arrays is a table whose

entries are chosen from a set of symbols (usually {1, 2,.. ., n}). The symbols are

arranged in such a way that there exist an integer t, called strength, so that every

selection of t columns forms exactly -y t-tuples (known as OA index) of the symbols,

constructed by taking symbols from each rows as restricted by the specified t columns.

In DOE, the size of the OA table if N, x Nd where N, is the size of the training
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sample and Nd is the number of design variables. Here, N, = q' relates the number of

samples (N,) to the number of symbols (q) and the strength. An OA can be shown

in a vector form as OA(N,, Nd, q, t). In fact, OA(N,, Nd, q, 1) is nothing but an LHS

design. There are two major limitations with OA. The first is the lack of flexibility

as imposed to N, as it cannot have an arbitrary integer vale depending the strength

and number of levels. See Hedayat et al. [145] and Owen [254], for further details.

Secondly, the OA design projected to the subspace spanned by an effective factors

(set of the most influential parameters) can results in replication points for y > 1.

This is undesirable as it influences the bias and might cause mathematical singularity

in constructing surrogate models.

D.1.6 Optimal LHS, OA-based LHS and optimal OA-based

LHS

various methods have been proposed to resolve the lack of uniformity in LHS designs

with the main idea being to optimize some relevant criteria (minimum distance or

correlation) over the sample points [163, 254, 156]. As noted by Ye et al. [366], these

methods are insensitive with respect to the optimal design criteria. Tang [325] has

proposed an strength t OA-based LHS and has compared it with the standard LHS

which the former is shown to be far superior. In optimized OA-based LHS, a measure

of the spread of the sample points is optimized and the LHS search is restricted to

orthogonal arrays [190]. In adaptive DOEs are proposed to insert additional points

in the experimental design which is the outcome of the model appraisal step [164,

2561. Finally, having identified the surrogate model, the DOE can be optimized in

such a way to suit that particular choice of the metamodel. Myers et al. [244]

have extensively discussed the minimization of the variance in polynomial regression

models. Qu et al. [275] have proposed a minimum-bias central composite designs for

the polynomial regression models. The computational expense for optimization of the

more advanced surrogate models are almost prohibitive and it is rarely performed.
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D.1.7 Audze-Eglais' Design (AED)

Audze and Eglais [?] have suggested an optimal LHS with a non-traditional criterion

(correlation) for optimization of DOE regardless of the mathematical description of

the problem under consideration. The procedure to construct an AED consists of

two steps. In the first step and analogous to the LHS design, the Nd design variable

are discretized to N, levels (equal to the sample size). In the second stage, the

uniformity in the desig space is ensured as much as possible. This is analogous to

an energy minimization scheme in a multi-particle system (particle ++ design point)

with repulsive forces arising from electrical or gravitational origins. In both cases, if

the charges or the mass is assumed to be identical at all the design points and equal

to 1, then the total potential energy UP can be written as:

N8 N8

Up =V(D.4)
i=1 i=i+1 1J

where Lij denotes the euclidean distance between the ith and jth point in the design

space. Simlar to degeneracy of the states in the statistical physics, the minimization

of eq. D.4 with respect to Lijs is non-unique. Regardless of the non-uniqueness,

AED invloves an optimization in a high-dimensional space (large Nd) which compu-

tationally scales with (N, x Nd) 3 using Gauss-Jordan elimination which is the main

disadvantage of AED. The other disadvantage of this method is that once the optimal

design is achieved no extra points can be inserted to the final set without reading the

second step.

D.1.8 Quasi-Monte Carlo Samling (QMC)

Quasi-Monte Carlo sampling (QMC) or low-descrepency sampling (also called quasi-

random sequences or sub-random sequences) employs deterministic algorithms to gen-

erate design points in an Ne-dimensional space, so that the outcome design is fairly

uniform. The term discrepancy referes to a quantitative measure of deviation from

an ideal uniform distribution. Hence, discrepancy is a desired feature of this class
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of modern DOEs. In other words, analogous to Auzde-Eglais' Design which enforces

uniformity by minimization of a fictional potential energy (see section D.1.7), the

final design in QCM is unstructured but nearly equally spaced in the design space.

QMC has a few variants such as Halton [138], Sobol [314] and Hammersly Sequential

Sampling [1411 which all have the same convergence rate.

1
It is mathematically shown that quasi-MC has a convergence rate of O(- x

Ns
1

(log1 o N)Nd-1) where as the convergence rate of psudo-MC method is O( ) [253].

Niederreitee [246] has discussed the error bounds on multi-dimensional integration

Comparing pseudo- and quasi-MC. Based on the conclusion of the Niederreitee's

work, for low-dimensional design spaces (Nd < 5) quasi-MC sampling leads to lower

integration errors than pseudo-MC sampling. for Nd > 5, the average error of pseudo-

MC sampling is lower than the exact error of quasi-MC over the most reasonable

values of the number of the samples (Note that QMC is deterministic while MC is

probabilistic). However, since the error bound of the pseudo-MC is a probabilistic

quantity, there is no guarantee that a particular set of pseudo-MC samples obtain this

error bound. For this particular reason, some researchers in the numerical integration

community prefer using quasi-MC as the error bound is exactly known.

D.1.9 Pseudo-Monte Carlo Sampling (MC)

Psudo-random sampling was first applied to computer simulations by Metropolis and

Ulam [2251 introducing the idea of psudo-random sampling for solving integral differ-

ential equations [113j. The prefix psudo refers to psudo-random number generation

algorithms which are intended to emulate a true random behavior. Historically, the

term "psudo" has dropped off and this technique is commonly referred to as Monte

Carlo (MC) method. Given an interval [xLxu]Nd MC sampling invloves generation of

the design point at random which the samples are ordered Nd-tuples. The idea of MC

sampling can be extended to general convex design spaces by enforcing geometrical

restrictions. However, the high-dimensional MC sampling in non-convex spaces can

become nontrivial. While MC sampling is easy to implement, it might leave a large
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portion of the design space unexplored due to random and independent nature of

psudo-random number generation. The non-uniformity problem can be resolved by

techniques such as stratified Monte-Carlo sampling [129]. Similar to LHS, the design

variable domain is discretized in to s equally probable bins. Subsequently, a design

point in each bin is randomly selected to ensure uniformity in the design space. The

Main disadvantage of the stratified MC is that the computational cost of such design

is of order O(sNd) which makes it unappealing for the study of complex systems with

large number of design variables.

