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Abstract

Variability modeling and extraction in advanced process technologies is a key chal-
lenge to ensure robust circuit performance as well as high manufacturing yield. In
this thesis, we present an efficient framework for device and circuit variability model-
ing and extraction by combining an ultra-compact transistor model, called the MIT
virtual source (MVS) model, and a Bayesian extraction method. Based on statistical
formulations extended from the MVS model, we propose algorithms for three appli-
cations that greatly reduce time and cost required for measurement of on-chip test
structures and characterization of library cells.

We start with a novel DC and transient parameter extraction methodology for
the MVS model and achieve a quantitative match with industry standard models
for output characteristics of MOS transistor devices. We develop a physically based
statistical MVS model extension and a corresponding statistical extraction technique
based on the backward propagation of variance (BPV). The resulting statistical MVS
model is validated using Monte Carlo simulations, and the statistical distributions
of several figures of merit for logic and memory cells are compared with those of a
40-nm CMOS industrial design kit.

A critical problem in design for manufacturability (DFM) is to build statistically
valid prediction models of circuit performance based on a small number of measure-
ments taken from a mixture of on-chip test structures. Towards this goal, we propose
a technique named physical subspace projection to transfer a mixture of measure-
ments into a unique probability space spanned by MVS parameters. We search over
MVS parameter combinations to find those with the maximum probability by extend-
ing the expectation-maximization (EM) algorithm and iteratively solve the maximum
a posteriori (MAP) estimation problem. Finally, we develop a process shift calibra-
tion technique to estimate circuit performance by combining SPICE simulation and
very few new measurements.

We further develop a parameter extraction algorithm to accurately extract all
current-voltage (I − V ) parameters given limited and incomplete I − V measure-
ments, applicable to early technology evaluation and statistical parameter extraction.
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An important step in this method is the use of MAP estimation where past measure-
ments of transistors from various technologies are used to learn a prior distribution
and its uncertainty matrix for the parameters of the target technology. We then uti-
lize Bayesian inference to facilitate extraction and posterior estimates for the target
technologies using a very small set of additional measurements.

Finally, we develop a novel flow to enable computationally efficient statistical
characterization of delay and slew in standard cell libraries. We first propose a novel
ultra-compact, analytical model for gate timing characterization. Next, instead of
exploiting the sparsity of the regression coefficients of the process space with a reduced
process sample size, we exploit correlations between different cell variables (design and
input conditions) by a Bayesian learning algorithm to estimate the parameters of the
aforementioned timing model using past library characterizations along with a very
small set of additional simulations.

Thesis Supervisor: Duane S. Boning
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Dimitri A. Antoniadis
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In 1965, Gordon Moore observed that the number of transistors on a single chip dou-

bles every 18 to 24 months [1], an observation now known as Moore’s Law. This

doubling of transistor density has served as the driving force for an astonishing in-

crease in the functionality and computational capability of electronic devices from

then to the present. Minimum transistor dimensions scale by a factor of 0.7 from

generation to generation, which has enabled integration of more transistors with less

power dissipation. In recent years, however, several bottlenecks have appeared as we

have continued to scale down to sub 28nm technologies. One of the key issues related

to deeply scaled semiconductor manufacturing is the yield, which is defined as the

proportion of manufactured circuits that are functional and meet their performance

requirement [2]. The overall yield loss falls into two major categories: catastrophic

yield loss (due to physical and structural defects, e.g., open, short, etc.) and para-

metric yield loss (due to parametric variations in process parameters, e.g., threshold

voltage, stress, etc.). A large portion of yield loss of circuits is now due to process vari-

ations, which can be defined as the deviations of the manufactured circuit compared

to the design [3].

With smaller transistors and increased transistor density, the effect of process

and manufacturing variability is more significant and meeting performance and yield

specifications is increasingly challenging. For example, Fig. 1-1 shows the general

trend in the ratio between corresponding 3σ variation and mean value for some key
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Figure 1-1: Increase in process variability for effective channel length, interconnect
width and height, oxide thickness, and threshold voltage in conventional scaled MOS
technology [2].

technology device and wire parameters from 250nm to 45nm. Over the time period of

interest, we see that the proportion of Leff variation increases from 30% to 45%. Wire

geometry parameters, width W , height H and resistivity ρ also undergo a fairly major

increase. Other parameters such as the threshold voltage Vth and oxide thickness Tox

increase at a lower rate.

Increasing process variations introduce significant uncertainty for both circuit per-

formance and leakage power. It has been shown in that even for the 180nm technology,

process variation can lead to 1.3X variation in frequency and 20X variation in leakage

power, as illustrated in Fig. 1-2 [4]. In future technology generations, such impact

will become even larger because the technology is approaching a fundamental random-

ness regime in the behavior of silicon structures, such as that due to random dopant

fluctuations [5]. In recent years, Design for Manufacturability (DFM) methods, in-

cluding attempts to reduce the systematic sources of variability, statistical modeling,

extraction, and optimization for VLSI circuits, have been developed to alleviate the

variation effects. For DFM to be meaningful, variability needs to be characterized

empirically for a specific semiconductor process in order to obtain a quantitative un-

derstanding of variability mechanisms. Such “statistical metrology” methods include

measurement techniques for characterization of variability, and statistical modeling
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Figure 1-2: Leakage and frequency variations [4].

and extraction methods for properly interpreting measurement results.

1.1 Test Structures for Variation Characterization

In order to improve our understanding of process variation and ultimately reduce that

variation to improve yield, process variation needs to be thoroughly characterized with

the help of on-chip test structures. The test structures are devices or circuits that are

added onto a wafer to help control, understand, and model the behavior of MOSFETs.

According to the objective of measurements, test structures fall into two classes; (a)

test structures for process control, and (b) test structures for modeling [2].

Test structures for process control are used for monitoring and controling the

fabrication line. They are typically small devices or circuits placed in the scribe line

on all wafers and therefore are capable of modeling the history of the line. Monitors

often consist of simple test structures that allow the measurements of current-voltage

(I − V ) characteristics of MOSFETs [6, 7, 8], of the resistivity of wires and vias [9],

and of interconnect capacitance [10].

Test structures for modeling are used to generate the fundamental data needed

to create models of the fabricated components. These test structures are complex

in nature and are typically designed to be sensitive to a specific physical parameter.
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Therefore a much richer variety of test structures is needed for modeling purposes. Re-

cent designs enable many individual transistor characteristics to be studied efficiently

without the use of dedicated per-device probe pads [11, 12, 13, 14, 15, 16, 17, 18, 19].

Ref. [20] characterizes optical proximity behavior by measuring Lgate variability.

Refs. [13, 21] present large transistor arrays dedicated to measure threshold volt-

age variation of each individual transistor, through measurements of gate-to-source

voltage variation and leakage current. Ref. [19] describes a method to measure the

contact resistance of individual contacts.

Another important category of commonly deployed test structure is ring oscillator

(RO) structures that consist of an odd number of inverting stages [22, 23, 24, 25].

Compared to the single transistor test structures, ring oscillators reflect circuit oper-

ation under high-speed conditions as in an actual digital system, and thus are more

strongly related to the performance of actual products [24]. Frequency and leakage

measurements can be gathered from RO test structures, in which the frequency mea-

surement can be easily measured with a low-cost frequency counter. A benefit of such

RO based test structures is that they can be made to be sensitive to either device

and interconnect variability.

1.2 Statistical Analysis of Measurement Data

After obtaining measurement results from the test structures described in Section 1.1,

the next step is to apply statistical analysis techniques to interpret these measurement

data. Statistical circuit analysis requires both a characterization of variability in

device behavior, and the ability to translate device variability to circuit performance

variability.

1.2.1 MOSFET Device Models and Extraction

Interconnect and device models are the critical interface between the underlying tech-

nology and integrated circuit design. Component models compute the current through

every linear and non-linear interconnect and device component, and the derivatives of
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that current with respect to the terminal voltages of the device [2]. Compact models

include key equations that describe the current and charge of a device as a func-

tion of its terminal voltages, to enable circuit simulation. MOSFET device models

have a long and rich history spanning over 30 years. To meet accuracy requirements

on device models, existing BSIM [26], PSP [27] and PTM [28] models are being con-

stantly augmented to account for the emerging physical phenomena at the nanometer

regime. An example of the evolution of parametric complexity of MOSFET models

in industrial design kits is illustrated by the BSIM industry models. For the 0.5µm

technology of the early nineties, this model had 99 parameters, 7% of which were

physical [26]. Here physical quantities directly describe the physical attributes of the

system [29]. In the deep sub-micron era, the BSIM4 generation of this model has

355 parameters (at the 65nm node), 2.5% of which are physical. The PSP compact

model has similar parametric complexity [27].

The increasing number of parameters and complexity of equations of compact

transistor models drive the need to accurately determine all the many dozens of

model parameters in order to reproduce the behavior of a specific observed device,

which is referred to as the parameter extraction problem [30]. The most widely

used parameter extraction methods are based on the deterministic minimization of a

nonlinear least square error function between model output and measurement data:

E(P) = arg min
P

‖F− f(V,P)‖2 (1.1)

where F is a vector of observed currents, V is a matrix of applied voltages at which

F are observed, P is a vector of device model parameters to be extracted, and the

function f() represents the device model equations.

However, the minimization of Equ. (1.1) suffers from a uniqueness solution prob-

lem. The situation becomes even worse in the presence of one or more of the following

conditions: (1) the dimension of the P vector is large; (2) the empirical or semi-

empirical models unable to limit the parameter values to a specific domain; (3) the

function f is substantially non-linear; and (4) there is physically collinearity among
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the parameters P. With many potential local minimum that might trap traditional

minimization schedmes, it is often desirable to find the global minimum, in order to

provide good input-output fidelity (accuracy) or confidence on the correctness of the

model parameters (system identification and physical modeling). While there exist a

number of optimization methods which are more likely to find the global minimum

(e.g., Genetic Algorithms, or GA), nearly all optimization methods are iterative, and

defining an appropriate starting point and parameter bounds is of crucial impor-

tance, and often rely on a deep understanding of the model to guide the minimization

process.

1.2.2 Statistical Device Characterization

While a single device model can be characterized from observed I−V measurements,

a statistical device model is needed to express manufacturing variability [31]. Process

variations usually manifest themselves as parameter fluctuations in nanoscale tran-

sistors physical dimensions or material/electronic properties, such as in the channel

length, threshold voltage, and transistor parasitics [32]. The previous section noted

that several problems can occur with nominal device characterization, such as local

minima and unrealistic parameter values. These problems become more serious for

statistical device characterization, since statistical extraction procedures rely on an

accurate extraction of nominal parameters.

After characterizing appropriate test structures described in Section 1.1, variation

measurements need to be correctly mapped and embedded into a statistically capable

design kit, such that circuit designers can perform statistical circuit analysis and

optimization to improve yield. This task is referred to as statistical extraction. Key

statistical conclusions drawn from test structures measurements include magnitude

of variation and average or nominal value of parameters. One major problem in

statistical estimation is to determine the appropriate distribution of the parameters

(e.g., to determine the distribution of Vth follows a normal distribution or a log-

normal distribution). The next key question for statistical extraction is to determine

the parameters of a specific distribution (e.g., determine mean and variance of a
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parameter which follows a normal distribution, or to find the mean and covariance

structure of a correlated set of multivariate normally distributed parameters).

A statistical extraction method, namely Backward Propagation of Variance (BPV),

has been proposed for iteratively solving the statistics of process parameters from the

statistics of electrical performance measurements [33, 34]. With the BPV approach,

we can formulate statistical models as a set of independent, normally distributed pro-

cess parameters, expressed as {pj}. These parameters control the variations seen in

device electrical performance {Fi}. With variations σFi
(i = 1, 2, ...,m) of electrical

performance parameters (e.g., Idsat, Ioff , etc.) measured under different geometry

and bias conditions, the BPV method calculates σpj through [33]:

σ2
Fi

=
n∑
j=1

(
∂Fi
∂pj

)2σ2
pj

(1.2)

Although process variation is correlated with parameters in a device model, it is

rare that the sources of process variation are directly represented in the model pa-

rameters. Typically, device parameters include multiple sources of variation, and are

therefore statistically correlated because of this common dependency. For example,

variation in threshold voltage Vth includes both effects of random dopant fluctua-

tion (RDF) and line-edge roughness (LER). However, the BPV method assumes all

parameters {pj} to be uncorrelated.

Therefore, in BPV and many other extraction approaches it is necessary to transfer

correlated parameters into a set of uncorrelated variables. This can be achieved either

by physically decoupling, with each parameter corresponding to a single physical effect

or by numerical methods such as Principal Component Analysis (PCA) that generate

an orthogonal basis set of model parameters. As a physical decoupling example, the

aforementioned two variation sources for Vth fluctuation could be separated into two

items:

∆Vth = ∆Vth0 + ∆Vth(Leff ) (1.3)

where Vth0 represents threshold voltage of the long channel device which is only related

to RDF, and the later item corresponds to drain-induced barrier lowering (DIBL)
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effect which is only related to LER. However, to account for and separate these

correlation between model parameters and reach accuracy requirements on device

models for deeply scaled devices, the parametric complexity of the underlying device

model inevitably increases.

PCA is a commonly used statistical technique that transforms correlated measure-

ments into a set of low-dimensional, uncorrelated factors [35]. Given N samples from

a set of correlated random device variables P or correlated electrical measurements

F, PCA seeks a linear transformation of these variables into a new set of random

variables X which are orthogonal. The procedure starts by forming the correlation

matrix M amongst the output or measured samples. An eigenvalue decomposition

of the correlation matrix M is then performed and combinations of eigenvalues and

corresponding eigenvectors are obtained [36]. If we use the top eigenvalue/vector

combinations, we can explain most of the overall observed variation among the out-

put samples with just a few uncorrelated variables. In addition to orthogonalization,

a major benefit of PCA is that the complexity of subsequent extraction and analysis

techniques is considerably reduced by reducing the number of variables.

1.2.3 Statistical Circuit Modeling

After statistical device characterization, the next step to address the parametric yield

problem is to effciently model circuit performance of circuit blocks (e.g., a standard

library cell, 64-bit full adder, etc.) under process variation. There are generally two

broad categories for such models: behavior modeling and performance modeling.

Model order reduction (MOR) is a systematic approach to create behavior mod-

els with reduced computational complexity. It takes high-order algebraic differential

equations (e.g., modified-nodal-analysis equations for circuit simulation) as the input

and creates a simplified (i.e., low-order) dynamic system to approximate the original

input-output behavior. Then the extracted behavior models are utilized in a hier-

archical simulation flow to reduce the simulation cost. For example, reduced-order

interconnect models can be used to speed up the gate-interconnect cosimulation [37].

Different from the early stage MOR approaches that focus on a fixed dynamic
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system, parameterized model order reduction (PMOR) techniques can generate com-

pact models reflecting the impact induced by design or process variations [38, 39,

37, 40, 41, 42]. Several PMOR techniques have been developed for both linear and

nonlinear circuits [37, 41, 40, 42], and most of them are based on moment match-

ing techniques which assume that the closed forms of the parameterized state-space

models are given, or that the parameter statistical distributions are known.

Performance modeling is a mathematical approach that approximates the perfor-

mance of interest (e.g., delay, leakage power, etc.) as a function of the parameters of

interest (e.g., Vth, TOX , Leff , W , etc.) or uncorrelated variables after PCA [43]. The

form of the function can be empirical (e.g., response surface modeling (RSM), usually

with some restricted polynomial form), or physical (e.g, physically derived compact

models or expressions, with some fitting coefficients and parameters, often where the

functional form is non-linear). For RSM, a linear least square error function similar

to (1.1) can be employed to optimize the results:

E(P) = arg min
P

‖F− α ·P‖2 (1.4)

where F is a vector of observed performances, α is a vector of the unknown model

coefficients, P is a vector of basis functions (e.g., linear or quadratic polynomials of

principal components).

While the simplest performance modeling is based on linear approximation, it

offers the least accurate predictions for capturing large-scale process variations. To

achieve better accuracy, a quadratic approximation can be used, which, however,

significantly increases the modeling cost. For example, even if we select the top 10

ranked random variables after PCA, a quadratic RSM model will need to fit 100

quadratic coefficients, which requires a large number of training samples and has a

high fitting cost. When the measurement data set is not large enough to support the

variable space, parameter estimates by RSM become non-unique; this phenomenon

is known as over-fitting [44]. However, it is can be difficult or expensive to collect

sufficient on-chip measurements to support full RSM approaches. Instead, we are
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often limited to a very small number of measurements, as post-Silicon characterization

suffers from area and test time limitations.

One common strategy for preventing over-fitting in performance modeling is by

adding regularization terms to error functions in an effort to reduce the number of

significant or retained model parameters. An example of such a strategy is least-angle

regression (LAR) which adds L1-norm (the summation of the absolute values of all

elements in the parameter coefficient vector) regularization ‖α‖1 ≤ λ to (1.4) [45,

46]. One major benefit of regularizing with the L1-norm is that it results in sample

complexity logarithmic in the number of variables to be extracted. On the other

hand, an L2 regularization results in sample complexity that is linear in the number

of features. A similar method, sparse regression, adds an L0-norm (the total number

of non-zeros in the parameter coefficient vector in the vector) constraint ‖α‖0 ≤ λ

instead of the L1-norm term to find a unique solution α.

The connection between L1-norm regularization and L0-norm regularization is

that by decreasing λ, we can impose a strong constraint for sparsity and achieve a

sparse solution making use of fewer model coefficients or parameters. However, the

selection of λ is of crucial importance for such optimizations and requires considerable

experience.

Recent work has employed Bayesian inference and maximum posterior estimation

(MAP) to address the over-fitting problem, where sparse model coefficients and corre-

lated performance variability are exploited [47, 48]. According to Bayes’ theory [49],

the joint posterior distribution pdf(F,µX) is given by the product of the prior pdf(µX)

and the likelihood function pdf(F|µX), giving us the posterior distribution:

pdf(F,µX) = pdf(µX) · pdf(F|µX) (1.5)

Bayesian model fusion (BMF) is an efficient algorithm exploiting “similarity” be-

tween model coefficients in different stages (e.g., post-layout performance model and

schematic-level performance model). By “fusing” the schematic-level performance

model with the post-layout performance model through a common template, the
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computational cost for post-layout performance modeling can be substantially re-

duced [50]. The limitation of such a method is that it requires the reuse of data

collected from the same or very similar system, and modeling is especially challeng-

ing to combine measurements from a mixture of different systems. Virtual probe

(VP) is another algorithm recently proposed, to accurately predict spatial variation

across a wafer having a few test structures at pre-selected locations, by exploiting the

underlying sparsity in the spatial frequency domain [51].

Bayesian inference and estimation approaches are attractive in several respects.

First, they offer the possibility of using (or re-using) prior knowledge and experience.

Second, they are well-suited to deal with cases where only a limited number of new

observations are available. Finally, they support combination of multiple types of

observations in a common framework. A core contribution of this thesis is to explore

the use of a Bayesian framework for IC statistical extraction and modeling, taking

advantage of these features.

1.3 Thesis Organization

In this thesis, we propose accurate and efficient statistical techniques to solve the

following problem in DFM: given the measurements of one or several functions (e.g.,

transistor I − V measurements, RO frequency measurements, etc.), we need to find

the value of model parameters (such as parameters sensitive to process variation),

to predict system performance, and eventually to improve product yield, with the

complication that there are many possible mappings from the function space to the

parameter space.

The overall structure of the thesis is shown in Fig. 1-3. We begin by presenting key

elements of an ultra-compact MIT virtual source (MVS) model as well as its physical

intuition, parameter extraction and statistical extensions in Chapter 2. Subsequent

chapters leverage the MVS model, and focus on solving the aforementioned industrial

practical problem by proposing a series of algorithms which facilitates semiconductor

manufacturing yield control.
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Our Approach to IC Statistical Modeling and Extraction 

 Chapter 2: MIT Virtual Source (MVS) 

Compact MOSFET Model (Antoniadis et al.) 

• Ultra-compact model: small number of 

physically based parameters 

• Applicable to nano-scale MOS devices 

 Chapter 3: Statistical Formulations 

• Variation model and extraction using 

Back-Propagation of Variance (BPV) 

• Projection onto physical subspace 

spanned by MVS model (in contrast 

to PCA projections) 

Statistical IC Modeling and 

Extraction Methods 

 Chapter 4 & 5: Applications 

• Early technology evaluation and trends 

• Efficient circuit performance evaluation 

• Efficient statistical library cell timing 

characterization 

 Chapter 4: Bayesian Extraction 

Method with Very Limited Data 

• Fit model from small number of early 

device and monitor measurements 

• Optimal sampling method  

 Shaloo Rakheja; Dimitri Antoniadis (2013), "MVS 1.0.1 Nanotransistor 

Model (Silicon),“ http://nanohub.org/resources/19684. 

Figure 1-3: Overview of the thesis organization.

In Chapter 3, we propose an efficient method to build statistically valid predic-

tion models of circuit performance based on a small number of mixture measurements

(e.g., transistor I−V measurements, Ring Oscillator (RO) frequency measurements).

Different from the traditional approach which combines principal component analysis

(PCA) and response surface modeling (RSM) to approximate the circuit performance,

we propose physical subspace projection to project different groups of on-chip mea-

surements to a unique subspace likelihood map spanned by a set of MVS model

parameters. Then we introduce a Bayesian formalism to estimate the performance

parameters by using maximum a posteriori (MAP) estimation defined over all of the

group measurement distributions and utilizing the subspace variable prior distribu-

tion. Compared with the traditional PCA and RSM method, the proposed method

preserves the physical correlation between MVS model variables and measurements

such that the number of required measurements is greatly reduced for model establish-

ment. The last step, process shift calibration, is an algorithm proposed to calibrate

and minimize the difference between SPICE model predictions and measurements,
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while retaining statistical model information.

Another important problem in the IC process development cycle is to extract

physically meaningful model parameters; these help to identify possible root causes

for process failures, and help drive optimization of the process in early stage process

development. The difficulty of this problem is that measurements are collected from a

limited number of early prototype devices rather than from a full suite of designed test

structures. In Chapter 4, we propose a general parameter extraction method to enable

the extraction of an entire set of MOSFET I−V model parameters, even in the face of

few or missing I−V measurements in the data set. The use of maximum a posteriori

estimation allows two major improvements compared with traditional method. First,

we learn a prior distribution from past measurements of transistors from various

technologies. Second, we assign different weights for different measurements using

the uncertainty matrix of the parameters of the target technology. That is to say, we

can use our knowledge about the confidence in different measurements to judiciously

update our model. We further extend the proposed extraction approach to enable us

to characterize the statistical variations of MOSFETs, with the significant benefit that

some constraints required by the backward propagation of variance (BPV) method are

relaxed. Moreover, we propose an optimal I−V measurement selection algorithm by

finding those measurements which minimize the average uncertainty in our Bayesian

framework, and we explore the the lower bound for the number of I−V measurements

required to fit a transistor compact model.

In Chapter 5, we extend the Bayesian framework to the standard cell level, and

propose a novel flow to enable computationally efficient statistical characterization of

delay and slew in standard cell libraries. The distinguishing feature of the proposed

method is the usage of a limited combination of output capacitance, input slew rate

and supply voltage parameters for the extraction of statistical timing metrics of an in-

dividual logic gate. The efficiency of the proposed flow stems from the introduction of

a novel, ultra-compact, nonlinear, analytical timing model, having only four universal

regression parameters. This novel model facilitates the use of maximum a posteriori

belief propagation to learn the prior parameter distribution for the parameters of
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the target technology from past characterizations of library cells belonging to various

other technologies, including older ones. The framework then utilizes the Bayesian

inference approach developed in Chapters 3 and 4 to extract the new timing model

parameters, with the benefit of only a small set of additional timing measurements

required from the target technology.

Chapter 6 concludes the thesis. We summarize the key contributions of the the-

sis stemming from the use of Bayesian inference and learning technologies, combined

with MVS and other ultra-compact models, toward the solution of IC design for man-

ufacturability challenges. Areas for future research are suggested, including extension

of MVS mode as a predictive statistical compact model and variation prediction in a

process development cycle using Bayesian inference.
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Chapter 2

MIT Virtual Source Model:

Physical Intuition, Parameter

Extraction and Statistical

Modeling

As technology scales down to the nanometer range, accurate modeling and simulation

of digital (and increasingly mixed signal) circuits are becoming more important, which

requires understanding and management of increasing critical variations in transistor

and other components and their impact on circuit performance. Existing BSIM [26],

PSP [27] and PTM [28] models are being constantly augmented to account for the

emerging physical phenomena at the nanometer regime. As a result, the management

of transistor parameters in CAD environments or during library cell characterization

for timing and power becomes a more complex undertaking. The issue becomes

even more acute in the context of statistical simulations using Monte Carlo or other

approaches if we have to account for parameter variations of a large number of pa-

rameters. One way to address these issues for digital design in the nanometer regime

is to make use of ultra-compact transistor models specifically developed for short-

and ultra-short-channel devices.
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Key features of a desired ultra-compact transistor model include a simple param-

eter extraction procedure through measurements from simple on-chip test structures

for monitoring the fabrication line, rather than requirings large number of measure-

ments from a rich variety of complicated test structures for device modeling; excellent

accuracy of current-voltage (I − V ) and capacitance-voltage (C − V ) characteristics

in both the device operation domain as well as enabling excellent digital timing and

power analysis in the circuit operation domain; and finally, the capability of mapping

the variability characterization in device behavior onto a limited number of underly-

ing model parameters, which in turn enables the efficient prediction of variations in

circuit performance. The MIT virtual source (MVS) model is one such ultra-compact

model [52, 53, 54, 55, 56].

The widely adopted threshold-voltage-based compact models (such as BSIM [26]

and PTM [28]) and the surface-potential-based compact models (such as PSP [27]),

include as many as several hundred parameters related to the manufacturing process,

the geometry of the device, and to achieve smoothing or transitions between different

equation regimes. On the other hand, the MVS model restricts itself to a simple

physical description for channel minority carrier charges at the virtual source by sub-

stituting the quasi-ballistic carrier transport concept for the concept of drift-diffusion

with velocity-saturation. In doing so, it achieves excellent accuracy for the I−V and

C − V characteristics of the device throughout the domain of operation required for

digital timing and power analysis. The number of parameters needed is considerably

fewer (19 for DC and 23 in total) than in conventional models. It is worth noting

that the ultra-compact model developed in [57] is based on the alpha-power model

of [58]. Therefore Ref. [57] is purely empirical and aims at maximizing the timing

accuracy of an inverter. The MVS model is physics-based and achieves higher timing

accuracy than [57] with a similar number of parameters.

Furthermore, continued scaling of CMOS technology has introduced increased

variations of process and design parameters, which profoundly affect all aspects of

circuit performance [59]. While statistical modeling addresses the need for high prod-

uct yield and performance, it inevitably increases the cost of computation. This
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problem is further exacerbated as future digital design becomes larger and more

complex. Therefore, the simplicity of MVS models is a substantial help in effective

statistical design flows. Previous compact transistor models consist of a large num-

ber of parameters and complex equations which do capture many (if not all) of the

physical short-channel effects, but significantly slow down the simulation speed [32].

A distinct benefit of the statistical extension of the MVS model is that it directly ad-

dresses both the complexity and simulation problems of statistical circuit analysis for

nanoscale CMOS devices [60]. Indeed, it provides a simple, physics-based description

of carrier transport in modern short-channel MOSFETs, along with the capability of

mapping the variability characterization in device behavior onto a limited number of

underlying model parameters.

In this chapter we review the MIT virtual source model, including its physical

intuition, and then introduce a consistent DC and AC parameter extraction flow,

and derivation of a statistical MVS model. The rest of this chapter is organized as

follows. Section 2.1 reviews the physical intuition of the MVS model in both its static

and dynamic versions. Section 2.2 describes the transient and DC parameter extrac-

tion methodology flow of the MVS model. This flow aims at providing a consistent,

highly-calibrated parameter set based on both I−V and C−V curve measurements.

Section 2.3 presents timing analysis over a large set of standard library cells from

an industrial design kit, demonstratrating the use of the MVS model for timing ver-

ification of MVS model in digital circuits. Section 2.4 shows transient and power

simulations using a 40nm MVS model integrated in a vendor CAD environment. The

simulation results for a 1001-inverter chain and a 32-bit ripple adder under a Vdd

sweep demonstrate that our calibrated MVS model is suitable for use in a digital

design environment. Sections 2.5 and 2.6 introduce the physical derivation of the

statistical MVS model, and reviews of a second-order statistical extraction technique

called the backward propagation of Variance (BPV) [61]. Although the extraction is

performed for the nominal Vdd, the resulting statistical model is valid over a whole

range of Vdd’s, thus enabling the efficient analysis of power-delay tradeoffs in the

presence of parameter validations. And finally, Section 2.7 presents several statistical
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validation examples.

2.1 Review of the virtual source charge-based com-

pact model

The MIT virtual source model [55] consists of a core static or DC model with 19

parameters [52], and an extended dynamic model with 4 additional parameters [54],

both are summarized below.

2.1.1 Static MVS Model

In the MVS model, the drain current of a MOSFET normalized by width (ID/W )

can be described using the following general equation:

ID/W = QixovxoFs (2.1)

valid for both the saturation and non-saturation regions.

The virtual source velocity, denoted as vxo , refers to the velocity of carriers located

in the MOSFET channel at the top of the energy barrier near the source (virtual

source). The core concept in the MVS model is that in short-channel devices, vxo

does not depend on Vds except for drain-induced barrier lowering (DIBL) effects.

This is to be contrasted with a drift-diffusion transport model where the velocity

is directly proportional to low electrical field E and is saturated when E is larger

than the critical electrical field. The MVS model also uses the fact that although the

ballistic velocity increases with Vgs, the virtual source velocity vxo is almost constant

at high Vgs [62].

The MVS inversion charge density Qixo can be approximated by the empirical

function [52][63]:

Qixo = Cinvnφt ln(1 + exp
V ′GS − (VT − αφtFf )

nφt
) (2.2)
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where Cinv is the effective gate-to-channel capacitance per unit area in strong in-

version, φt is the thermal voltage (kBT/q), V
′
GS represents the internal gate-source

voltage, and n is the subthreshold coefficient. Ff denotes a Fermi function that allows

a smooth 0 to 1 transition, and α is introduced to adjust VT shift for which 3.5φt is

a good approximation.

The function Fs in (2.1) serves to account for the continuous transition from non-

saturation to saturation, and is given by

Fs =
Vds′/Vdsat

(1 + (Vds′/Vdsat)β)1/β
(2.3)

where Vds′ accounts for the intrinsic drain-to source voltage after deducting the re-

sistive voltage drop for both the source Rs and drain Rd resistances using Vds′ =

Vds − ID(Rs + Rd). β is an empirical parameter for the transition from the low-field

non-saturation region to high-field saturation region with a typical value of about

1.8 [52].

Other key static MVS model parameters include drain-induced-barrier-lowering

(DIBL) coefficient δ, subthreshold swing factor n0, low-field carrier “apparent mo-

bility” µ, effective body factor γ, and carrier effective mass mc with a fixed value of

0.2me. Among all 19 DC parameters, seven key parameters {δ, n0, Rs0, Rd0, vx0,mu, VT0}

need to be extracted to achieve calibration with experimental I − V data.

2.1.2 Dynamic MVS Model

The transient behavior of the MVS model is described in [54], where the intrinsic

channel charge is partitioned into that of the source and drain terminals:
QS =

∫ Lg

0

(1− x/Lg)Q′i(x)]dx

QD =

∫ Lg

0

x

Lg
Q′i(x)dx

(2.4)

The channel charge areal density, Q′i(x), is calculated according to [54], using a

non-saturation (NVsat), saturation (Vsat), or quasi-ballistic (QB) model. Since the
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Figure 2-1: Schematic of a short-channel n-MOSFET showing the MVS model para-
sitic capacitances.

nominal transistor gate length in this work is 40nm, we have used the quasi-ballistic

version of the channel charge model.

Under the assumption that the source and drain are symmetric, we have four

capacitances to model parasitic effects, as shown in Fig. 2-1. Cov is the overlap ca-

pacitance, Cof is the outer-fringing capacitance, Cif is the inner-fringing capacitance

and Cj is the junction capacitance. In this work, Cov and Cof are considered voltage

independent, while Cif and Cj are considered voltage dependent.