D.2 Sampling Non-uniform and Correlated Distri-

butions

Depending on the system under investigation, the design variables might not be uni-

formly distributed in the design space. In such conditions, MC is advantaged over

FFD as it can handle non-rectangular distributions. There are few methods for sam-

pling random variables from a general probability distribution function (P(xi)). Here,

we use the most common approach known as inverse method. According to inverse

approch, # (a random number from P distribution) can be generated using:

0 = C-1(ae) (D.5)

where a is a uniformly-distributed random number and C 1 denotes the inverse of the

cumulative distribution function (CDF).Another challenge in the analysis of complex

systems is that the design variables might turn out to be correlated. To generate

random variables with correlated structure, we consider F = (L 1 , L2 , L3 ) as vector of

random variables which its elements attribute to the L2, LY and L,. The covariance

matrix identifies the correlation between different elements of F and is defined as:

COV(Li, Lj) = E{[Li - E{Lij] x [Lj - E{L}]}, i, j = 1, 2,3 (D.6)
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where E{ } denotes the expectation operator. To transform non-uniform to uniform

distributions, we use the CDF (Fi) of F elements leading to:

Ai = F (Li) (D.7)

Subsequently, the fractile correlation matrix for A reads [248]:

COV (Am, An)
Rmn = R (Am, An) - ' - 12E{Arn x An} - 3 (D.8)

o-(Am) xa (An)

where o is the variance operator. It is readily deduced from the definition that

the fractile correlation is invariant with respect to monotonic transformation. Now,

assuming that a translation form for the random variable F exists such that F can be

written as a transformation of a Gaussian variate:

Li = Fi' (G (Vi)) (D.9)

where 0i is the zero-mean unit-variance random vector and G is the CFD of the

standard Gaussian variate. Applying the monotonic transformation of the form given

by Eq. D.7 to the both sides of Eq. D.9 reads:

F (Li) = G (V@i) = Ai (D.10)

which implies that the fractile correlations of the translation variate and underlying

Gaussian are matching. The moment-product correlation function (also covariance

function) of the standard Gaussian variate can be obtained from its fractile correlation

using the following simple relationship, originally proposed by Pearson in 1904 for the

case of random variables [150]:

COV ( ), ,,) = 2sin (- x R (LMr, La)) (D.11)

Note that Eq. D.11 results in a valid covariance function only if it is non-negative

definite. Once a valid covariance function is in hand, the simulation of building length
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random variable can be done by first generating the samples of underlying zero-mean

Gaussian variate with a prescribed covariance matrix (generation of standard multi-

variate normal distribution with known covariance is performed using MATLAB®),

and then applying the transformation given by Eq. D.9.
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Appendix E

Response Surface Methodology

Any function that represents the trend of an observation over the range in design

space is referred to as response surface. Traditionally, while response surface denotes

the use of low-order polynomials in engineering applications, it is usually referred to as

the true observation in statistics community where "response surface approximation"

is the estimation of the true response. Response Surface is also called by many

other names such as metamodel, surrogate model, approximation model, emulator

or simply the model in different fields and contexts. Nonetheless, the common goal

of response surface modeling is to estimate and predict the underlying trends in

observed responses. While there are many forms for the approximation function, a

generic model can be written as:

f(x) = f(x, x, ym(xs)) (E.1)

where the sample design points are represented as x., the already measured response

data is denoted as fm(x,), f is a pre-specified function and f(x) is the estimated

response at an arbitrary point x in the design space. In this light, the surrogate mod-

eling can be viewed as a non-linear inverse problem for which we aim to identify the

continuous function (f) from a limited number of observations in the design space.

The available observations (f(x)) can have either deterministic or probabilistic nature

and therefore cannot possess sufficient information to uniquely identify (f). In fact,
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the solution to the inverse problem is non-unique and multiple surrogate functions

can be found to be consistent with the existing set of observations. Therefore, the

surrogate modeling is a coupled problem of mutually constructing a model f (model

estimation) and evaluating the errors associated with it (model appraisal) [313].

The parametric and non-parametric RSMs are the two alternatives to construct a

surrogate model. While the global functional form between the design and response

variables are known in the parametric approach, the non-parametric ones utilize dif-

ferent types of rudimentary local models in different regions of the design space to

build up the metamodel. Polynomial regression and Kriging [1821 are among the

most notable variants of the parametric RSM. Radial basis function, multiple adap-

tive regression splines [119], projection pursuit regression [120] and neural networks

[144] are the most common non-parametric RSM. A robust approach to investigate

the appropriateness of a particular model (f) is provided by regularization theory

[336, 237] which imposes extra restrictions to the estimated model. Hence, f can be

selected as the solution to the following Tikhonov regularization problem:

min Z(f) = I NsL (fi - f + A f j|Dm f||Hdx (E.2)
fEHf Ns X / J

where H is the set of surrogate models under consideration, L(x) is the loss function

(e.g. quadratic, Laplace, Huber, and c-insensitive) used to quantify the empirical

error, A E R+ is a regularization parameter, and Dmf is the m-derivative of the

proposed model. While the first term in the right hand side of eq. E enforces closeness

by characterizing a proximity error, the second term ensures the smoothness of the

proposed model by penalizing large derivatives (e.g. large curvatures for the case

of m = 2). In fact, the role of A is to enforce Occam's razor principle (principle of

parsimony, economy or succinctness) by favoring simplicity in the model construction

[45].
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E. 1 Different Flavors of Metamodels

Here, we discuss the model estimation and appraisal components corresponding to dif-

ferent parametric and non-parametric RSMs including polynomial regression, radial

basis function, Kriging and multiple adaptive regression splines.