2.2 Parameter Extraction and Model Calibration

The MVS model described in (2.1) through (2.4) is calibrated using data for transis-

tors with different sizes. To extract all of the parameters of the MVS model, a full

set of I − V and C − V measurement data is needed. The parameter extraction flow

is described in Section 2.2.1, followed by validation through analysis of I − V curves

in Section 2.2.2.

2.2.1 Parameter Extraction Flow

While previous work has presented the key parameters extracted for the MVS model

[52, 54], a clear optimization flow to extract full I − V and C − V parameters has
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been missing. Fig. 2-2 shows a parameter extraction flow for the MVS model which

proceeds as follows.

First, the effective gate-to-channel capacitance Cinv is extracted by subtracting the

Cgs curves of two long channel devices at a point where the short-channel parasitic

capacitances are negligible. This step needs to be done before other DC parameter

extraction since Cinv affects the distribution of charges Qixo . Once Cinv is properly

extracted, the I − V curve calibration is achieved under sequential flows in the sub-

threshold and above-threshold regions. First, Vth0 is adjusted to achieve consistency

with respect to Qixo . Then the sub-threshold parameter set (S, δ) and full region

parameter set (vxo, µ, etc.) are optimized sequentially using non-linear least-squares

error minimization. The coupling between the two is achieved through iteration, until

final convergence. Good convergence is achieved for transistors with various sizes in

our tests. The back bias coefficient γ is extracted from the I − Vbs measurement as

the last step in DC parameters extraction procedure. We then extract the parasitic

capacitances (Cif and Cof ) by fitting the Cgg−Vg curve, as shown in Fig. 2-3(a). The

equations employed to extract parasitics in the MVS model are shown in (2.5).

Table 2.1 lists the key parameters of the MVS model and the parasitic capaci-

tances obtained from the parameter extraction methodology illustrated in Fig. 2-2,

for a typical 40nm technology. Note that the MVS model calculates the drain current

normalized by width, so that the extracted parameters are applicable for all rectan-

gular devices having the same channel length. Good consistency and accuracy are

achieved in devices with various widths using the one parameter set extracted by the

aforementioned parameter extraction flow. This is illustrated in Fig. 2-3(b). Since the

40nm channel is close to the ballistic transport regime, a quasi-ballistic (QB) model

is employed to calculate the channel charge areal density [54]. We note, however, that

for this technology, the non-saturation (NVsat) model achieves a similar accuracy.

 Cgg(Vg = 0) = 2W (Cif + Cof + Cov)

Cgg(Vg = Vdd) = W [(Cinv(L− Lov) + 2Cof + 2Cov)]
(2.5)
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Figure 2-2: An optimization flow for I − V parameter extraction in the MVS model.
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Figure 2-3: (a) Gate capacitance versus Vgs at Vds = 0V with the equation used to
extract parasitic capacitances. (b) Idsat versus effective channel width.

Table 2.1: Key parameters for the MVS model fitted to a 40nm industrial design kit.
Channel widths are 300nm and 600nm for NFET and PFET, respectively.

Parameters NMOS PMOS Description
Lg(nm) 40 40 Channel length drawn
Lov(nm) 8 8 Total overlap channel length

on both side
Cinv(µF/cm

2) 1.40 1.35 Effective gate-to-channel
capacitance per unit area

n0 1.47 1.55 Subthreshold swing
δ(mV/V ) 93 159 Drain-induced barrier lowering
vxo(cm/s) 1.39e7 0.855e6 Virtual source velocity
µ(cm2/V · s) 248 146 Low-field mobility
Rs(ohm− µm) 60 80 Series resistance per side

γ 0.34 0.39 Body effect coefficient
mc 0.2me 0.2me Carrier effective mass
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Figure 2-4: MVS model fitting with data from a 40nm BSIM4 industrial design kit.
The channel width is 300nm and 600nm for NFET and PFET, respectively.
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2.2.2 I − V Curve Analysis

Once all of the parameters are extracted, the MVS model is validated by comparing

its I−V curve with that of a BSIM4 model from a 40nm bulk industrial design kit, as

shown in Fig. 2-4. We see good agreement in both sub-threshold and above threshold

regions for both NFETs and PFETs. The accuracy of the MVS model fitting is

comparable to other popular industrial models [27][28] and much better than other

ultra-compact models with similar complexity as the MVS model [57]. Previous

work has demonstrated that the MVS model has indeed good DC agreement with

real measurement data fabricated in various technologies (32nm, 45nm, 65nm) and

processes (poly-SiON gate, metal-gate high-k) from various foundries (IBM, Intel) [52,

54]. However, systematic validation of the MVS model for timing verification of digital

circuits has been missing so far in the literature; the results of this thesis presented in

Section 2.3 are the first such validation [64]. Once the device I−V and C−V curves

are calibrated, we can proceed to timing or power comparison for standard library

cells and other large-scale digital circuits. This is illustrated in the next two sections.

2.3 Standard Cell Characterization Using Calibrated

MVS Model

To validate the accuracy of the MVS model as calibrated in the previous section, we

implement it using Verilog-A under the Cadence Virtuoso Design Environment. We

then use it to characterize the SPICE-level circuits of a set of generic library standard

cells from an industrial design kit in 40nm bulk CMOS technology.

The first circuit we consider is an inverter undergoing trapezoidal input transitions.

This basic example is used to illustrate several important features of our calibrated

MVS model. It is well known that the charging and discharging activities during

input gate transitions require precise balancing of both static and dynamic behavior

of the NFET and PFET transistors. The output voltage waveforms using the MVS

model in comparison with the industry-standard BSIM4 model are depicted in Fig. 2-
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Figure 2-5: Transient response waveform for an inverter chain with various input
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46



5. The conducted tests are similar to those used in static timing cell characterization

as they have sweeps with respect to both output loads and input slews. In the first

sweep test, the input slew is fixed at 10ps and the load (fanout) is 1, 2 and 4, while

in the second test, the load (fanout) is fixed at 3 and the input slew rate is 10ps,

20ps, and 40ps. The average delay error between the MVS model and the “golden”

or baseline BSIM4 model is 0.88% and the 10% − 90% rising/falling time error is

0.92%/1.11%. This is a good indication of the accuracy of the transient calibration

of the extracted MVS model.

Table 2.2: Delay (in ps) comparison between MVS and BSIM4 for various gates with
input slew of 10ps and a fanout of 3. Dl−h represents low-to-high propagation delay
and Dh−l represents high-to-low propagation delay.

(ps) VS BSIM 4 Error
Dl−h Dh−l Dl−h Dh−l El−h Eh−l

INV 5.75 5.59 5.71 5.62 0.7% 0.5%
NAND21 6.3 9.86 6.3 10.2 0.1% 2.6%
NAND22 6.97 11.5 6.97 11.3 0.1% 2.3%
NAND31 7.4 16.2 7.4 16.5 0.1% 1.9%
NAND32 7.25 16.2 7.23 15.9 2.7% 2%
NAND33 7 15.1 6.97 14.8 0.4% 2.5%
NOR21 9.92 6.4 10.1 6.4 1.6% 0.1%
NOR22 8.84 6.12 8.93 6.08 0.9% 0.6%
NOR31 15.3 6.96 15.58 6.96 1.9% 0.1%
NOR32 14.8 6.81 15.01 6.8 1.4% 0.1%
NOR33 13.0 6.49 13.07 6.44 0.4% 0.7%

In Tables 2.2 and 2.3 we summarize the computed delays and rise/fall times for

2- and 3-input symmetrical NAND/NOR gates, with all variables defined in Fig. 2-6.

The input slew is 10ps and the output load is a fanout of 3. The average and the

maximum relative error, MVS vs. BSIM4, for all gates under test are 1.5% and 2.6%,

respectively. This compares favorably with [57] where their ultra-compact model

achieves only 6% (delay) and 11% (slew) accuracy on a similar set of tests.
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Table 2.3: Output slew comparison between MVS and BSIM4 for various gates with
input slew of 10ps and a fanout of 3.

(ps) VS BSIM 4 Error
rise fall rise fall Er Ef

INV 9.13 8.84 9.03 8.67 1.1% 2.0%
NAND21 10.3 17.7 10.5 18.1 1.7% 2.2%
NAND22 11.4 18 11.2 17.6 1.6% 2.2%
NAND31 12.3 27.8 12.2 27.1 0.9% 2.5%
NAND32 12.1 27.8 11.9 27.1 1.6% 2.5%
NAND33 11.8 27.8 11.6 27.1 1.9% 2.5%
NOR21 16.0 9.94 15.7 9.82 1.0% 1.2%
NOR22 16 9.37 15.9 9.25 0.7% 1.3%
NOR31 25.0 11.22 24.9 11.2 0.7% 0.2%
NOR32 25.0 10.51 24.8 10.38 0.8% 1.2%
NOR33 24.9 10.07 24.6 9.9 1.3% 1.7%
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Figure 2-6: Delay and slew between input and output signals. Delay is measured at
the 50% Vdd points; slew is measured between the 20% and 80% Vdd points.

48



2.4 MVS Model Validation for Digital Circuits

To further verify the calibrated MVS model, a 32-bit ripple-carry adder is designed in

the targeted technology (40nm bulk CMOS) and the transient waveform of the critical

path compared using MVS and BSIM4 models. The simulation environment and the

SPICE convergence setting using both models are exactly the same; this is important

to demonstrate that no major work is required to adapt the circuit simulation setting

to the presence of the new transistor model.
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Figure 2-7: Critical path transient waveform for a 32-bit ripple-adder with Vdd from
0.65V to 0.9V , in 0.05V increments.

The test circuit includes 0.9k transistors in total belonging to various library cell

types (INV, NAND, NOR and XOR). We select the worst-case delay for a 32-bit add

operation. This requires setting input A at 100...00 and input B at 111...11. The

input carry on signal of the very first bit Cin0 has a 0 → 1 transition and then a

1 → 0 transition, and the output carry on signal of the very last bit will reflect the

critical path delay. To show the robustness of the MVS model for low-power design,

the supply voltage Vdd is swept from 0.6V − 0.9V . The transient signal Cin0 and

Cout32 at different Vdd from both MVS and BSIM4 model are shown in Fig. 2-7, which
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demonstrates that the output signals of the two models have excellent matching. The

average delay mismatch under all Vdd conditions is about 0.3%.

The second digital circuit we consider is a 1001-stage inverter chain designed in

the same technology. This test circuit includes 2k transistors in total and the delays

under different Vdd from 0.6V to 0.9V are compared between the MVS and BSIM4

models. The average delay mismatch under all Vdd is about 0.25%. In both digital

circuit cases, the delay mismatch for MVS vs. BSIM4 model is smaller than the

mismatch observed in library cell delays. This is because the rise/fall mismatches

tend to cancel each other.
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Figure 2-8: Transient power consumption for a 32-bit ripple-adder with Vdd=0.9V.

Power consumptions of the critical path transitions in the aforementioned test

cases are also compared. Transient power consumed by the 32-bit ripple-adder under

Vdd = 0.9V is shown in Fig. 2-8, which demonstrates good agreement between the

MVS and BSIM4 models. The average power consumption mismatch under all Vdd’s

is 1.3% for the 32-bit adder and 1.8% for the 1001-stage inverter chain. Finally, the

power-delay curves for both cases under different Vdd are shown in Fig. 2-9.
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Figure 2-9: Energy delay curve for (a) a 32-bit ripple-adder and (b) 1001 stage inverter
chain under Vdd from 0.65 to 0.9V .

The runtime speedup of the MVS model is further compared with an open source

BSIM SOI compact model implemented in Verilog-A [65], which has similar model

complexity with BSIM4. The comparison is between MVS and BSIM SOI instead

of BSIM4 because BSIM4 has been implemented through C code which has higher

efficiency and comparison between Verilog-A and C code is not appropriate. The

transient simulation runtime comparison in the two aforementioned test circuits are

shown in Table 2.4. An average speed up of 7.6× is achieved which is in line with

the order of magnitude reduction in the number of MVS parameters. The simulation

environment, the SPICE convergence setting and maximum iteration setting for both

models are exactly the same to achieve a fair comparison. Also, in both models,

the transition time and the delay time of the library cells are tuned to be similar to

ensure a comparable computing effort in both cases. Since the simplicity of device

models is key to a statistical design flow [32], the 7.6× speed up achieved by the

MVS model points to its potential for variation-aware statistical analysis with reduced

computational cost.
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Table 2.4: Transient simulation speed comparison between MVS model and BSIMSOI
model [65].

Model MVS run time BSIMSOI run time MVS speed up
1001-stage inverter chain 621s 3470s 5.6×

32-bit ripple-adder 111s 1060s 9.6×

In summary, the above results demonstrate that the MVS model, fully integrated

in a vendor CAD environment equipped with a 40nm industrial design kit, is capable

of dealing with SPICE-level timing and power analysis tasks at an industrial degree

of accuracy, while having an order of magnitude fewer parameters than the BSIM4

industry standard.

2.5 Parameter Variations in MVS Model

To support statistical circuit simulation, the measured I−V and C−V statistics need

to be converted into variations of a complete set of independent MVS model param-

eters. For modern MOSFETs, the primary sources of within-die variations include

random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness

fluctuation (OTF), as well as local fluctuations of mechanical stress [66]. To maintain

the simplicity of the statistical MVS model, we relate most of its parameters directly

to standard device measurements rather than to manufacturing process parameters.

The MVS model parameters used for statistical modeling are listed in Table 2.5.

Table 2.5: MVS model parameters list

Source Model Parameter Description
LER Leff (nm) Effective channel length
LER Weff (nm) Effective channel width
RDF VT0 Zero-bias threshold voltage
OTF Cinv(µF/cm

2) Effective gate-to-channel
capacitance per unit area

Stress µ(cm2/V · s) Carrier mobility
Stress vxo(cm/s) Virtual source velocity
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In the MVS model, the threshold voltage is modeled as

VT = VT0 − δ(Leff )VDS (2.6)

where δ(Leff ) is the Leff -dependent DIBL coefficient [52]. The threshold voltage vari-

ation in Table 2.5 is determined by the variations in implantation energy and dose

as well as fluctuations in substrate doping. These effects are modeled through varia-

tion in VT0, while length-dependent threshold voltage variation is captured through

variation in δ(Leff ). Note that VT0 has a weak dependency on Leff over the range

considered here thus this effect is negligible. A special feature of the MVS model

is that vxo is independent of the bias voltages. Previous work has shown that the

relative change in virtual source velocity is related to the change in mobility [67].

According to [68], vxo also has a dependency on δ(Leff ). Therefore variation on Leff

also has an impact on vxo. In the MVS model, both effects are described using an

approximation for the sensitivity of vxo with respect to µ and δ(Leff ), as shown in

the following expression:

∆vxo
vxo

= [α + (1−B)(1− α + γ)]
∆µ

µ
+

∂vxo
vxo∂δ(Leff )

∆δ(Leff ) (2.7)

Here α ≈ 0.5 and γ ≈ 0.45 are both fitting indices to a power law and B is the

ballistic efficiency given by the expression

B = λ/(λ+ 2l) (2.8)

where λ is the mean free path and l is the critical length for backscattering to the

source at nominal Leff . An approximate value for ∂vxo
vxo∂δ(Leff )

in the targeted technol-

ogy is 2.
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2.6 Statistical Extraction Method

A well-characterized nominal MVS model is the foundation of variability analysis.

The nominal values of important effects, such as DIBL, mobility and virtual source

velocity are critical for determining the model sensitivity to parameter variations.

The basis for mismatch modeling was proposed by Pelgrom, et al [69]. For local

variation, the fluctuations in the observed variation of parameters have a uniform

area dependency

σ2
p

p2
∝ 1

LW
(2.9)

where the subscript p represents a process parameter such as effective channel length

and width, channel dopant concentration, mobility, and effective gate-to-channel ca-

pacitance per unit area. For local mismatch, we have σL = σLeff
and σW = σWeff

,

and a complete equation considering the geometric dependence of each parameter is



σVT0

σL

σW

σµ

σCinv


= [α1 α2 α3 α4 α5]



1√
WL√
L
W√
W
L

1√
WL

1√
WL


(2.10)

The ultimate goal of this statistical modeling is to extract a group of α1−5 that is

appropriate for all transistor geometries and that match the statistical circuit per-

formance. The mismatch variances of pj cannot be characterized directly from mea-

surement or device simulations. Instead, variations σFi
(i = 1, 2, ...,m) of electrical

performance parameters (e.g., Idsat, Ioff , etc.) are measured under different geometry

and bias conditions and the σpj are calculated from backward propagation of variance

(BPV) [33] according to the formula

σ2
Fi

=
n∑
j=1

(
∂Fi
∂pj

)2σ2
pj

(2.11)
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(2.12)

Equ. (2.11) assumes pj and pk for any j 6= k are independent. And Equ.(2.11)

furthur assumes Gaussian distributions for both groups of {Fi} and {pj}. This as-

sumption requires a careful selection of both {Fi} and {pj}. In our work, and unlike

the statistical modeling approach of [33], measurements at some conditions, such as

Ioff or Id at the transition region between linear and saturation, do not strictly follow

a Gaussian distribution. It follows that such conditions do not result in suitable Fi

parameters, or require restricted conditions or transformations to be used. In this

work, the Fi are selected to be Idsat, log10Ioff and Cgg@Vdd.