E.1.1 Polynomial Regression (PRG)

One of the basic parametric methods of the surrogate analysis is the polynomial re-

gression (PRG). Recently, Brown [53] used this method for constructing emulators

based on the MIT Design advisor online application. Hygh et al. [155] constructed

a surrogate model for building energy simulation using Energyplus simulation soft-

ware. PRG quantitatively associates a function of interest f to a set of Np,1, basis

functions zj. In a design of experiment with a total N, observations, PRG relates

an observation fi to a set of basis functions z) at the ith point. This rises to a set of

N, linear equations:

f2 (z) = Z x z +) +C-+ f = Za + C (E.3)
j=1

where Eq is the independent error with expectation value of zero (E(fi) = 0) and

variance of a2 (Var(ci) = U2 ). In the matrix formulation in eq. E.3, Z is a N, x NP'jy
sets of polynomial evaluated at DOE points, a is a Npo, x 1 vector of the coefficients of

the regression and f is a N, x 1 vector of observations. The most common polynomial

forms in metamodeling are linear, pure quadratic (no cross-correlation terms) and

full quadratic. For example, a full quadratic polynomial in a two dimensional design

of experiment (Ndesign = 2, Npo01 = 6) can be written as:

Ndesign Ndesign Ndesign

f(x) = ao + aiji + azixix (E.4)
i=1 i=1 j>i

The coefficients of regression can be estimated using the least square method (6)

which entail their unbiasedness and minimum variance. Therefore, the vector of
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estimated regression parameters can found as:

& = (ZTZ)-lZTf (E.5)

E.1.2 Kriging Method

Kriging was originally developed in geostatistics (spatial statistics) by Danie Krige

[182], a South African mining engineer. Later on, Matheron [216], a french math-

ematician, further developed the mathematical foundation of Kriging technique. It

has recieved a popular acceptance in geostatistics applications ranging from hydrology

(e.g. advective transport in underground water), environmental science (e.g. the air

quality [35]), natural resources (resource evaluation [1331 and ore selection in mining

[2891) to health sciences (e.g. spatial mapping of sexually transmitted disease [189]).

Kriging was first applied to the field of deterministic computer simulations by Sacks

et al. [293]. Afterward, it was applied to problems in structural optimization and

reliability [295, 170], metal forming process [160] and design of aerospike nuzzel in

aerospace applications [309]. Recently, Kleijnan [176] has reviewed Kriging and its

more recent variants. Martin et al. [213] utilized Kriging to perform test studies on

different problems. Among few implementations of Kriging method, we use DACE

MATLAB® toolbox provided by Lophaven et al. [198].

Kriging is a statistical method designed to estimate the response surface given a

set, S, of already observed measurements including n observation points. While y(si)

is the response at the point si, it can be generally assumed that y(si) is merely a single

realization of a much fundamental random process, Y(S). Therefore, if x represents

an untried point in the admissible domain, X, y(x) and Y(x) are the estimate of the

observation and the random process producing that observation at x. The estimate

of the observation at untried point can be simply written as a linear superposition of

already measured observations:

n

Y(X) = C (x) x Y(s) (E.6)
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where Cl(x) is the strength of observation at point Si at point x. It is obvious that

the expectation from Y and Y is the same:

E[Y(x)] = E[C'(x)Y(s)] (E.7)

The Kriging method intends to provide the best estimate for Cl(x) by minimizing the

mean square error (MSE) defined as:

MSE[Yx] = E[Y(x) -Y()]2 = E[C'Y(s) -Y()]2 = E[C'Y(s) - Y(X)] 2  (E.8)

= E[C'(x)Y(s)Y'(s)C(x) + Y 2 (X) - 2Y(x)C'(x)Y(s)]

Statistically speaking, C(x) denoted the degree of correlation between the at point

si and x. Two correlation matrices are defined subsequently:

r(x) [R(sj, x),x 1 ] = [R(si, x)R(s 2 , X) ... R(s,, x)]' (E.9)

and

R(si,si) ... R(sis)

R = [R(si, s).x . (E.10)

R(s,,, si) --- R(ss, s,,)

where r and R are the correlation matrices between observed-untried and observed-

observed sets, respectively. Also, R(si, sj) is defined as the COV(s, X)/o 2 where COV

is the covariance matrix in statistics defined as COV(s, x) = E((s - E[s])(x - E[x])),

and a.2 denoted the standard deviation. There are many choices to adapt for the

correlation functions but the most prominent which is stationary, (i.e. R(si, sj) =

R(si - sj)) as well, is the multiplicative Gaussians:

R(si, x) = J7 exp(-Ok(si,k - Xk)2) (E.11)
k

where k permutes over all the dimensions of x. In this functional form, thetak rep-

resents the correlation strength in the kth direction. It should be emphasized that
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since the Kriging does not use an Euclidean or Riemannian norms, then the issue of

dimensional homogeneity will not occur as different dimensions are treated separately.

By employing the above mentioned correlation functions, the MSE (eq.E.8 ) can be

simplified to:

MSE = + 1 - 2C'xn(x)r(X)nxl) (E.12)

Therefore, the C'(x) coefficient can be estimated by minimizing the simplified form of

MSE, introduced above. However, a constraint should be satisfied in the meantime;

That is the observation at the untried point x should match the interpolation of some

test functions. This test function can be linear interpolation between the data-set or

other suitable fitted functions:

f (X) = [fl(X)f2(x) ... f m (X)]' (E.13)

and

fi(si) ... fm(Si) 1
F =(E.14)

Ji(s, ) - fm(Sn)J

then the constraint would be in the form of:

F'C(x) = f(x) (E.15)

Therefore, the problem of finding the best coefficients reduces to a constraint mini-

mization problem, as defined below:

minc(x) : 1 + C'(x)RC(x) - 2C'(x).r (E.16)

F'C(x) = f(x)

This constrained minimization can be solved using Lagrange Multiplier method (please

note that the multiplier is assumed to be 2A instead of A as this produces a nicer final
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expressions):

w(c, A) = (1 + C'(x)RC(x) - 2C'(x).r) + 2A'(F'C(x) - f (x)) (E.17)

Then, w should be minimized with respect to both C(x) and A:I = 0 -* F'C(x) - f(x) = 0
aA (E.18)

() 0 -- + RC - r + AF = 0
09C(X)

The above system of equations can be written in the matrix form as:

[Oxxm n,' x A',xi f(x)mxi (E.19)
Fnxm Rmxmr (r+n)x(rn+n) C(x)nxlJ L r(x)nxi J (r+n)x1

The solution of the above system yields C(x) and subsequently y(s) can be estimated

via eq.E.6.