The accuracy of Equation (2.11) hinges on the validity of approximating the elec-

trical performance parameters as linear functions of the process parameters. We have

found that such linear approximation is sufficiently accurate to extract σpj .

A system of linear equations is set up after stacking a group of equations with

different transistor sizes, as is shown in (2.12). The sensitivity matrix in (2.12) is
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calculated from SPICE simulation using the MVS model. To ensure the indepen-

dence of pj’s as required by (2.11), the virtual source velocity is not considered as a

separate variation parameter in Equation (2.12), since its effect has been captured

in the variation of Leff and µ. Also, silicon dioxide films are created with a thermal

oxidation process which historically has been extremely tightly controlled [2] with

the σ variation of Cinv being less than 0.5% in our case. Because the BPV process

tends to overestimate variation in tightly controlled process parameters, we directly

measure Cinv through the oxide thickness, as suggested in [34].

Since the primary intrinsic mismatch corresponding to gate length and width

variation is due to line edge roughness (LER), which is caused by etching and sub-

wavelength photo-lithographic process, it is reasonable to assume the same roughness

for both length and width. Therefore an empirical relationship α2 = α3 (σL/σW =

L/W ) is assumed to further reduce the unknown parameters in (2.12). A good match

to data is achieved (α2/α3 = 0.95−0.99 under different geometries) in a 40nm CMOS

technology.

Parameter coefficients α1−4 are solved separately using individual transistor data

without using (2.10), or solved together using transistors with different geometries

through a least square fit. The solution given by solving the stacked equations with

different geometries provides a more consistent and scalable result across these geome-

tries while the solution given by using individual transistor data is more accurate for

each geometry. Therefore a trade-off between accuracy and consistency is made ac-

cording to the difference between the two solutions. Less than 10% difference between

the two methods is observed and the solution with different geometries is employed

in this work, as shown in Fig. 2-10.

2.7 Statistical Verification

To validate the accuracy of the MVS statistical model as well as the statistical extrac-

tion method, we implement it using Verilog-A under the Cadence Virtuoso Design

Environment and run camparisons against BSIM simulations. The method described
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Figure 2-10: Relative difference in σVT0
, σLeff

and σWeff
between solving (2.12) indi-

vidually and together.

in Section 2.6 is applied to characterize the SPICE-level benchmark circuit statis-

tics of a 40nm bulk CMOS technology. Although the BPV method is applicable to

measurement data, here we have employed data generated using a BSIM based in-

dustrial design kit to validate the proposed MVS statistical model. The benchmark

circuits include both digital (standard cell library and D flip-flop) and analog circuits

(SRAM). Monte-Carlo simulations are run by randomly generating samples of each

process parameter based on the independent Gaussian distributions extracted from

Section 2.6 Various Monte Carlo simulations are performed, including several geome-

tries of MOSFETs and different electrical tests (I − V and C − V ). The sample sizes

are more than 1000 to characterize the statistical variation and correlation for Fi.

The extracted parameter statistics α1−5 are listed in Table 2.6.

2.7.1 Validation of Device Variability

The percentage standard deviation of σ/µ for Idsat and the underlying process pa-

rameter contributions are shown in Fig. 2-11. Compared with previous results in
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Table 2.6: Extracted standard deviation coefficient using the BPV method.

NMOS PMOS
α1 (V · nm) 2.3 2.86
α2 (nm) 3.71 3.66
α3 (nm) 3.71 3.66
α4 (nm · cm2/V · s) 944 781
α5 (nm · µF 2/cm2) 0.29 0.81

a similar technology [70], we observe a similar extracted σVT0
/µVT0

and σLeff
/µLeff

but smaller σµ/µµ in the MVS model. The latter result is due to the fact that in

the context of the MVS model, mobility and virtual source velocity have meanings

that differ with those of [70]. Table 2.7 shows Monte Carlo simulation results for

both Idsat and log10Ioff for various transistor sizes, and a comparison between the

MVS and an industrial statistical BSIM model. The simulated variation shows good

matching between the MVS and BSIM models, thus confirming the accuracy of our

statistical MVS model and the correctness of the BPV extraction procedure.
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Figure 2-11: Standard deviation of Idsat and the underlying process parameter con-
tributions for L = 40nm.
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Table 2.7: Standard deviation of the MVS Monte-Carlo simulation compared with
industrial model.

Device (W/L nm) NMOS PMOS
Fi BSIM σ MVS σ BSIM σ MVS σ Unit

Wide Idsat 33.1 32.7 21.6 21.7 uA
(1500/40) log10Ioff 0.13 0.13 0.15 0.15
Medium Idsat 20.2 19.9 14.8 14.8 uA
(600/40) log10Ioff 0.17 0.17 0.24 0.23

Short Idsat 8.7 8.8 6.95 6.86 uA
(120/40) log10Ioff 0.33 0.33 0.49 0.47

Idsat and log10Ioff bivariate scatter plots for BSIM model and 1σ, 2σ and 3σ

confidence ellipses for both MVS and BSIM model are shown in Fig. 2-12. Note

that in the statistical MVS model, the generated variation parameters Leff , VT0, and

µ are non-correlated. This behavior confirms that the Idsat and log10Ioff variations

are fully decoupled during the statistical extraction procedure.

2.7.2 Statistical Validation Using Benchmark Circuits

We have performed statistical experiments on both the BSIM model and the MVS

model using a set of benchmark circuits, including standard library logic cells (INV,

NAND2, DFF, etc.) and an SRAM cell.

Our first standard cell is a fanout-of-3 static INV gate having the geometry: 1×,

2× and 4×. For each of BSIM and MVS, 2500 Monte Carlo simulations are run to

generate delay probability density functions as shown in Fig. 2-13. The Vdd in all cases

is 0.9V , which is the standard supply voltage for this particular technology. Delay

variations generated from both models follow a Gaussian distribution. Excellent

matching is achieved across a wide range of transistor sizes, which confirms that the

geometric dependencies of the MVS variation are well characterized. It is important

to note that our statistical extraction procedure remains valid regardless of the specific

functional dependence of the variations on device geometry.

Not only does the MVS statistical model enable the characterization of the impact

of variability in Leff , Wleff , VT0, µ, vx0 and Cinv on timing, but also it may be used to
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Delay probability density for INV with 

different sizes 
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Figure 2-13: Delay probability density comparison between BSIM and MVS models
for an INV gate (fanout of 3) with different sizes.

predict the distribution of frequency, leakage power, and parametric yield, as shown

in Fig. 2-14. The leakage-frequency scatter plots, as well as mean and standard

deviations predicted by the BSIM and MVS models, are almost identical. In both

cases, the total spread of leakage is as much as 37×. The impact of within-die variation

on frequency variation is 45% and 50% of the mean frequency for BSIM and MVS

models, respectively.

Our second standard cell is a fanout-of-3 static NAND2 gate operating under a Vdd

of 0.9V , 0.7V and 0.55V . Although power consumption decreases with supply voltage,

local variations increase significantly, and as a result parametric yield is decreased.

Even worse, the probability density of the delay becomes highly non-Gaussian at low

supply voltage, and as a result, the application of statistical static timing analysis

(SSTA) becomes more difficult [71]. Although all variation parameters in the MVS

model are assumed to be independent Gaussian variables, the non-Gaussian property

of the delay distribution is correctly captured, as is shown in Fig. 2-15. The quantile-

quantile plot for delay variation starts to deviate from a linear relationship when

Vdd = 0.7V , and the non-linearity becomes pronounced at Vdd = 0.55V . In both

cases, the MVS prediction shows a good match with the BSIM model at the 3σ scale.

Unlike the PSP model [33] where variances of extra electrical performance parameters
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Figure 2-14: Scatter plot generated by 5000 Monte Carlo samples showing the distri-
bution of the total circuit leakage versus frequency (1/delay) for an INV gate (fanout
of 3) in (a) BSIM model, and (b) MVS model.

have to be added to match the variance at different Vgs, no extra statistical fitting

is needed in the MVS model to adjust timing distributions, in cases where dynamic

voltage scaling is used.

After verifying the approach on combinational logic cells, we now extend it to

perform setup and hold time analysis on a D flip-flop. The schematic of the benchmark

master-slave register is shown in Fig. 2-16 (a). Fig. 2-16 (b) shows a typical timing

path for setup/hold analysis. Considering statistical variations, the hold and setup

constraints are:

t1 − t2 > Thold (2.13)

t1 − t2 < Tclk − Tsetup (2.14)

where Tclk is the clock period for the design. The PDF’s for setup/hold time for

the registers simulated from MVS model and BSIM models are shown in Fig. 2-16(c).

One important note is that the characterization of the setup/hold time requires about
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Figure 2-15: Delay probability density comparison between BSIM and MVS models
for a NAND2 gate (fanout of 3) with a supply voltage of (a) 0.9V , (b) 0.7V and
(c) 0.55V . The quantile-quantile plots for delay variation under each supply voltage
in (d) 0.9V , (e) 0.7V and (f) 0.55V show a strongly nonlinear pattern in low power
application.
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20 times more SPICE simulations than those of a combinational cell having the same

number of transistors. This is because the setup/hold time can only be measured

indirectly by varying clock to input signal delay. The ultra compact MVS model plays

a more important role in this case, where tens of thousands of SPICE simulations are

required.
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Figure 2-16: (a) Master-slave register based on NMOS-only pass transistors, P/N
sizes are 600nm/40nm and 300nm/40nm, respectively; (b) typical timing path for
setup/hold analysis; and (c) probability density of the setup time in circuit (a) with
250 Monte Carlo runs.

The last circuit in our validation is a 6T SRAM cell, which is known to be

highly sensitive to within-die variations, as shown in Fig. 2-17. The N/P sizes are

150nm/40nm. Both the MVS and BSIM models are employed to simulate the vari-

ability in SRAM READ and HOLD static noise margin (SNM). The characteristic

butterfly patterns generated with the statistical MVS model are shown in Fig. 2-17(a)

and (d), for READ and HOLD, respectively. The SNM comparisons between the two

models for READ and HOLD are shown in Fig. 2-17 (b) and (e). Even with this

highly sensitive analog circuit, the ultra compact statistical MVS model provides an
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excellent match to the “golden” BSIM model. In Fig. 2-17(f), the quantile-quantile

plot for SRAM HOLD SNR using both models shows a slightly non-Gaussian distri-

bution.
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MVS 
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Figure 2-17: 2500 Monte Carlo simulation for a 6T SRAM cell; (a) butterfly pattern
from MVS model in static READ mode; (b) probability density for SRAM READ
static noise margin (SNR); (c) schematic of the 6-T SRAM; (d) butterfly pattern from
MVS model in static HOLD mode; (e) probability density for SRAM HOLD SNR;
and (f) quantile-quantile plot for SRAM HOLD SNR.

Finally, the runtime speedup of the MVS model (Verilog-A) with respect to BSIM4

(C code) is shown in Table 2.8. We notice a 4.2× speedup and 8.7× reduction in

memory usage. These favorable results can be further improved using an optimized

C code implementation of the MVS model in line with the optimized C code used for

BSIM4.
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Table 2.8: Speed and memory comparison for Monte Carlo simulation between MVS
(in Verilig-A code) and BSIM4 model (in C code).

MVS BSIM 4
Cell Sim. Sample Runtime Memory Runtime Memory

NAND2 Tran 2000 225s 14.9M 855s 126M
DFF Tran 250 3.86ks 23.2M 13.5ks 157M

SRAM AC 2000 405s 17M 2.15ks 187M
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Chapter 3

Physical Subspace Projection: An

Efficient Statistical Framework for

Performance Estimation from

on-Chip Test Structures

3.1 Introduction

With the success of semiconductor scaling, predicted by Moore’s law, and the vastly

increased complexity of nanometer scale processes and the billion-device circuits they

allow, there is a need for comprehensive and efficient approaches for high-yielding

designs in the state of the art VLSI technology [2, 72, 59, 32]. A critical problem in

design for manufacturability (DFM) is to build statistically valid prediction models

of circuit performance based on a small number of measurements. These predic-

tion models can then be used in many circuit applications such as parametric yield

prediction and robust circuit design [73].

The measurements used to predict system performance are generally taken from

different configurations of on-chip test structures which are used for monitoring and

controlling the fabrication line. These structures are often small circuits placed in
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the scribe line on all wafers and therefore capable of modeling the history of the line.

Test circuits include simple arrays of transistor structures that allow the measure-

ments of I−V characteristics of MOSFETs [11, 74], and ring-oscillator based on-chip

digital circuits which convert an analog signal to more robust digital (frequency)

measurements [75]. Compared with test structures for device modeling which are

typically composed of a rich variety of structures (e.g., across channel width, length,

and other geometric or configuration combinations), these on-chip test structures are

often designed in a way that enhances their sensitivities to key physical parameters

under process variation (and to decrease their sensitivity to other parameters, when

possible). Although it is possible to identify certain parameter variations through

measurements using only a single type of test structure, a challenging issue here is

how to combine measurements from a mixture of test structures (e.g., different device

and circuit test structures), and make good predictions on a target circuit perfor-

mance, as shown in Figure 3-1.
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Figure 3-1: Performance estimation problem from a mixture of on-chip test structures.

For standard device models that have large numbers of empirical or semi-empirical

parameters, measurements from a single test structure nevertheless end up represent-

ing or being sensitive to variations in multiple parameters, and the measurements

are therefore statistically correlated. Because of this fact, it is preferable to trans-

form the correlated measurements into a set of low-dimensional, uncorrelated factors.

Principal component analysis (PCA) is a commonly used statistical technique that

performs this task [35]. Given N samples from a set of correlated random device
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variables P or correlated electrical measurements E, PCA seeks a linear transforma-

tion of these variables into a new set of random variables X which are orthogonal. In

other words, PCA identifies non-redundant combinations of the measurements, and

therefore achieves dimensionality reduction using only unlabeled measurements.

In conventional approaches, the next step is to perform response surface modeling

(RSM) and approximates the circuit performance (e.g., delay, power, etc.) as an

analytical (typically linear or quadratic) function of the orthogonal variables X [43].

However, even if we select top ranked variables X after PCA as basis functions of

the performance modeling, the required training sample size is typically quite large.

When the measurements data set is not large enough to support the variable space,

over-fitting problem described in Section 1.2.3 will appear. Unfortunately, it is can be

difficult or expensive to collect sufficient on-chip measurements to support full RSM

approaches. In stead, we are often limited to a very small number of measurements as

post-Silicon characterization suffers from two major issues: (1) a limited number of

replicated devices under test (DUTs) per die due to limited area and pads for on-chip

monitor circuits; and (2) a limited number of training dies are measured due to test

time limitations.

To address this issue, feature selection algorithms has been introduced to eliminate

variables irrelevant to the targeted circuit performance. Least-angle regression (LAR)

adds L1-norm regularization terms to error functions and results in sample complexity

logarithmic in the number of features [45, 46]. On the other hand, an L2 regularization

results in sample complexity that is linear in the number of features.

This chapter proposes an efficient method to build statistically valid prediction

models of circuit performance based on a small number of mixture measurements. The

key idea is to exploit two types of physical correlation. The first is the one that exists

between different groups of performance measurements. We exploit this correlation

by a technique named physical subspace projection that maps different groups of on-

chip measurements onto an unique likelihood subspace spanned by a set of physical

variables of the MIT virtual source (MVS) transistor model. As a ultra-compact

transistor model with 23 parameters, the MVS model has a benefit in that most of its
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Figure 3-2: Proposed method: physical subspace projection, maximum a posteriori
estimation and process shift calibration v.s. traditional method: PCA and RSM
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parameter are physical. A prior distribution is defined over these subspace variables

and a Bayesian formalism is introduced to estimate the performance parameters. This

is achieved using maximum a posteriori (MAP) estimation defined over all the group

measurement distributions and the subspace variable prior. A modification of an

expectation-maximization (EM) algorithm is employed to iteratively solve the MAP

estimation problem. The second physical correlation exists between SPICE simulation

and measurements, and a technique named process shift calibration is introduced to

estimate circuit performance offset between SPICE simulation and measurements.