Y(X) = F'(x)/ +r'(x)R-(Y(s) - F3) (E.20)

4 = (F'R-1F)-'F'R-1Y(s)

In fact, the first term in the right-hand side of E.20 is the contribution of constraint

functions to the response at x, while the second uncorrelated second term provides a

smooth response of the residuals at the untried point, x.

It is emphasized that MSE is a strong function of the correlation parameter 0. Ob-

viously, for any given set of 0's, Kriging yields an estimate of the observation at

point x. But, the best Kriging solution is achieved if the optimum set of 0's are

utilized. Ideally, this can be reached by minimizing the MSE with respect to 0's.

However, there are two other approaches to estimate 0's using Cross-Validation (CV)

and Maximum Likelihood Estimator (MLE). Especially in the MLE approach, one

maximizes the likelihood of observations at already observed points by varying O's.
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This is mathematically stated as:

OMLE C_ {arg max i(OjY(si), Y(82), . ,Ys)}(E.21)
OcE)

However, there is a strict rule in MLE that the observations of Y(s) should come

from a Gaussian distribution. This is not very much the case for deterministic com-

puter simulations. However, as we know the residuals are distributed normally which

can be tested via Shapiro-Wilk normality test. Therefore, one can write the above

formulation for MLE in more mathematically sound form:

OMLE C {argmaxf(OIY(s) - F(s)} (E.22)

where F is a simple response surface such as polynomial regression. Using the MLE

in describing the residuals, the Gaussian process can be assumed to describe the

normality of residuals when estimating the response surface via the Kriging method

[130]:

L(7jY) = (2ro)n/2 det(R) H" 1 H 1 exp[- (Y(si) - F(sj)#)R- (Y(sj) - F(sj)o)]

( , 9, 0)

(E.23)

-y is the vector of unknowns in the likelihood function. The log-likelihood is written

as:

l(b|Y) =- ln(27ru.2 ) - ln(det(R)) 22(Y - F#)TR-1(Y - FO) (E.24)l~~)= 2 2 -2a2 -- F3) (.4

Now, if 1(ylY) is minimized with respect to U 2 and 0, =i(-Y) - 0 and &iHY) = 0,BO.2 ao
the optimal 3 is found to be identical to beta in eq. E.20. and the estimate of the

variance is:
1

S= (Y - F4)TR-1(Y - F) (E.25)

Having 3 and &2 known and at hand, the problem reduces to numerically maximize
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l(710) which yields the estimate 0.

E.1.3 Multiple Adaptive Regression Spline (MARS)

The next variant of RSM is called Multiple Adaptive Regression Spline (MARS).

MARS was initially proposed by Freidman [119] to efficiently approximate a re-

sponse surface in a piece-wise regression scheme. This method has found an un-

precedented acceptance in different fields of science and applications in engineering

including speech modeling [152], mobile radio-channel prediction [105], intrusion de-

tection in information system security [240], the correlation between retention indices

and molecular description of Alkanes [362], pesticide transport in soils 1364]. It has

also got some attention in the finance for credit scoring [1911 and also medical science

by data mining for breast cancer patterns [701. Related to energy domain, Zareipour

et al. [371] used MARS to forecast the hourly Ontario energy price.

It should be emphasized that MARS is a non-parametric RSM approach. Global

parametric methods such as polynomial regression methods are easy to develop and

interpret. However, they have limited flexibility and work well only when the true

underlying relation is close to the pre-specified functional form. To overcome the

weaknesses of the global parametric methods, non-parametric models are developed

locally over specified sub-regions of the data.

In MARS, the data is searched for the optimal number of sub-regions and simple

function is optimally fit to the actual response in each sub-domain. Consider an n-

dimensional variable X with N realizations of the system connecting X to y, therefore

one can write the response surface as

y= f (X)+E=f (X1+ X2 + X3+...+X)+ (E.26)

where e denotes the normal fitting error with zero mean. Briefly, the RSM can be

approximated using MARS

M

f (X) = Co + Z amBm (X) (E.27)
m=1

241



where am are the coefficients of the fitting, M is the number of sub-domains or the

number of basis functions in the approximated model. The main core of MARS

modeling approach is the hockey stick spline which maps X to (

= max (X - C, 0) (E.28)

where C is referred to as the basis function knot. The mirror of the basis function is

actually covering the values below the knot

(* = max (-(X - C), 0) (E.29)

Therefore, the basis functions in Bm (X) can be developed as

km

Bm(X) = fi [max(sk,mn(X(k,mn-tm, 0)))] (E.30)
k=1

where km is the level of interaction between v(k, m), tk,m is the knot location, sk,m

takes +1 for the hockey stick basis function and -1 for its mirror image. Therefore,

the MARS overall functional form can be written as

M km

f (X) = Co + E am{F [max(sk,m(Xv(k,m)-tkm, 0)))]} (E.31)
'M=1 k=1

MARS models are developed through a two-stage forward/backward step-wise re-

gression procedure. In the forward stage, the entire domain is split into overlapping

sub-domains and parameters are optimized by lack-of-fit criterion. If the maximum

number of sub-regions is not specified, an over-fitted model will be produced. In the

backward stage, the basis functions, which no longer attribute to the accuracy of the

fit, will be removed. Usually, the users and limited to the second order problems

set the level of interaction between the variables. A modified version Generalized
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cross-validation criterion is used in MARS as the lack-of-fit criterion:

MGCV = - N [-2 (E.32)
[1 -C(M)/N]

where [1 - 0(M)/N] 2 is a penalty factor avoiding over-fitting. C(M) is defined as

0(M) = C(M) + d x M (E.33)

where C(M) is the number of parameters being used for fitting and d is the complexity

penalty usually set between 2 and 3. To perform MARS modeling, we employ a

MATLAB® toolbox (AresLab) developed by Jakobsons [161].

E.2 Metamodel Performance Metrics

In surrogate modeling, usually two DOE sets are constructed, one is training data

set used for construction of the metamodel and the other one is testing set utilized

for investigating the performance of the surrogate model. One can define different

parameters to assess the fitness of the surrogate model [162]. These parameters known

as performance metrics should have different characteristics to be suitable for studies.

The first characteristic is accuracy, which implies the capability of predicting the

system response over the proposed design of experiment space. Second, the robustness

is also crucial as it entails the capability of achieving good accuracy in different

problems. The third attribute is efficiency because of the computational expense

required for constructing the surrogate model and predicting untried points. The

fourth feature is the transparency which is the capability of providing the information

concerning contributions of different variables and interactions among them. The last

aspect of these metrics is conceptual simplicity which translates directly to the ease

of implementation with having less user inputs and adaptability to new problem sets.

To quantify the performance of a surrogate model, its performance should be

analyzed against a training set. There are three metrics, while the first two being
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global, the third is rather local. The first metric is coefficient of determination or R

square:

R 2 - 5 -E= (E.34)
11(y, -)2 c

where yi, 9j, y are the actual observation, model prediction and the mean of the

observations in all untried points, respectively. This metric can also be stated in

terms of more familiar statistical parameters such as mean square error (e 2 ) and

variance (o2) of the test data set. The second variable is relative average absolute

error (RAAE) defined as:

RAAE = - (E.35)
n x o-

The third metric is the relative average absolute error (RMAE) which is defined as:

RMAE = max(lyi - 91I, JY2 - 21,- - -Y, i - Yil) (E.36)

In practice, it turns out that RMAE and RAAE are highly correlated and therefore,

one of them along with R2 would be enough to investigate the performance of the

surrogate model.
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Appendix F

Building Energy Consumption

Modeling

Researchers have worked on computational tools for estimating building energy con-

sumption for the past few decades. As a result of these numerous efforts, several

software packages are developed. Depending on the supporting services, these pro-

grams can be proprietary, free or licensed under GNU. Some of these tools might be

more specialized and hence more reliable for some applications than other. Endorsed

by the US Department of Energy, Energyplus [84] is an energy analysis and ther-

mal load simulation program intended to improve the core computational elements

embedded in DOE-2 and BLAST programs. Energyplus calculations are based on

combined heat and moisture balance using sub-hourly weather data. Although the

source code is not public, it is offered free of charge and the developers assert that

it is extensively before release. TRNSYS [177] is a proprietary software developed at

University of Wisconsin-Madison and is composed of computational modules for the

transient heat transfer simulation at the building level. Using steady-state heat flow

calculations, MIT Design Advisor (MEA) [348, 3471 is a web-based building energy

simulation tool which aims to help reduce building energy demand at early design

stage. Benchmark studies suggest that MEA's results are within 5-10% of the Ener-

gyplus predictions [349]. In this work, we utilize a UNIX version of the Energyplus.

Unix operating system not only helps with easy manipulation of input and output
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Air Flow Network ModuleI I
Sky Model Module ----- -- r ------ --- ----- - Air Loop Module
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Daylight Module Heat Heat System Plant Loop ModuleBalance Balance SimulationIWindow Module Iind MManager Manager ' Module Condenser Module

Conduction Module ---- --------------------- -------------- PV Module

Figure F-1: The schematics of the solution engine of Energyplus which presents a
complex system comprised of several modeules. Through interaction between different
modules, the solution manager calculates energy consumption considering climate and
human behavior and fundamental physical laws of heat transfer.

text files but also enables us to run several Energyplus calculations at a time on High

Performance Computing resources. In this section, we elaborate briefly on Energy-

plus's computational engine. Eventually, This helps us better understand physics of
building heat transfer.

F.1 Zone Heat Balance

Energyplus simultaneously solves the envelope, the system energy, and the air bal-

ance by considering multiple thermal zones (see Fig. F-1.). Energyplus solves implicit

finite difference equations to enforce conservation of mass and energy. While the con-
servation of mass law controls the humidity level, the heat balance is enforced by the
conservation of energy. The energy and humidity balance equations are simultane-

ously solved at hourly or even sub-hourly scales in all zones, air system and either

side of the building envelope. Without undermining the effect of humidity and for the
sake of brevity, we particularly focus on the energy term. Assuming a control volume

for the total volume of a thermal zone, the heat balance can be written as (see Fig.

F-2):

air = Pj -+ conv -+ (mix -+ Oinf + ( HVAC (F.1)

246



Air system output

Z Convective Internal

load

Heat transfer due to

io- inter-zone air

IEnergy mixing
stored in

zone air
Lt Z

Internal loads

Control volume

Zone boundaries

4' HVAC system

, Zone air

Heat transfer due to infiltration of outside air

Figure F-2: Heat balance in Z1 zone of a two zone system. The two zones are
separated with a wall. The heat balance considers convective, infiltration, system
input air and the energy stored in the air.

where Qair, Qpi, Ocon, Qmix, Qifn, and QHVAC are the rates of indoor air thermal

energy, internal point load (residents, lighting, etc.), the heat convection from the

envelope surface, inter-zone mixing energy, infiltration energy contribution, and en-

ergy source from the HVAC system, respectively. The energy rates in eq. F.1 can

be separately stated in terms of the thermal oscillations and thermal properties of

building surfaces and air:

r dT,(t
Qai, = Cir x dt

conv hj x Aj x (T.(') - T('
j=1

Nzone

Mix = X I, x V x C' x (T9 - T
i=1

Qinf = Ienv X V X Cair x (TlQ - T t)

OHVAC = Isy, x Caji x (Tj, - T t )) (F.2)

Oair is simply stated as a function volume heat capacity of air Ca"r times the rate

of indoor temper oscillation T. Using a Newtonian convection model, Qair is the
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effective convection coefficient hj times the surface A3 multiplied to the temperature

difference between that surface Timy and the indoor temperature for the whole building

envelope. Qmix is the inter-zone infiltration rate Ii times the zone volume V multiplied

by the heat capacity of air and temperature difference between the neighboring zones

and the zone under consideration. Q2nf describes the air exchange rate between indoor

and outdoor Ien, with the outdoor temperature denoted as T,. QHVAC provides air

at the rate of Is and the temperature of T,, to balance energy loss or gain in

the zone. This represents a simple HVAC system with constant mass flow rate and

variable temperature. For more complex HVAC models (e.g. systems with variable

air volume), the relevant equation for QHVAC changes accordingly.