Compared with the traditional PCA and RSM method, the proposed method reserves

the physical link between MVS model variables and measurements, such that the

required number of measurements is greatly reduced for model establishment, as

illustrated conceptually in Figure 3-2.

3.2 Background and Problem Definition

Without loss of generality, we consider the problem of estimating a single perfor-

mance of interest, denoted by g. Assume that g follows a Gaussian distribution

g ∼ N (µg, σg):

pdf(g) =
1√

2π · σg
· exp[−(g − µg)2

2 · σ2
g

] (3.1)

where µg and σg are, respectively, the mean and standard deviation of the performance

distribution. However, due to constraints on testing costs, measurements of g may

not be directly available. Instead, groups of measurement data of other performance

(usually electriccal) parameters are provided that we denote by F = {F1, F2, ..., Fm}.

As an example, consider the problem of post-Silicon validation of a digital system.

In this application, the performance metric g might be critical path delays or leakage

power across a die and Fi would be measurement results from on-chip monitoring

arrays (e.g., threshold voltages, Idsat for transistors, frequencies for ring oscillators

(ROs) [74, 76]). Here the variability of g is mainly caused by process and operat-

ing parameter variations such as Vth and Vdd. Our task therefore is to predict the

distribution of g given F and, consequently, predict the parametric yield.
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To formalize the above description, we define a measurement group to be a perfor-

mance measured under a certain circuit topology and configuration. We assume that

there are m such groups. To each group i (i ∈ [1,m] ), we associate a random variable

Fi to model the variability of the measurement under a certain circuit configuration.

Therefore the aforementioned F could be represented by {F1, F2, ..., Fm}. We also

assume that each Fi follows a Gaussian distribution Fi ∼ N (µFi
, σFi

):

pdf(Fi) =
1√

2π · σFi

· exp[−(Fi − µFi
)2

2 · σ2
Fi

] (3.2)

For each group Fi, we obtain a set of independent observations {Fi} = {F (1)
i , F

(2)
i , ..., F

(Ni)
i },

where Ni is the sample size of the i-th group. The problem we aim to address is to

estimate µg and σg given the observations {F1, F2, ..., Fm} with the constraint that Ni

are very small. For simplicity, we consider the case where N1 = N2 = ... = Nm = N .

This problem cannot be addressed by the conventional moment estimation tech-

niques because it is hard to assign a weight to each group and because the relationships

between g and the Fi’s are unclear [77]. One possible approach is to apply principal

component analysis (PCA) to F and select its top features X. The rest of the problem

is then converted into a performance modeling problem. The performance function

could then be approximated as:

g(∆X) =
M∑
k=1

αgk · bk(∆X) (3.3)

where {bk(∆X); k = 1, 2, ...,M} contains the basis functions (e.g, linear, quadratic,

etc.), and {αgk; (k = 1, 2, ...,M)} are the model coefficients. The unknown model

coefficients αgk are usually determined by solving a linear system with N sampling

points:

G = B · αg (3.4)

where

αg = [αg1 αg2 ... αgM ]T (3.5)
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G = [G(1) G(2) ... G(N)]T (3.6)

G(i) = g(∆X(i))

B =


b1(∆X(1)) b2(∆X(1)) · · · bM(∆X(1))

b1(∆X(2)) b2(∆X(2)) · · · bM(∆X(2))
...

...
...

b1(∆X(N)) b2(∆X(N)) · · · bM(∆X(N))

 (3.7)

However, the relationship between X and G is unknown and we have no prior

information on {αgk; (k = 1, 2, ...,M)}. Under the constraint of very small N ,

strong over-fitting would appear and the prediction would be unreliable. Although

least-angle regression (LAR) or sparse regression could add a regularization term on

{αgk; (k = 1, 2, ...,M)}, an appreciable number of samples is still required. This is

the main motivation for the development of a new performance estimation method

via physical subspace projection and maximum a posteriori (MAP) estimation. In

contrast to PCA, we project F onto a physical variable subspace X, and Bayesian

inference is used to learn a prior distribution on the X parameters using measurement

data from all the groups. The estimates of µg and σg are also obtained via a projec-

tion onto the X subspace, and the projection operation itself is facilitated using the

MVS MOSFET model [52].

3.3 Physical Subspace Projection

As discussed in Section 2.2, the MVS model is an ultra compact, charge-based MOS-

FET model that provides a simple, physics-based description of carrier transport in

modern short-channel MOSFETs [52, 54, 55]. It substitutes the quasi-ballistic car-

rier transport concept for the concept of drift-diffusion with velocity-saturation. In

doing so, it achieves excellent accuracy for the I-V and C-V characteristics of the

device throughout the various domains of circuit operation. The number of param-

eters needed is considerably fewer (19 for DC and 23 in total) than in conventional

models [64], making it attractive for our goal of modeling with very few measurement
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points.

Another feature of the MVS model is that most of its parameters are physical

and can be related strongly to well-chosen measurement points. In Chapter 2, we

described a statistical extension of MVS with the capability of mapping the variabil-

ity characterization in device behavior onto a limited number of underlying model

parameters, which in turn enables the efficient prediction of variations in circuit per-

formance [60].

3.3.1 Definition of Physical Subspace

We define physical subspace as a variable space spanned by model parameters in the

MVS model (e.g., Vtn, Vtp, etc.). Notice that model parameters are different from

measured parameters. For example, Vt is commonly measured through the so-called

“constant current method” where threshold voltage is the gate bias corresponding

to an arbitrary value of drain current, for instance 0.1µA [78]. Such measured Vt

relates to factors such as transistor geometries and configuration of devices under

test (DUTs). Hence its absolute value does not have unique physical meaning. An

MVS model parameter, in contrast, is a physical parameter with fixed value shared

by all transistors with different geometries.

Although parameters measured from different groups have large differences in

their absolute values, they are strongly correlated. This assertion is not only valid

for the same parameter measured from different configurations (e.g., Vt measurement

for transistors with different geometries), but is often also valid for different parame-

ters measured from different configurations (e.g., Idsat for a transistor and frequency

for a ring oscillator (RO)). Fig. 3-3 shows different groups of on-chip monitoring

measurements. All parameters in the red box refer to parameters that are directly

measurable. They are governed by a hidden model parameter, namely, Vtn (other hid-

den parameters and their link to measured parameters are not shown in this figure).
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12/9/2013 9 Li Yu, Figure 3-3: A graphical model linking hidden (internal) model parameters and cor-
related measured parameters for parameter correlations.

3.3.2 Physical Subspace Selection

The selection of physical subspace X is a key step in physical subspace projection.

Here we propose a least-angle regression (LAR) method to solve this feature selection

problem based on simulation, prior to using measurement results. A set of MVS

model parameters Y = {Y1, Y2, ..., Ys} are preselected as candidate subspace variables.

Then Monte-Carlo simulations are run to compute target performance g by randomly

generating samples of each MVS model parameter. X is initially set to be {�}. Next,

LAR finds the vector Ysi that is most correlated with g. Once Ysi is identified, Ysi is

removed from Y and added to X. The model coefficient α is determined by solving

the linear equation G = ∆X · α and the residual of the approximation is calculated

by:

Res = G−∆X · α (3.8)

Then a new vector Ynew which has the largest correlation with the residual Res

is found. The whole process is repeated until Res is smaller than a given thresh-

old. For performance (e.g., delay, power, etc.) of a typical digital system, we

found that X = {Vtn, Vtp} would be sufficient for a Res criterion of 0.02G and

X = {Vtn, Vtp, vxon, vxop} would be sufficient for a Res criterion of 0.01G, where

vxon and vxop are the virtual source velocity for NMOS and PMOS, respectively. This
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is consistent with intuition that Vtn and Vtp are dominant variation because ran-

dom dopant fluctuation and channel length variability are highly important physical

sources of performance variation. For simplicity and visualization purposes, we select

X = {Vtn, Vtp} for the rest of this chapter.

3.3.3 Physical Subspace Projection

The purpose of physical subspace projection is to transfer measurement data from

different groups into a unique physical subspace X. This is a one-to-many function

that cannot be resolved using deterministic methods. However, given coefficients α,

we can calculate the pdf on X, and maximize the joint likelihood of each sample using

maximum a posteriori (MAP) estimation.

In line with our previous assumptions, the subspace X satisfies a multivariate

Gaussian distribution X ∼ N (µX,θ):

pdf(X) =
1√

(2π)k |θ|
· exp[−1

2
(X− µX)Tθ−1(X− µX)] (3.9)

where µX is the mean vector of X, θ is the covariance matrix of X that captures the

intra-die variation and correlation of MVS parameters, and k is the dimension of X.

We also assume that the “uncertainty” of µX follows a conjugate Gaussian prior

distribution µX ∼ N (µ0,Σ0), where Σ0 is introduced to capture the covariance of

MVS parameters under inter-die variation.

pdf(µX) =
1√

(2π)k |Σ0|
· exp[−1

2
(µX − µ0)

TΣ−10 (µX − µ0)] (3.10)

Here, µFi
and σFi

are calculated by:

µFi
= µ(Fi(∆X)) =

M∑
k=1

αFik · µ(bk(∆X)) = µFi
(µX,θ) (3.11)
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σ2
Fi

=
∑M

j=1

∑M
k=1 αFijαFik · σ(bj(∆X), bk(∆X))− (

∑M
k=1 αFik · µ(bk(∆X)))2

= σ2
Fi

(µX,θ)

(3.12)

where µ(bk(∆X)) and σ(bj(∆X), bk(∆X)) are the mean and covariance of the basis

function, respectively.

Therefore the probability of observing data point F
(ni)
i in the ith group associated

with the subspace distribution is

pdf(F
(ni)
i |µX,θ) =

1√
2πσFi

(µX,θ)
exp[−(F

(ni)
i − µFi

(µX,θ))2

2 · σFi
(µX,θ)2

] (3.13)

which is the complete form of physical subspace projection.

3.4 Maximum A Posteriori Estimation

Our proposed physical subspace projection method is facilitated by Bayesian infer-

ence approaches which efficiently exploit the correlation between different groups of

measurements to improve the accuracy of the estimator.

3.4.1 Initial setting

Before we start, a proper physical variable subspace X is selected and prior knowledge

is learned by fitting αg and αFi
, as described in Section 3.3.2. Initial guesses of

parameters µ0, Σ0 and θ are also be selected; µ0 is the nominal value for the subspace

variables and Σ0 is the covariance matrix of MVS subspace variables under inter-die

variation. The initial value of θ equals the covariance of MVS subspace variables

under only intra-die variation.

3.4.2 Learning a Prior Distribution

The first step is to project each sample in different measurement groups {{F (ni)
i ;ni =

1, 2, ..., Ni}; i = 1, 2...,m} to the selected subspace X and obtain the probability of

observing Fi given µX and θ. Then we further combine the probability with the prior
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distribution pdf(µX) in (3.10) to accurately estimate µX and θ, and through those

parameters obtain µg and σg.

Assuming that the sampling process for different measurement groups are i.i.d.,

we can write the likelihood function pdf(F|µX,θ) as:

pdf(F|µX,θ) =
m∏
i=1

pdf(Fi|µX,θ) (3.14)

Similarly, assuming that the sampling process for samples in the same measure-

ment groups are i.i.d., the likelihood function pdf(Fi|µX,θ) is written as:

pdf(Fi|µX,θ) =

Ni∏
ni=1

pdf(F
(ni)
i |µX,θ) (3.15)

According to Bayes’ theory, the joint distribution pdf(F,µX|θ) is given by the

product of the prior pdf(µX) and the likelihood function pdf(F|µX,θ), giving us the

posterior distribution:

pdf(F,µX|θ) = pdf(µX|θ) · pdf(F|µX,θ) (3.16)

Substituting (3.14) and (3.15) into (3.16) and noticing that pdf(µX|θ) = pdf(µX)

gives:

pdf(F,µX|θ) = pdf(µX) ·
∏m

i=1

∏Ni

ni=1 pdf(F
(ni)
i |µX,θ)

= pdf(µX) · pdf(F
(n1)
1 |µX,θ)) · ... · pdf(F

(Nm)
m |µX,θ)

(3.17)

This demonstrates the sequential nature of Bayesian learning in which the current

posterior distribution forms the prior when a new data point is observed. Fig. 3-

4 shows the results of Bayesian learning on µX as the portfolio of the measurement

groups expands. The first column of this figure corresponds to the situation before any

data points are observed, and shows a plot of the prior distribution µX ∼ N (µ0,Σ0);

again, we are using X = {Vtn, Vtp} as our simplified basis function to enable visu-

alization of the method. The first row shows the likelihood function pdf(Fi|µX,θ)
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for different individual measurements, taken alone. The second row shows posterior

distribution pdf(µX,F|θ) obtained by multiplying its likelihood function from the

top row by the prior. As this process continues, the posterior distribution becomes

much sharper and in the limit of an infinite number of data points, the posterior

distribution would become a delta function centered on the true parameter values.

7/11/2014 3 Li Yu, 

Likelihood of 1 NMOS 

transistor measurement 

Likelihood of 1 PMOS 

transistor measurement 

Likelihood of 1 RO 

measurement 

Figure 3-4: Illustration of sequential Bayesian learning of µX from prior and on-chip
monitor circuits.

3.4.3 Maximum A Posteriori Estimation

Our final goal is to find an optimal estimation of µX which maximizes the log like-

lihood of posterior distribution lnpdf(µX,F|θ). However, a key step is still missing,

which is to determine the hidden variable θ which maximizes the log likelihood func-

tion

lnpdf(F|θ) = ln

∫
X

pdf(µX,F|θ)dµX (3.18)

The difficulty arises from the presence of integration that appears inside the loga-

rithm in (3.18), so that the logarithm function no longer acts directly on the Gaussian.

If we set the derivatives of the log likelihood to zero, we will no longer obtain a closed
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form solution. The idea presented in this chapter follows the expectation maximiza-

tion (EM) algorithm [79].

For any normalized distribution q(µX), we have

lnpdf(F|θ) = 1 · lnpdf(F|θ) =
∫
X
q(µX)dµX · lnpdf(F|θ)

=
∫
X
q(µX)lnpdf(F|θ)dµX =

∫
X
q(µX)lnpdf(µX,F|θ)

pdf(µX|F,θ)
dµX

=
∫
X
q(µX)

(
lnpdf(µX,F|θ)− lnq(µX)− lnpdf(µX|F,θ)

q(µX)

)
dµX

(3.19)

Here the second item −
∫
X
q(µX)lnq(µX)dµX is always a constant. The third item∫

X
q(µX)lnpdf(µX|F,θ)

q(µX)
dµX is the Kullback-Leibler divergence between pdf(µX|F,θ)

and q(µX) which is ≥ 0, with equality if and only if q(µX) = pdf(µX|F,θ).

Algorithm 1 Algorithm to solve maximum a posteriori estimation

Require: a joint distribution pdf(µX,F|θ) over observed variables F and latent vari-
ables µX, governed by parameters θ, convergence requirement ε.

Ensure: θ which maximizes the likelihood function lnpdf(F|θ) and µX which max-
imizes the likelihood function pdf(µX,F|θ)

1: Choose an initial setting for the parameters θnew;
2: repeat
3: θold = θnew;

4: Evaluate pdf(µX|F,θold) = pdf(µX,F|θold)
pdf(F|θold) ;

5: Evaluate θnewgiven by
6: θnew = arg maxθQ(θ,θold);
7: Q(θ,θold) =

∫
X
pdf(µX|F,θold)lnpdf(µX,F|θ)dX;

8: until |θold − θnew| < ε
9: µX = arg maxµX

lnpdf(µX,F|θnew);

This suggests an iterative algorithm, as summarized in Algorithm 1. Given an

initial value of θold, the first step is to maximize likelihood lnpdf(F|θold) with respect

to q(µX), which gives q(µX) = pdf(µX|F,θold). The second step is to fix the distri-

bution q(µX) and maximize lnpdf(F|θold) with respect to θold. The whole process is

repeated until convergence and estimations of θ and µX are obtained.
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3.5 Process Shift Calibration and Circuit Perfor-

mance Calculation

Once the physical subspace X and its corresponding basis functions B = {bk(∆X); k =

1, 2, ...,M} are obtained, we are able to determine model coefficients αg and αFi
by

solving linear equations G = B · αg and Fi = B · αFi
, respectively. This allow us to

build a one-to-many function from X to target performance g and measurements F.