The form of conservation of energy presented in eq. F.1 is an ordinary differential

equation. While the analytical solution might exist for simple cases (e.g. assum-

ing dTzit = 0), finite difference (FD) method can be utilized to numerically solve
dt

this ODE. Due to the cyclic nature of the building heat transfer, FD error does not

accumulate and moderately cancels for repeating cycles. The solution engine in En-

ergyplus provides the option to choose between Euler and 3 rd order backward finite

difference methods. Employing the second approach in this work, the rate of indoor

temperature oscillations is expanded in the following form:

T 1_ T- 6 - 3T- + T t2 (t3At)
z t) 6 2 Z3 (F 3

dt At(F.3)

where At is finite difference time steps. By applying the above finite difference scheme

to the equations of energy conservation, the indoor air temperature at time t is

derived:

Q,1 Z ! hi AiT L~J ZNzone I+VC:iTh I + IsyscaT Ti
= 11 cTrSUP

x Ci + E Nurf h Aj + EZvone I.VCir + IenvVCvir + Iycair +
6 -T

Cvair 3T-(tt) - 3 T (~2st + 1Tlt~Mt)
AT \ 2 3 -

11 C_ Zrf h.A. + E z I.VCair + Ien+VCi + IYCir (4
6= At
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Shortwave radiation
including direct, Shortwave radiation

reflected, and diffuse from solar and internal
sunlight sources

Longwave radiation Longwave radiation
from the surroundings with other surfaces in

Convective heat thCe on
transfer with outside Longwave radiation

air from internal sources

Convective heat
transfer with zone air

Figure F-3: Heat balance on the outside and inside surface of the envelope. According
to the energy conservation energy law, sum of all conductive, convective, and radiation
heat fluxes should be zero at any surface.

where the superscripts show the solution time step. In the right hand side of eq.

F.4, all the variables are known except T' . In fact, the HVAC system adapts

the supplied air temperature to keep the indoor air temperature at the desired level

(Tset). In Energyplus, the implicit dependence of T, to Tup is resolved by a predictor-

corrector scheme to iteratively calculate both unknown variables. In the first step of
dT1t )

the solution, it is assumed that = 0 and T,p is calculated subsequently fromdt
eqs. F.1 and F.2. In the next step, Tjt) is calculated using eq. F.4 and the estimated

Tep. This solution is used to re-evaluate T.,u. This iterative procedure is continued

till the convergence is achieved.

According to eq. F.4, the calculation of T, at any step of the solution is dependent

on knowing the temperature of all inner surfaces of (Tiw) enclosing that zone. The

calculation of Tw entails satisfaction of heat balance at the inner surface of the walls

which is related to heat conduction through the envelope and heat balance at the

outer surfaces of the building envelope. Next, we describe the heat balance at the

either surfaces of the building envelope.
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F.2 Heat Balance on the Outer Surface of the Enve-

lope

According to conservation of energy law, the heat flux rate leaving a surface should

be equal to the heat flux rate entering that surface. The heat balance on the outer

surface of the envelope can be written as (see Fig. F-3):

Qasoi + Qiwr + Qocanv - Qocond = 0 (F.5)

where Qasoi, Qewr, Qoconv, and Qocond are absorbed direct and diffuse shortwave solar

radiation, net longwave (thermal radiation flux exchange between surface, ground

and sky) radiation, convective heat transfer from the outer surface and conductive

heat transfer into the envelope, respectively. Qas. is a function of location (longitude

and latitude), surface angel and tilt, surface adsorption properties and atmospheric

conditions (sky visibility and etc). Qiwr depends on the surface adsorption properties

and temperatures of wall, ground, and sky. The relevant surface properties of the

envelope, emissivity c, absorptivity a, reflectivity 6, and transmissivity -Y (with a +

6 + -y = 1), are complex functions of temperature, angle, and wavelength. However

for building loads calculations, some simplifying assumptions are made (see Chapman

[62] and Lienhard 1196] for details). According to these assumptions, all surfaces are

assumed to reflect or emit diffusely and identically (angle-independent and e = a),

are gray (wavelength-independent) and opaque (-y = 0 and hence 6 = 1 - 6). In

addition, surfaces are assumed to have uniform temperature and the heat flux is

uniformly distributed across their surface. Furthermore, it is considered that the

medium within the enclosure does not involve in the process. Therefore, Qiwr can be

written as:

Qiwr = Qgnd + Qsky Qa+ r (F.6)

where Qgnd, Qsky, and Qair describe long-wave radiative heat transport between the

surfaces and ground, sky and surrounding air, respectively. Therefore, the long-wave
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radiation can be stated in terms of Stephan-Boltzmann law:

Qiwr = X - [VFgnd X (T nd - To,) + VkFyy x (Tiy - Tow) + V Fair x (T - Ti,)]

(F.7)

where c- is Stephan-Boltzmann constant and Tgnd, Tsky, T~o, and Tw are environmen-

tal ground surface temperature, sky effective temperature, outside air temperature,

and outside surface temperature, respectively. In Energyplus, Tgnd is set to be equal

to the outside air temperature TO. Also, VFgnd, VFoky, and VFair are respectively

the view factor of the envelope surface to ground, sky and surrounding air. These

view factors are given by:

VFgrd = - x (1 - cos())
2

3
1

VFoky = 2 x (1+ cos (0)) 2

VFair= x (1 + cos()) x x (F.8)

where # is the tilt angel of the surface.

F.3 Heat Balance on the Inner Surface of the Enve-

lope

Similar to the heat balance on the outer surface, the heat balance on the inner surface

can be written as (see Fig. F-3):

QlX + Q8w + Qlws + Qiccynv + Q801 + Oicond = 0 (F.9)

where (Lx is net long-wave radiant exchange between zone surfaces, Q8 w is net short-

wave radiation to surface from lights, Q1,, is long-wave radiation flux from internal

sources in the zone, Qicon is the conductive heat flux rate to the inner surface, and
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is transmitted solar radiation adsorbed at the surface.

There are two limiting cases for long-wave radiation among zone surfaces. The

first limit is to assume that the zone air is completely transparent to the long-wave

radiation. The other assumes that the zone air completely absorbs the longwave

radiation from all surfaces. Energyplus takes the first assumption in heat balance

calculation, which is a reasonable assumption as long as the moisture content in the

zone is fairly low. Being founded on the traditional notion of the view factor (VF),

Energyplus uses ScriptF method [151] to consider emission, re-emission and absorp-

tion modes of radiative heat transfer. ScriptF method contains matrix of exchange

coefficients between pairs of surfaces that includes all exchange paths with the as-

sumption that all surfaces are gray (wavelength-independent radiation properties)

and diffuse (direction-independent radiation properties). It is written as:

Qin(p, q) = oAp x VF(p, q) x (T - T ) (F.10)

where Twp and Tiwq are the temperature of the inner surface on the pIh and qth

surfaces. There are some complications regarding radiative heat transfer modeling

in building energy simulation. The first problem is related to the uncertainty in the

position of furniture and partitions. The second issue is the computational expense

related to the exact calculation of VF. To simplify VF calculations, it is assumed

that surface is not seen if it is not within 100 from the other surface and that all

surfaces can see the floor, ceiling and roofs. Furthermore, Energyplus approximates

the view factor in three steps. In the first step, Energyplus determines A (i, j) which

is the total area of surface j seen by surface i. In the next stage, the view factor is

approximated as:

VF (i, j) ~ ' lj (F. 11)Aj

It should be noted that no surface can see itself and thus A (i, i) = 0. The view factor

calculation in Energyplus is so approximate that a third correction step is required

to ensure reciprocity (two surfaces should exchange equal amounts of energy) and

completeness (I VF(i, j) = 1) in radiative heat transfer.
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The long-wave radiation from internal sources (Q1,,) need the exact knowledge

of all devices and their relevant radiative/convective model. Such considerations

are extremely case-dependent. Energyplus distributes internal shortwave radiation

(Q8 m) from light sources in a prescribed manner among all surfaces. Transmitted

solar radiation (Q ) is distributed over the surfaces in the zone in a preassigned

procedure. It is be possible to calculate the actual position of beam solar radiation,

but it involves partial surface irradiation [281, 282]. This is however inconsistent with

the rest of the zone model that assumes uniform conditions over an entire surface.

Next, we elaborate on the convective terms in the energy balance on the inner and

outer surfaces (eqs. F.5 and F.9).

F.4 Convective Heat Transfer

The complex turbulent nature of convective heat transfer complicates the measure-

ment of convection coefficient (h) and therefore it has been the subject of many

theoretical, numerical and experimental studies in the past several decades [77, 255,

157, 199, 25, 24, 44]. The nature of heat convection in outdoor (hst) and indoor

are different and they are treated with separate convection models in Energyplus.

When the weather data indicates raining condition, Energyplus assumes that all the

outer surfaces of the building are wet and subsequently sets T0" = Twet-bulb and
W

hout = 1000m2K. Energyplus provides several models for calculation of hst includ-

ing simple combined, TARP (Thermal Analysis Research Program) algorithm [353],

MoWiTT algorithm [3651, DOE-2 model and Adaptive Convection algorithm (ACV).

In simple combined model employed in this work, hut is a function of surface rough-

ness and the local wind speed (V) as follows:

hut =D+ExV+Fx V 2  (F.12)

where D, E and F are roughness coefficient and their descriptive norms vary from

very rough to very smooth surfaces. In Energyplus, the wind speed is automatically
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calculated for the building surface centroids (see details in section F.6).

Energyplus provides several categories and options for calculation of indoor con-

vection coefficient (hin). The inside surface classification is based on the flow regime

(dynamical properties) and the orientation of the surface (static properties). The

dynamical properties controlling the flow regime are Richardson number Ri and con-

vective stability (AT sign). Ri is a dimensionless quantity relating Grashof (Gr)

number and Reynolds number (Re) through Ri = Gr/Re2 . In buoyancy dominant

flow regimes Ri >> 1 and in forced dominated flows Ri << 1. Some of them are

dynamics a. The static properties include zone dimensions, HVAC type, hydraulic

diameter of horizontal surfaces, HVAC airflow rate, surface classification, and tilt

angle. Having implicitly or explicitly identified the static and dynamic convective

properties, Energyplus offers seven major indoor convection models. These models

are simple buoyancy, in-floor heating or in-ceiling cooling, wall panel heating, con-

vective zone heater, mechanical central diffuser, mechanical zone fan distribution and

mixed algorithm. Here, we employ simple buoyancy methods in our work due to the

absence of knowledge about the building HVAC system. Simple buoyancy method

uses Fohanno-Polidori relations [117] for calculation of internal heat convection coef-

ficient of vertical surfaces (hyer):

h ver ATJ 1/4
1.332 x ; Ra* 6.3 x 109  (F.13)

in= 1.235exp(O.0467H) AT 0 31 ; Ra* > 6.3 x 109  (F.14)

where DeltaT, H and Ra* are the temperature difference between wall surface and

ambient, wall height and modified Reighley number based on wall height, respec-

tively. For horizontal surfaces convection, simple buoyancy model utilizes Alamdari-

Hammond models [151 for both stable and unstable regimes.

h hr 0. x AT 1/5.
in= 0.6 D x/ AT > 0 : stable (F.15)

|AT 3/2 -1/6

hy = 7.53 +18.75| AT1 2  ; AT < 0 : unstable (F.16)(
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To Tz

I /ho 1 /hi

Figure F-4: The schematics of state space method with only considering 2 nodal
points at the inner and outer surfaces of the wall. The conductive and convective
thermal resistences are denoted as resistors and the thermal energy storge in the wall
is represented by capacitors.

where D, is the hydraulic diameter defined as D, = 4A/p where A and p denote area

and perimeter, respectively. Finally, simple buoyancy model employs ISO 15099:2003

[4] for estimating convection coefficients from glazing using:

hq' = N, x (F.17)

where Na, A and H. are Nusselt number, thermal conductivity of air and window

height, respectively. For extra information on convective heat transfer, see Energyplus

engineering manual and relevant references therein. In the next section, we discuss

the conductive heat transfer through the building envelope.