In order to reuse prior information, to this point we assume that the coefficients αg

and αFi
of post-layout simulations are identical with the αg and αFi

of measurement

results. While this assumption usually holds in many practical applications, it is

sometimes the case that there is mismatch between the nominal performance values

of post-layout simulations and the measurements with a typical shift of 15% or less.

The shifts in the corresponding performance distributions are due to modeling and

extraction inaccuracy. Since only a very small sample size is needed to correct Fnom

and gnom, we are able to calibrate F and g with a simple correcting mean shift.

To further illustrate the calibration, Fig. 3-5 shows an example of RO stage delay

measurements versus Vtn and Vtp extracted from same-die test arrays and compared

with modeling prediction. A prediction of nominal performance without process

shift calibration is also shown in the figure. Note that measurements in Fig. 3-

5 are sampled from dies on various wafers and lots, and only a few dies (< 10)

with both measurements from on-chip test structures and measurements from target

performance are needed at the same time, to calibrate the nominal shift.

Finally, after building the link between physical subspace and performance, we

are able to generate the performance maps for different systems. Fig. 3-6 shows the

INV and NAND RO stage delay versus Vtn and Vtp after process shift calibration.

A high similarity is observed between the two maps; this suggests that having the

measurement result for one digital system would give us confidence in predicting other

digital system performances.

Combining αg and αFi
with θ and µX obtained after MAP, we estimate the mean
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12/4/2013 7 Li Yu, 

Figure 3-5: A comparison of measured and MVS model predicted ring oscillator (RO)
stage delay versus (a) NMOS Vt, and (b) PMOS Vt. Nominal post-layout simulation
without any shift and variation is marked as square.

Figure 3-6: Sensitivity analysis on (a) INV, and (b) NAND2 ring oscillator (RO)
stage delay using MVS model fit using proposed approach.
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and standard deviation of target performance µg and σg:

µg = µ(g(∆X)) =
M∑
k=1

αgk · µ(bk(∆X)) (3.20)

σ2
g = σ2(g(∆X)) =

M∑
i=1

M∑
j=1

αgiαgj · σ(bi(∆X), bj(∆X))− (
M∑
k=1

αgk · µ(bk(∆X)))2

(3.21)

3.6 Summary

A summary of our proposed physical subspace projection method and maximum a

posteriori estimation is shown in Fig. 3-7.
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Figure 3-7: Proposed method employing Bayesian inference and maximum a posteri-
ori estimation.

Before we start (step 0), a proper physical variable subspace X and its correspond-

ing basis functions B = {bk(∆X); k = 1, 2, ...,M} are selected, and prior knowledge is
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learned by fitting αg and αFi
. The first step (step 1) is to perform physical subspace

projection which maps different groups of on-chip measurements onto an unique like-

lihood subspace spanned by the set of physical variables of the MVS model. Then

a prior distribution is defined over these subspace variables and a Bayesian formal-

ism is introduced to estimate the performance parameters. The next step (step 2 in

Fig. 3-7) is using maximum a posteriori (MAP) estimation defined over all the group

measurement distributions and the subspace variable prior, which is achieved using

an expectation-maximization (EM) algorithm. Finally, step 3 ultilizes process shift

calibration to estimate circuit performance by combining SPICE simulation and very

few new measurements.

Although both intra-die variation (θ) and inter-die variation (Σ0) are introduced

with initial values from the design kit, it is worth noting that they are dealt with

separately in this work. For intra-die variation (θ), different dies have different pa-

rameter values and these need to be updated through the EM algorithm. However,

inter-die variation (Σ0) only serves as prior information and different dies share the

same value. While the whole process may be repeated for many dies, we can also

update Σ0 if necessary. Once we have updated θ and Σ0, together with the extracted

mean vector, we can estimate the parametric yield of the product.

3.7 Validation

In this section, we demonstrate the accuracy and efficacy of our proposed physical

subspace projection and MAP algorithm using measurement results. We consider

on-chip measurement results collected from 3186 dies in 27 wafers in a 28-nm bulk

CMOS process. Each chip contains different test structures, including transistor-

arrays and ring oscillator (RO)-arrays, which are often used as monitor circuits due

to their simplicity and small area overhead. Configurations of transistor and RO test

structures are summarized in Tables 3.1 and 3.2, respectively.

In group #1, I − V curves of single NMOS and PMOS devices, which correspond

to the driving strength of INV RO, are characterized. Similarly, I − V curves of
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Table 3.1: A summary of transistor-array test structures.

Measurement group # 1 2 3
DUT NMOS PMOS NMOS PMOS NMOS PMOS

Connection single single stacked parallel parallel stacked
Measurements Idsat,Ioff ,...

Replicas 4 4 4 4 4 4

Table 3.2: A summary of RO-array test structures.

Measurement group # 4 5 6
DUT INV NAND NOR

Circuit topology RO RO RO
Measurements frequency

Stages 97 97 97
Replicas 4 4 4

stacked NMOS and parallel PMOS transistors are characterized in group #2; and

correspond to the driving strength of NAND RO, while I − V curves of parallel

NMOS and stacked PMOS transistors are characterized in group #3, corresponding

to the driving strength of NOR RO. For validation purposes, we use one group of RO

frequency as the performance of interest to mimic the operation of a digital system,

while the rest of the measurement groups are used to train the model.

3.7.1 Comparison with a Naive Approach

As a first example for demonstration, we compare our proposed method with a naive

approach where measurements from a single group are used to construct a response

surface method (RSM) model. Fig. 3-8 shows relative error on group #6 frequency

predictions as a function of Ni replicas on the same die. All 3186 dies are used

for training and the number of samples per die varies. Our proposed method is

able to achieve higher accuracy using multiple-group measurements, compared with

RSM using single group measurements. We observe consistently 2x sample accuracy

improvement over sample mean, which represents a 32.5x sample size reduction.

Table 3.3 shows cross-group validation errors in RO frequency predictions using

the proposed physical subspace projection and MAP method, with different mix-

85



6/18/2014 13 Li Yu, 

Relative prediction error for DUT 6 versus replicate 
samples per die (sample size) using different DUT 
group means to fit models.  
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Figure 3-8: Relative prediction error for group #6 versus replicate samples per die.
A mixture of measurement groups is compared.

Table 3.3: Relative prediction error for cross-group validation.

# Measurement group Prediction group %error
1 1,2,3 4 3.22
2 1,2,3 5 2.99
3 1,2,3 6 2.70
4 5,6 4 2.40
5 4,6 5 2.19
6 5,6 4 3.54
7 1,2,3,4 5 2.26
8 1,2,3,4 6 2.17
9 1,2,3,5 5 2.26
10 1,2,3,5 6 2.06
11 1,2,3,6 4 2.32
12 1,2,3,6 5 2.15
13 1,2,3,4,5 6 2.10
14 1,2,3,4,6 5 1.98
15 1,2,3,5,6 4 2.01
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tures of device- and RO-array measurements. As we compare cross-group prediction

errors, we observe consistently smaller prediction errors as the number of different

measurement groups grows.

Fig. 3-9 shows a prediction of INV RO frequency ultilizing the proposed method,

generated using a mixture of training groups (but not including INV RO test struc-

tures) from on on-chip monitor data, compared with measurement of INV RO fre-

quency. A high similarity is observed between the two wafer maps; having measure-

ment results for on-chip test structures give us high confidence in predicting other

digital system performances.
Wafer map comparison with measurement 

measurement prediction 
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𝑝𝑠/stage Measurement of INV stage delay Prediction of INV stage delay 

Figure 3-9: Wafer map comparison between measurement and proposed method pre-
diction.

3.7.2 Comparison with PCA and RSM Approach

As a second example for demonstration, we compare our proposed method with the

traditional PCA and RSM approach, where in both cases a mixture of measure-

ment groups are used for model training. Fig. 3-10 shows how the average perfor-

mance prediction error varies with the number of training dies for three different

techniques: PCA and least-squares regression (LSR), PCA and least-angle regression

(LAR), and proposed physical subspace projection (PSP) and MAP method. All

replicas on each training dies are used, but the number of training dies varies in this
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case to mimic the situation where measurements for the target system are difficult

to obtain. Both “PCA+LAR” and the proposed method require fewer training sam-

ples than “PCA+LSR”, because they do not solve the unknown model coefficients

from an over-determined equation. Meanwhile, our proposed “PSP+MAP” method

is able to achieve substantially higher accuracy compared with “PCA+LSR” and

“PCA+LAR”, with 70x and 150x sample reduction, respectively. Here the measure-

ments from device-array test structures and RO-array test structures are sampled

from 27 wafers. Each time we select measurements from one or several wafers to

train the model, and use measurements from the rest of the wafers to do validation.

The whole process is repeated and the prediction error is averaged.
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Figure 3-10: Relative prediction error for group #6 versus number of training
dies. Various algorithms are compared. Candidate variables for “PCA+LSR” and
“PCA+LAR” include both linear and quadratic items for variables after PCA process.
Prior without any measurements for “PSP+MAP” is also labeled with an average
modeling error of 9.5%
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Fig. 3-11 shows how the average performance prediction error varies with the

number of training dies for different starting prior errors: Similar prediction errors

are observed for priors with 7.5% and 26.4% modeling error. However, a slightly larger

error is observed for the latter case, as the final model parameters deviate more from

the nominal (assumed prior) value.
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Chapter 4

Compact Model Parameter

Extraction Using Incomplete New

Measurements and a Bayesian

Framework

4.1 Introduction

Continued scaling of CMOS technology has introduced new physical mechanisms for

short-channel devices that significantly increase the number of parameters and the

complexity of equations of compact transistor models. To be effectively used in circuit

design simulations, all the many dozens of model parameters need to be carefully

extracted from multiple test structures (e.g., I−V structures, C−V structures, ring

oscillators, etc.) so that the model can accurately reproduce the transistor electrical

characteristics. Usually the set of model parameters is divided into subsets of local and

global parameters, where the local parameters apply to a single device dimension while

global parameters apply to all relevant device geometries [80]. Therefore experimental

data for devices with different geometries and replicas are needed to find the global

set of parameters. The most widely used parameter extraction methods are based
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on the deterministic minimization of an error function between model output and

measurement data, as noted in Chapter 1. Algorithms used to solve the optimization

problem are either gradient-based (e.g., Levenberg-Marquardt) or gradient-free (e.g.,

Genetic Algorithm - GA). GA mimics the natural selection and evolution process and

is more likely to find the global minimum [81]. All of these minimization methods

are iterative, and defining an appropriate starting point and parameter bounds is of

crucial importance and requires considerable experience. Furthermore, for a given set

of measurements, there may be multiple minimizing solutions (sets of parameters that

reproduce input-output data), and selecting the one most compatible with the physics

of the device is a difficult task. The situation becomes even worse in the presence of

significant measurement “noise” which introduces unavoidable errors in the extracted

model parameter, thus compromising even further their physical significance.

Traditional silicon characterization and extraction flows suffer from 1) large area

overhead due to the complexity of different test structures and transistor geometries;

and 2) long testing time due to a very limited number of I/O ports through which all

measurement data for the test structures have to be collected. This problem is further

exacerbated in statistical parameter extraction as required for statistical IC analysis

and optimization, e.g., statistical static timing analysis and post-silicon tuning. In

nanoscale technologies, IC testing has contributed to a significant portion of the total

manufacturing cost, to the point that it is now almost impossible to proceed with

all I − V measurements for every on-chip monitoring device on each die in a wafer.

As discussed in Chapter 2, existing statistical parameter extraction methods such as

the backward propagation of variance (BPV) [60, 82] are advantageous only when

the number of measurements is larger than the number of model parameters. They

also typically impose the stringent constraint that extracted parameters must be

statistically uncorrelated. Such limitations mean, among several similar situations,

that the correlated variations in sub-threshold swing (SS) and threshold voltage (Vth0)

cannot be extracted at the same time.

In this chapter, we exploit recent advances in statistics and semiconductor metrol-

ogy to develop a novel and unified MOSFET parameter extraction method for low-
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cost silicon testing and characterization. While the virtual probe described in [51]

and in [83] focuses on reducing the number of measured dies needed to character-

ize spatial variation, our work focuses on reducing testing cost per die. Our new

method is general, allows for missing I − V measurements in the data set, removes

the independence restriction on the model parameters and can be used to conduct

both deterministic and statistical model parameter extraction. While our theory and

algorithms are independent of the underlying transistor model (BSIM, PSP, EKV,

MVS, etc.), we mainly use the MIT virtual source (MVS) model to illustrate the

applicability of our work to deeply-scaled devices where the main mode of charge

transport is quasi-ballistic. The intrinsic simplicity of the MVS model combined with

the Bayesian inference [44] framework enables the statistical extraction of an entire

parameter set using only six noisy I − V measurements. A key step in this new

method is maximum a posteriori (MAP) estimation where past I − V measurements

of older transistor technologies are used and learned to obtain a prior distribution on

the parameter set along with its uncertainty matrix.

4.2 MVS Model and Parameters Revisited

As presented in Chapter 2, the MIT virtual source (MVS) model is an ultra compact,

charge-based MOSFET model that provides a simple, physics-based description of

carrier transport in modern short-channel MOSFET [52, 55, 54]. It utilizes a quasi-

ballistic carrier transport concept rather than drift-diffusion with velocity saturation.

In doing so, it achieves excellent accuracy for the I − V and C − V characteristics

with continuity of current and its derivatives throughout all regions of operation. The

MVS model has the advantage of using a limited number of input parameters, most

of which have straightforward physical meanings and can be easily measured using

traditional device characterization.

Fig. 4-1 shows the parameter extraction methodology for MVS described in detail

in Chapter 1, with the key parameters extracted from I−V measurements highlighted.

Table 4.1 summarizes these key parameters along with their physical meaning.
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I-V 

Measurement 

Figure 4-1: Optimization flow for I-V parameter extraction in the MVS model.

Table 4.1: Key parameters extracted with experimental data for the MVS model with
physical meaning.

Parameters Description
Vt0(V ) Strong inversion threshold voltage
n0 Sub-threshold swing factor
δ(mV/V ) Drain-induced barrier lowering
vxo(cm/s) Virtual source carrier velocity
µ(cm2/V · s) Low-field mobility
Rs0(ohm · µm) Series resistance per side
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The extracted parameters are divided into two groups: one for the sub-threshold

region (Vt0, n0 and δ) and one for the above-threshold region (vxo, µ, Rs0 and Rd0).

In traditional device characterization, each group is optimized separately using non-

linear least-squares error minimization [64]. In this chapter, we propose an alternative

approach to parameter extraction, using a Bayesian framework. The key additional

idea is to use uncertainty about the a priori model to guide and improve parameter

estimation given new data.

4.2.1 Problem Definition

To formalize the parameter extraction problem, we consider a measurement set of

currents {F1, ..., FN} with corresponding inputs V = {V1, ...,VN}. We group the

target variables {Fn} into a vector that we denote by F. Each input contains voltages

from four terminals, Vn = {V n
g , V

n
d , V

n
s , V

n
b }. We define Psub = {Vt0, n0, δ} as the

sub-threshold parameters, and Pabove = {vxo, µ, Rs0, Rd0} as the above-threshold

region parameters. As discussed in detail in Chapter 2, we call the submanifolds

of Psub and Pabove the physical subspace since each is a multidimensional surface

parameterized with the physical parameters in the MVS model. The output of the

MVS model would then be f(V,Psub,Pabove). The problem we aim to address is

to estimate Psub and Pabove given the observations {F1, ..., FN}, with the challenge

that the size of the measurement set N is very small.

Based on the physics of transistor operation in the subthreshold regime, we assume

that the measurement of subthreshold currents Fn follows a log-normal distribution:

lnFn ∼ N (lnf(Vn,Psub,Pabove), β
−1
lnFn

) (4.1)

where βlnFn is the precision (inverse variance) of lnFn.

Similarly, we assume that the above-threshold current Fn follows a Gaussian dis-

tribution:

Fn ∼ N (f(Vn,Psub,Pabove), β
−1
Fn

) (4.2)
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where βFn is the precision (inverse variance) for Fn.

The least-squares error function of sub-threshold and above-threshold regions are,

respectively,

E(Psub) =
1

2

N∑
n=1

{ln(Fn)− ln(f(Vn,Psub,Pabove))}2 (4.3)

E(Pabove) =
1

2

N∑
n=1

{Fn − f(Vn,Psub,Pabove)}2 (4.4)

4.3 Maximum A Posteriori Estimation

In this section, we present maximum a posteriori (MAP) estimation of Pabove and

Psub, where instead of minimizing the error function in (4.3) and (4.4), we will max-

imize the probability of observing F.

4.3.1 Physical Subspace Projection

The purpose of physical subspace projection is to relate an observed measurement

to an output of the physics-based model and use both to derive a probability distri-

bution on the physical subspace [49]. In the transistor model extraction context, this

means that we seek to relate current measurements at different voltage biases to the

outputs in the sub-threshold and above-threshold physical subspace Psub and Pabove,

respectively. The pdf ’s on Psub or Pabove can then be calculated and the parameter

extraction problem solved using maximum a posteriori (MAP) estimation.

Without loss of generality, we describe the MAP estimation for sub-threshold

parameters. Above-threshold parameters could be estimated in a similar manner.

First, we assume that Psub follows a multivariate Gaussian distribution Psub ∼

N (µPsub
,ΣPsub

):

pdf(Psub) =
1√

(2π)ksub |ΣPsub
|

·exp[−1

2
(µPsub

− Psub)TΣ−1Psub
(µPsub

− Psub)]
(4.5)
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where µPsub
and ΣPsub

are the mean vector and covariance matrix of the sub-threshold

region parameters, respectively, and where ksub is the dimension of Psub. The covari-

ance between Psub and Pabove is handled through the iteration process in Fig. 4-1.

Next, we assume that the “uncertainty” of µPsub
follows a conjugate Gaussian prior

distribution µPsub
∼ N (µs0,Σs0).

pdf(µPsub
) =

1√
(2π)k |Σs0|

·exp[−1

2
(µPsub

− µs0)TΣ−1s0 (µPsub
− µs0)]

(4.6)

where µs0 and Σs0 are the mean vector and covariance matrix of µPsub
, respectively.

Given µPsub
and βlnFn , we calculate the probability of observing each data point lnFn

associated with subspace distribution pdf(Psub) as

pdf(lnFn|µPsub
, βlnFn) =

√
βlnFn

2π

·exp[−
(lnFn − lnf(Vn,µPsub

,µPabove
))2

2 · β−1lnFn

]

(4.7)

The above equation (4.7) is the complete form of the physical subspace projection for

the sub-threshold region.

4.3.2 Learning Precision at Different Biases

The learning of precision βlnFn is a key step in physical subspace projection. In prac-

tice, many reasons may contribute to the uncertainties of measurements at each bias.

These reasons include modeling errors due to the inability of MVS to capture certain

physical effects or measurment errors due to inaccuracies in current measurements.

While they depend on the details of the fabrication or measurement process, these

uncertainties show a strong systematic trend at different biases.

In this work, the I − V curves of transistors from past technologies or past tran-

sistor data from current technologies are used to learn the systematic MVS model

uncertainty trend at different voltage biases. Such data may come from either test-

site measurement or simulations using mature or early product design kits. The de-
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tailed learning process proceeds as follows. First, a group of historical transistors are

selected depending on the fabrication process of the target transistor. For example, if

we intend to fit a transistor fabricated in a low power process, appropriate historical

transistors would also be transistors in a low power process. In cases (such as that

considered in this chapter) where no detailed information about the target transistor

is available, a mix of short-channel transistors in several fabrication processes and

technology nodes (six in this chapter) are employed to improve our confidence in pre-

dicting βlnFn on an unknown transistor. This assumes that although a new process

introduces different lithography, structures and materials, the basic transistor opera-

tions and trends remain. Therefore the MVS parameters do not drastically change,

because most of them are based on underlying solid-state physics rather than on the

fabrication process. After selection of a group of historical transistors, each selected

transistor is fitted into the MVS model with a complete set of I − V measurements

using the deterministic non-linear least-squares (NLS) error function, (4.3) and (4.4).

Given experimental I − V measurements of a transistor and simulation results

generated from the MVS model, inverse uncertainty quantification estimates the dis-

crepancy between the experiment and the mathematical model, as shown in (4.8).

The standard deviation
√
β−1lnFn

is calculated by the average differences between mea-

surements and MVS model predictions using the NLS extracted parameters:

lnf(Vn,Psub,Pabove) = lnFn + δ + ε (4.8)

where δ denotes the additive discrepancy function, and ε denotes the experimental

uncertainty (measurement noise). For example, Fig. 4-2 (a) shows errors resulting

from the MVS model being an ultra-compact model that is unable to capture the

gate tunneling effect for certain technologies. Fig. 4-2 (b) shows measurement errors

due to the inaccuracies of current measurement in the sub-nA region.

Fig. 4-3 shows the learned standard deviation (
√
β−1lnFn

) at different voltage biases.

Fig. 4-3 (a) is an extraction of average uncertainty from design kits when a clean data

set with no measurement error is involved. A high uncertainty is observed on Idsat
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Figure 4-2: Sources of uncertainties (a) modeling error, and (b) measurement error.

with very low gate voltage where the gate tunneling effect appears. Fig. 4-3(b) is

an extraction of average uncertainty from measurement data, where the uncertainty

includes both modeling and measurement errors. A rapid increase of uncertainty is

observed on Idlin in the very low gate voltage region. This is due to the inaccuracies

of current measurement in the sub-nA region. The increased uncertainty around

Vgs = 0.5V is due to the inaccuracy of the MVS in modeling the transition region.

Similarly, Fig. 4-4 shows the extraction of average uncertainty
√
β−1Fn

from mea-

surement data for the above-threshold region. It will be used to extract Pabove.

4.3.3 Learning a Prior Distribution

After physical subspace projection and precision estimation, we are able to project

very small numbers of samples in current measurements {F1, ..., FN} to parameter

subspace Psub and obtain the conditional probability of observing lnFn given µPsub

and βlnFn . We then combine this conditional probability with the prior distribution

pdf(µPsub
) in (4.6) to accurately estimate µPsub

. Assuming each of our N current

measurements is i.i.d., we can write the likelihood function pdf(F|µPsub
, βlnFn) as:

pdf(F|µPsub
, βlnFn) =

N∏
n=1

pdf(Fn|µPsub
, βlnFn) (4.9)
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Figure 4-3: Extraction of average uncertainty
√
β−1lnFn

at different bias for 6 different

technologies from (a) design kits, and (b) measurement results.

According to Bayes’ theory, the conditional distribution pdf(µPsub
|F) equals the

product of the prior pdf(µPsub
) and the likelihood function pdf(F|µPsub

) divided by

total likelihood of observing F, pdf(F):

pdf(µPsub
|F) = pdf(µPsub

) · pdf(F|µPsub
)/pdf(F) (4.10)

The precision βlnFn is learned from historical transistor data and is therefore in-

dependent of the measurement set F. Consequently,

pdf(F|µPsub
, βlnFn) = pdf(F|µPsub

) (4.11)

Substituting (4.9) and (4.11) into (4.10) yields:

pdf(µPsub
|F) = pdf(µPsub

) ·
N∏
n=1

pdf(Fn|µPsub
, βlnFn)/

N∏
n=1

pdf(Fn) (4.12)

The above equation demonstrates the sequential nature of Bayesian learning in

which the “old” posterior distribution becomes the “new” prior when a new data point
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Figure 4-4: Extraction of average uncertainty
√
β−1Fn

at different biases for six different

technologies from measurement results.

is added to the measurement set. Fig. 4-5 shows the results of Bayesian learning on

µPsub
as the portfolio of the measurement groups is expanded. For illustration, we only

show a 2-D map of δ and SS (sub-threshold swing which is the physical expression of

n0), and the third sub-threshold parameter Vt0 is fixed for better comparisons across

all measurement updates. The bottom left figure corresponds to the situation before

any data points are observed, and shows a plot of the prior distribution µPsub
∼

N (µs0,Σs0). Note that µs0 and Σs0 are learned from historical transistor data in

exactly the same way as βlnFn .

A complete set of I − V measurements for short-channel transistors with six

different fabrication processes and technology nodes are fitted into the MVS model

using the least-squares error functions, giving us the a priori µs0 and Σs0 MVS model

parameters. We then derive the mean and standard deviation of transistor currents at

each bias voltage using µs0 and Σs0. Fig. 4-6 shows the mean and standard deviation

of the transistor I−V curves using the extracted µs0 and Σs0; these provide the prior

distributions before collecting any new measurements for the target technology.

However, the uncertainty band of the a priori in Fig. 4-6 is still relatively wide.

If more information from the target technology is available, e.g., repeated parameter

extractions from on-chip monitor structures, the a priori µs0 and Σs0 could provide
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Figure 4-5: Illustration of sequential Bayesian learning of µPsub
using priors and

I − V measurements. The two parameters shown are the sub-threshold swing factor
SS and the drain-induced barrier lowering δ. The red color represents estimates with
high likelihood while the blue color represents estimates with low likelihood. As more
measurements are added, the MAP parameter estimates become more accurate. Note
that the actual extraction is not done sequentially, as summarized in Section 4.3.4.
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Figure 4-6: Mean and standard deviation of the transistor I − V curve using µs0
and Σs0 learned from historical transistor data when no measurements from target
technology are available.

much tighter prior distributions before collecting measurements of a new transistor

in the same technology. For example, Fig. 4-7 shows the mean and standard devi-

ation of the transistor I − V curves using the extracted µs0 and Σs0 from repeated

measurements of a single technology, with correspondingly tighter prior confidence.

The first row of Fig. 4-5 shows the resulting likelihood function pdf(Fn|µPsub
) for

measurements at different biases alone. Different widths of red regions at each bias

represents historical learning of βlnFn . If two measurements have large discrepancy

(e.g., SS from the first and third samples), the extraction results will be more strongly

adjusted toward the measurement with the higher precision (narrower width). The

second row shows the posterior distribution pdf(µPsub
|F) that results from multi-

plying its likelihood function from the top row by the prior (bottom left). As this

process continues, the posterior distribution becomes much sharper, and in the limit

of an infinite number of data points, the posterior distribution would become a delta
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Figure 4-7: Mean and standard deviation of the transistor I −V curve using µs0 and
Σs0 learned from a large number of historical transistor measurements from target
technology, showing tighter confidence intervals compared to Fig. 4-6.

function centered on the true parameter values.

4.3.4 Maximum A Posteriori Estimation

Our final goal is to find optimal estimates of µPsub
and µPabove

that maximize the

log likelihood of the posterior distributions lnpdf(µPsub
|F) and lnpdf(µPabove

|F), re-

spectively. Substituting (4.6) and (4.7) into (4.12) and removing the constant items

yields:

E(Psub) =
1

2
(µPsub

− µs0)TΣ−1s0 (µPsub
− µs0)

+
1

2

N∑
n=1

βlnFn{ln(Fn)− ln(f(Vn,Psub,Pabove))}2

(4.13)
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Similarly, we have

E(Pabove) =
1

2
(µPabove

− µf0)TΣ−1f0 (µPabove
− µf0)

+
1

2

N∑
n=1

βFn{Fn − f(Vn,Psub,Pabove)}2
(4.14)

Equations (4.13) and (4.14) are the new error functions given by maximum a poste-

riori (MAP) estimation. Compared with (4.3) and (4.4), we note the following two

advantages: 1) a bias-dependent precision allocating weights to sample measurement

errors as contrasted with the uniform weights of NLS; 2) an appropriate prior dis-

tribution that has been learned from historical transistor data and which provides a

parameter probability distribution before any measurement. In particular, the BPV

restriction that the number of electrical measurements should be larger than the

number of extracted parameters is removed.

4.4 Validation

In this section, two model parameter extraction examples in several cutting-edge

CMOS technologies are used to demonstrate the efficiency of our method. To test and

compare with the prior art, we have also implemented deterministic extraction using

the non-linear least-squares error function and statistical extraction using backward

propagation of variance (BPV).

4.4.1 Example I: Early Technology Evaluation

The first example is to use the MVS model for early technology evaluation. The

difficulty of this problem is that measurements are collected from a limited number

of early prototype devices rather than from a full suite of designed test structures.

Therefore it is highly unlikely that the limited data will be sufficient to fit com-

plex compact models such as BSIM. As for the ultra compact MVS model, separate

measurements of Id − Vds and Id − Vgs are needed in order to apply the traditional
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deterministic method of non-linear least squares error function.

Fig. 4-8 shows the MVS model fitting results using our new parameter extraction

method for four technologies from 14nm through 45nm. Notice that some technologies

are not used for learning the prior information, and only six points from Id − Vgs

are used to fit the entire model. The prediction results on the rest of the I − V

measurements match well throughout the operating region, including the Id − Vds

curves. Even for transistors with gate tunneling effects (e.g., Technology 3), the

proposed method still extracts the correct trend in the sub-threshold region. This is

because, according to the historical record, the MVS model suffers a large modeling

error in this region and therefore less weight is assigned for the Ioff measurement.

 

  

 

  

 

  

   

Figure 4-8: MVS model fitting results using MAP parameter extraction method for
four technologies in 14nm-45nm. Blue circles are fitted measurements using the MAP
method and red circles are test measurements for validation.

Fig. 4-9 shows an average MVS model prediction error for Technology 3 using both

our MAP method and the least-squares error function. A 3X sample size reduction

is observed to achieve comparable error.
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Figure 4-9: Average model prediction error for Technology 3 on Id for above-threshold
region and log10Id for the sub-threshold region, showing reduced error of proposed
method compared to the traditional NLS method.

Fig. 4-10 shows errors for compared with baseline extraction MVS model parame-

ters extracted using LSE method and proposed Bayesian extraction framework versus

number of measurements. Here I − V curves with 20mV Vgs intervals (around 100

measurements total) are used for baseline extraction. For extraction in all five param-

eters, better consistency is observed for the proposed Bayesian extraction framework

compared with traditional LSE method. Due to high correlation between vx0 and

µ, these sub-threshold subgroup parameters show higher percentage errors than the

above-threshold parameters. However, the proposed Bayesian extraction shows lower

error and more consistent extraction compared with the traditional LSE method.

4.4.2 Example II: Statistical Extraction for post-Silicon Val-

idation

The second example is to use the MVS model to estimate post-Silicon circuit perfor-

mance and to conduct statistical parameter extraction. In both cases, measurements

are taken from different on-chip monitor circuits in which large numbers of transistors

are involved. Unlike the first example where we focus on characterizing a target tran-
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Figure 4-10: Parameter consistency (percentage error for parameters compared with
baseline extraction) for extraction of the MVS model using LSE method and proposed
Bayesian extraction framework versus number of measurements.

sistor, here we emphasize modeling statistical distributions of groups of transistors

and seek to extract the distribution of their MVS parameters. The bottleneck here is

that in order to obtain a statistically sufficient number of transistors, we traditionally

suffer from the testing costs from the tens of thousands of transistors required. To

extract key parameters (e.g., Idsat, Idlin, Vtsat and Vtlin) and save testing costs, we

would prefer to require that only a small set of I − V curve data is collected. In a

standard BSIM model, these few I −V measurements are not sufficient to extract all

parameters. Some knowledge of, or restrictions on, many of the BSIM parameters is

needed. On the other hand, Fig. 4-11 shows MVS model fitting for two transistors in

a 28nm technology using our MAP parameter extraction method. Only six measure-

ments are used to fit eight parameters in the MVS model for each device, and the

prediction matches well with other test measurements.