F.5 Conductive Heat ransfer

The temperature of building's inner and outer surfaces plays a significant role in

heat balance of conditioned zones and heat exchange with surroundings. These tem-

perature, namely Ti and T0,, are strongly dependent on the conductive thermal

properties of the walls. Such dependence is addressed via numerical modeling of

heat conduction through the wall thickness. In building heat transfer modeling, the
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conductive heat transport PDE (- -ith a being the heat diffusivity ofaT 0x2
the wall) is solved with the boundary conditions satisfying the heat balance equa-

tions on the either sides of the wall (Dirichlet boundary conditions). Energyplus uses

state space method which is a flavor of conduction transfer function (CTF) approach

[61, 303, 252] to calculate the nodal, temperatures and heat conduction through the

envelope (see Fig. F-4). For instance by considering two nodal points at the inner

and outer surfaces of the wall, the heat balance can be written as:

dTj TW- -To
C =t hot x (Too - Tow) + R' " (F. 18)dtR

dT TF -T
C _ t = hin X (Tz - Tiw) + R ' (F. 19)di R

where C is the thermal heat capacitance of the wall defined as C = Cppd/2 where

Cp is the heat capacity of the wall, p is the density, d is the wall thickness and 2

in denominator indicates that each node pertains to half of the wall volume. R is

the thermal resistance of the wall and is defined as R = d/K where k is the thermal

conductivity of the wall. These sets of state space equations can be generalized to

matrix formulation:

dx
-= Ax + Bu

dt
y=CX+Du (F.20)

where x is the vector of state variables (nodal temperature), u is the vector of inputs

(indoor and outdoor temperature), y is the vector of outputs (resulting heat fluxes)

and A, B, C and D are coefficient matrices. Next, we discuss the climate data as

we have encountered it in numerous occasions so far such as outdoor temperature,

humidity, and wind velocity and radiation terms.
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F.6 Atmospheric conditions: solar radiation, shad-

ing and weather data

There are several challenges in measurement of climate conditions and hence prepara-

tion of weather data for building energy consumption modeling. For instance, proper

measurement of solar lighting fluctuations under partly cloudy conditions is fairly

sophisticated. Also, wind direction and speed can be source of error as it might

frequently change in between measurement intervals. More importantly, the effect

of urban dwellings on atmospheric conditions known as heat island effect [232] is

not properly captured by the weather stations far from urban centers. Recognizing

all these limitations, Energyplus weather file contains hourly readings of dry bulb

temperature, dew point temperature, relative humidity, solar radiation (horizontal

infrared, direct normal and diffuse horizontal), luminance, wind speed and direction,

sky cover and current weather indicator. Also, the weather file includes information

regarding the location (longitude, latitude and elevation), ground temperature and

daylight saving. The weather records provided by weather stations are not always

complete. For instance, horizontal infrared radiation (I,) is required by Energyplus

for sky radiation modeling. However, it is not a typically observed value reported by

the meteorological offices. We have estimated Ii, via the following relations:

hr = - X E k x T 4

Esky = 0.787 + 0.764 x in (1)) (I + 0.224Nc + 0.0035N, + 0.00028N,)(F.21)

where this Esky, Tdb, Tp and N, are Sky emissivity, dry bulb temperature, wet bulb

temperature and sky cover index. The sky radiance model in Energyplus is based on

the empirical model proposed by Perez et al. [261]. Considering the shadowing effect,

sky diffuse solar radiation ('sky) can be written as:

Isky = Rhr X Ihr(Idh, 0)+ Rdm X Idm(Idh,4) + Rcr x Icr(Idh,$) (F.22)
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where In,, 'Cr and I, are isotropic distribution that covers the sky dome, circumsolar

brightening concentrated at the center of the sun and a horizontal brightening which

is considered as a linear source at the horizon, respectively. These three contributions

are functions of sky diffuse solar radiation (Idh) and the surface tilt angle (#). The

Rh,, Rdm and Rc, are shadowing coefficients considering how much of the radiation is

received by the surface. Since the circumsolar radiation is assumed to be concentrated

at the solar disk, Rcr is simply the ratio of circumsolar radiance with obstruction to

circumsolar radiance without obstruction. For estimating Rh,, the horizon line is

divided into 24 intervals of equal length. For the case of Rdm, the sky dome is divided

to 144 sections. Rh, and Rd, are estimated using:

24 =' x SF j
Rhr - Z i'r (F.23)

i= 1 hr

Rdoom - 6 (F.24)
zX 1 Q

where SF is the sunlight fraction coming from a given interval. We emphasize that

the summations are only considered for the intervals that are in front of the surface.

In Energyplus, temperature and wind speed are automatically calculated for the

building zones and surface centroids. Given a weather data for a meteorological

station at the altitude ho, the temperature at the altitude z can be estimated using:

Th=z = Th=ho + A x (Hz - Hb) (F.25)

where A is temperature drop constant and Thz and Th=b are temperatures at two

different altitudes of z and ho, respectively. Hz is the geopotential altitude as given

by Hz = Rez/(Re + z) where Re is the radius of the earth. The relation provided

in eq. F.25 can be used to calculated temperature distribution along the height of a

high-rise building given the temperature at the meteorological station. Similarly, the

wind speed Vz depends on the wind speed at the station through:

Vz = Vmet x (6met ;met (F.26)

258



where 6, 6
met, ; and 'met are wind speed profile boundary layer thickness at the

site and meteorological station and wind speed profile exponent at the site and the

meteorological station, respectively. These variables are dependent on the roughness

characteristics of the surrounding terrain.
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