This suggests an alternative method for extracting variations of MVS model pa-
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Figure 4-11: MVS model fitting results using the MAP parameter extraction method
in a 28-nm technology from wafer measurements. The blue circles are fitting measure-
ments used by the proposed method. The red circles are additional test measurements
used for validation.

rameters from wafer level measurements. The method consists in simply extracting

deterministic MVS parameters separately for many devices and calculating their co-

variance matrix. Compared with the traditional BPV method, this direct method

has several advantages. First, the relationship between measurements at different

biases is maintained. For example, the extraction of sub-threshold swing SS needs

measurements at more than two biases in the sub-threshold region, and therefore it

is hard to extract its variance through BPV. Second, traditional BPV assumes in-

dependent parameters, and correlated variables cannot be extracted with the same

backward propagation. Third, BPV requires the number of electrical measurements

to be larger that the number of extracted parameters, which in turn requires a sig-

nificant number of measurements, especially for complex compact models such as

BSIM and PSP. In contrast, this direct statistical extraction is more accurate and

is less constrained. Fig. 4-12 shows Id probability density simulated using variance

extracted through our MAP method compared with variance extracted using BPV,

together with measurements at two different biases. Both methods show an accurate

distribution for Idsat, but the MAP method shows a much better prediction for Id

current distribution in the transition region (Vd = Vdd, Vg = Vdd/2).

Fig. 4-13 shows statistically-extracted wafer maps of key MVS model parameters

Vt0, δ, SS (extracted as n0), vxo and µ in a 28-nm technology. A strong correlation is
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Figure 4-12: Id probability density simulated using variance extracted through pro-
posed method compared with variance extracted through BPV, together with mea-
surements at two different biases.

Figure 4-13: Statistically-extracted wafer maps of key VS model parameters V t0, δ,
SS (extracted as n0), vxo and µ in a 28nm technology. Parameter correlations are
shown in the bottom right table.
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observed between vxo and µ, which matches the theoretical prediction given by [67]

that the relative change in virtual source velocity is proportional to the change in

mobility. Fig. 4-14 shows a scatter plot of virtual source velocity and mobility from

extraction of on-chip monitor circuits of one 28nm wafer. We observe that 83% of the

relative change in mobility is converted to relative change in virtual source velocity,

which is very close to 85% given by [67]. This shows that the proposed method is

able to correctly extract and separate strongly correlated parameters even with very

limited measurements.
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Figure 4-14: Scatter plot for statistically extracted virtual source velocity and mobil-
ity from on-chip monitor circuits of one wafer from a 28nm technology.

4.5 Optimal Sampling of Transistor Measurements

In Section 4.4, we demonstrated the efficiency of our proposed Bayesian method

by fitting the full region of transistor operation of the MVS model using only six

measurements. An interesting question then arises: what is the lower bound for the

number of I − V measurements needed to fit a compact model and how should they

be selected? In this section, we will solve the problem quantitatively by constructing
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simultaneous confidence intervals using the historical transistor measurements. We

also propose an efficient algorithm for selecting the optimal measurement biases by

minimizing the average uncertainty.

This is essentially an optimal design of experiments problem. A non-optimal de-

sign (such as the fixed interval sampling method by sweeping the entire Idsat and

Idlin curves) requires a greater number of measurements to estimate the parameters

with the same precision as an optimal design. Therefore optimal experiments can

reduce the costs of experimentation. Typically, such an optimal selection maximizes

the expected information gain, which is measured by the change in entropy of the

distribution ∆S [84, 85]. In general, it can be shown that the prior expectation of

entropy can be minimized over designs in measurement space ξ by choosing a subset

of ξ on which the prior entropy is maximized. For the optimal sampling of transistor

measurements, this is equivalent to choosing a subset of voltage biases that minimize

the integrated measurement uncertainties on the I − V curves. There exist several

possible ways for such optimal selection. Ref. [84] proposed an algorithm that min-

imizes the joint entropy of the output variables by measuring how effectively these

selected output variables work together to reduce the joint uncertainty in the output.

Ref. [86] proposed a sequential sampling algorithm such that at each stage of experi-

mentation the experimenter is free to choose the random variable that he will observe

from a given class of random variables. For the optimal sampling of transistor mea-

surements, it would be hard to implement a sequential sampling algorithm because

of the difficulties to hard code the algorithm and the priors into the probe station.

Least Angle Regression (LAR) is another method to select the testing measurements

that is only applicable to orthogonal testing points. Therefore it is difficult to solve

the selection problem using a traditional greedy approximation, because the output

of our candidate measurements are highly correlated [87, 88]. Our approach is similar

to that proposed in [84], enabled by the availability in our case by large numbers of

prior data allowing us to establish output precision and uncertainty.

The testing measurements are selected by two steps. First, a group of N candidate

measurement biases are generated from different transistor operating regimes. K
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measurement biases (K << N) are then selected according to their importance in

the widths of output estimate confidence intervals. Next, simultaneous confidence

intervals are constructed using the selected measurement biases.

4.5.1 Candidate Bias and Historical Correlation Generation

Let ξi(i ∈ (1, N)) be the bias conditions for eithor Idsat or Idlin. Every candidate has a

Vgs biasing interval of 10mV with its nearest neighbors. (We could presumably choose

other interval discretizations.) Variance σ2
I (ξi) at each bias candidate is computed

using the data set described in Section 4.3.2 which covers a broad range of fabrication

technologies along with measurement noises. The 95% confidence intervals using

prior information are then defined by [µI(ξi) − 1.95σI(ξi)√
n
, µI(ξi) + 1.95σI(ξi)√

n
]. We

define variance σ2
I (ξi|ξj) as the current variance of ξi given nearby measurements

ξj. Similarly, variance σ2
I (ξi|ξj, ξk) is defined as the current variance of ξi given two

nearby measurements ξj and ξk. With m measurements nearby, the variance σ2
I (ξi) is

calculated by the minimum of unconditional variance σ2
I (ξi|ξj), conditional variance

σ2
I (ξi|ξj) with the nearest measurement ξj and conditional variance σ2

I (ξi|ξj, ξk) with

two nearest measurements ξj, ξk, as shown in (4.15).

σ2
I (ξi|ξ1

st

, ..., ξm
th

) =
N∑
i=1

min(σ2
I (ξi), σ

2
I (ξi|ξj), σ2

I (ξi|ξj, ξk)) (4.15)

The nearest measurements for ξi are defined by measurements bias combinations

which give the minimum conditional variance. For example, the nearest single mea-

surement for ξi is defined by:

ξnearest = arg min
ξj

σ2
I (ξi|ξj) (4.16)

4.5.2 Selecting Optimal Measurements

K measurement biases are selected from the N candidate biases based on their statis-

tical importance, i.e., those biases with the jointly narrowest confidence intervals. The

MATLAB pseudo code for selecting the optimal m measurement biases is provided in
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Algorithm 2. The algorithm is iterative, selecting an additional single measurement

each time, and given that the new additional measurement, to revisit prior selections

for possible replacement. Finally, the optimal set of measurements is provided as a

group.

Algorithm 2 Optimal measurement biases selection

1: Compute σ2
I (ξi), σ

2
I (ξi|ξj) and σ2

I (ξi|ξj, ξk) for any combination of i, j and k;

2: ξ1 = arg minξj(
∑N

i=1min(σ2
I (ξi), σ

2
I (ξi|ξj)))

3: % the optimal single measurement bias
4: for m = 2, ..., K do
5: % loop for searching optimal biases with m total measurements
6: for n = 1, ...,m− 1 do
7: ξm,n

th
= ξm−1,n

th
;

8: end for
9: ξm,m

th
= arg minξi σ

2
I (ξi|ξm,1

st
, ..., ξm,m−1

th
, ξi);

10: for n = 1, ...,m do
11: ξm,n

th
= arg minξi σ

2
I (ξi|ξm,1

st
, ..., ξm,n−1

th
,

12: ξm,n+1th , ..., ξm,m
th
, ξi);

13: end for
14: end for

The basic idea of Algorithm 2 is as follows. The first measurement bias for the

single measurement is selected such that the sum of conditional variance is minimized.

Then, we add a second measurement bias by minimizing the sum of conditional vari-

ance given the single measurement and one of the candidates. Next, we revisit each of

the earlier selected measurements and seek a best replacement for each based on min-

imizing the sum of the joint conditional variances given the new added measurement

together with the rest of the current measurement set. The whole process is repeated

until the required number of measurements is selected. A different set of points is

selected for, say, six points than just adding an optimal sixth point to the optimal

five points. This is because the candidate measurements are highly correlated and it

is possible that the best five points given the sixth point may not be the same as the

five optimal points.
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4.5.3 Analysis for Optimal Measurements

Fig. 4-15 shows the optimal measurement selection from zero measurements to three

measurements, as well as their 95% confidence bounds for both Vds = 0.05V and Vds =

0.85V . It is clear that adding the first measurement squeezes the most uncertainty

compared with the second and third measurement. The bias of the optimal single

measurement is close to the measurement of threshold voltage, which matches our

intuition that threshold voltage has the largest impact on transistor operation. The

optimal two measurements are similar to measurements of threshold voltage and

Ion, except that the optimal measurements are more close to the transition region.

However, in all these cases the 95% confidence intervals are still relatively wide and

it is difficult to extract a full set parameters even from optimal measurement biases

with only one to three measurement points.

Fig. 4-16 shows the optimal measurements selection from four measurements to

12 measurements, as well as their 95% confidence intervals for both Vds = 0.05V and

Vds = 0.85V . The optimal four biases measure two points for the above-threshold

region and two points for the sub-threshold region, which corresponds to measuring

Idsat, Idlin, Vtsat and Vtlin in traditional transistor testing. However, the optimal mea-

surements for Vds = 0.05V and Vds = 0.85V do not precisely align since the offset

measurements tend to squeeze more uncertainty in the transition region. One inter-

esting result of our optimal measurements is that biases in the deep sub-threshold

region are not selected except for the last case, because of the exponential measure-

ment error for sub− nA current measurements. Instead, extrapolation using current

measurement from Vgs = 0.2V to Vgs = 0.4V brings higher confidence than direct

measurement. This explains why we prefer measuring Vtsat and Vtlin compared with

measuring Ioff directly.

In order to show the benefit of the proposed optimal sampling over a standard fixed

interval sampling method, we plot average decade error for log10Id for the Bayesian

extraction method in Fig. 4-17(a). It shows that the Bayesian extraction method

is further facilitated by the proposed optimal sampling approach by achieving sta-
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Figure 4-15: 95% confidence intervals for Vds = 0.05V and Vds = 0.85V with (a) no
measurement, only prior, (b) optimal single measurement, (c) optimal two measure-
ments, and (d) optimal three measurements. Measurement noise has been included.

ble log10Id error with only six measurements. Since we cannot guarantee conver-

gence in traditional LSE extraction, in Fig. 4-17(b) we show the percentage of non-

convergent transistor extractions for the LSE method using the proposed optimal

sampling method and the fixed interval sampling method. Fewer non-convergent

extractions are observed for the proposed optimal sampling method.

Fig. 4-18 shows average uncertainty (quantified by σ(log10(Id))) versus number of

measurements. Although a proper prior has been applied using historical transistor
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Figure 4-16: 95% confidence intervals for Vds = 0.05V and Vds = 0.85V with (a)
optimal four measurements, (b) optimal six measurement, (c) optimal eight measure-
ments, and (d)optimal 12 measurements. Measurement noise has been included.

measurements, the initial current uncertainty still reaches a relatively high value of

nearly a half decade. However, the uncertainty drops quickly after a few measure-

ments. With only six measurements, the uncertainty scales down to 10% of its initial

value. When the average measurement uncertainty equals the average modeling error

given a target compact model, we define the corresponding number of measurements

as the optimal number of measurements. In this work, the theoretical prediction for

the optimal number of measurements for the MVS model is eight, which matches well
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Figure 4-17: Comparison between fixed interval sampling and proposed optimal sam-
pling: (a) average decade error for log10Idfor Bayesian extraction method, and (b)
percentage of non-convergent transistor extractions for LSE method.

with other parameter extraction results in Section 4.4.

An alternative optimal measurements solution using the MVS model is shown in

Fig. 4-19. It is divided into two steps: (1) estimation of MVS model parameters {pi}

(i=1,2,...,7) using current measurements {Fmeas} as described in Section 4.3, and (2)

projection from parameter space to output space F and minimization of the total

sensitivity “volume.” The objective function is:

argminFmeas

∑
i

wi · E(pi| {Fmeas}) (4.17)

where wi = ∂(
∑N

j=1 Fj)/∂pi is the normalization factor between parameters, and

E(pi| {Fmeas}) is the new error function described in (4.13) and (4.14).

The proposed optimal measurements solution in Section 4.5.2 is essentially a maxi-

mal precision estimator that uses the theory of optimal experimental design to specify

inputs. Compared with the alternative approach in (4.17) where the physically based

MVS model is employed, our optimal measurements solution in Section 4.5.2 only
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Figure 4-18: Average uncertainty (quantified by σ(log10(Id))) versus number of mea-
surements. The average modeling error of the MVS model is shown as the red dashed
line.

relies on historical I − V measurements by using a system identification approach.

This allows us to separate measurement errors from modeling errors; the optimal mea-

surement solution is driven only by minimizing output (selected measurement point)

uncertainty, and is thus universal to all physical models (is not limited to the MVS

model). However, the optimal number of measurements depends on the modeling er-

ror of the physical model being employed, as additional measurement points beyond

that error limit does not improve accuracy. Future work could explore alternative

optimal sampling approaches such as in (4.17), or by a combination of measurement

and model parameter uncertainty minimization.
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Chapter 5

Statistical Library

Characterization Using Belief

Propagation across Multiple

Technology Nodes

5.1 Introduction

A standard cell library capturing statistical information of delay and output slew

variations is at the core of statistical static timing analysis (SSTA), and cost efficient

statistical characterization of such libraries has become essential. The most widely

used statistical library cell characterization method is based on the look-up table

(LUT) approach where gate propagation delay (td), output transition time (Sout) and

their variations are stored in a look-up table with different combinations of inputs

such as cell types, input slew (Sin), load capacitance (Cload), supply voltage (Vdd),

and other parameters [89]. The runtime complexity required for such a statistical

LUT-based approach is O(Nsample · NLUT ), where Nsample is the number of SPICE

runs needed to obtain each mean and variance value and NLUT is the number of

input vector combinations. This approach will quickly become infeasible as either
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NLUT or Nsample in a technology increases.

Historically, circuit level Monte Carlo (MC) simulation has been employed to

generate a number of samples in the process parameter probability space [60]. Such

approach allows variability-aware analysis to be implemented with minor changes on

top of existing characterization tools but requires a large number of MC runs. To

address this challenge, several approaches based on sensitivity analysis for library

characterization have been proposed by EDA vendors. For instance, the Composite

Current Source (CSC) approach is adopted by the Synopsys PrimeTime SSTA tool,

and the sensitivity-based effective-current-source-model (S-ECSM) is adopted by the

Cadence statistical tool. All of these approaches aim at modelling the statistical

impact of process parameter variations as a linear superposition of the impact of each

parameter in the response model of the affected metric. Several response surface

methodologies (RSMs) have also been proposed to exploit the sparsity of the process

regression coefficients. An example of such a strategy is least-angle regression (LAR)

which uses L1-norm regularization [46]. One major benefit of regularizing with the

L1-norm is that it results in sample complexity that is logarithmic in the number

of features (e.g., principal components). For statistical characterization of standard

cells, an error propagation technique using linear sensitivity analysis and response

surface methodology (RSM) using Brussel design of experiments (DoE) was proposed

for library characterization in [90]. The Brussel DoE performs statistical feature

selection keeping only those features that are most relevant to the response under

consideration. Then it uses a model selection algorithm to build a suitable regression

model for all the responses. More recently, statistical circuit simulators based on

uncertainty quantification have been successfully applied to avoid the huge number

of repeated simulations in conventional Monte Carlo flows [88, 91, 92, 93, 94, 95].

On the other hand, the expensive simulation cost of the statistical LUT-based

approach is not only due to high dimensionality of the process space, but also due

to high dimensionality of the cell variable space (e.g., cell type, input slew Sin, load

capacitance, supply voltage Vdd, etc.). This problem is further exacerbated as more

design options are provided in recent technologies (e.g., multi-Vt, multi-Vdd). While
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most of the existing work focuses on exploiting the sparsity of the regression coeffi-

cients of the process space with a reduced process sample size for each variable space

vector, correlations between different cells and different variable vectors within the

same cell have not been considered in the open literature, to the best of our knowledge.

This has been the main motivation of this work, which proposes a novel acceleration

method that operates in the library variable space rather than its process space and

that can be added to any acceleration used in the process space.

This is achieved through the systematic use of recent advances in statistics and

semiconductor metrology that we apply to the development of computationally effi-

cient statistical characterization algorithms for standard cell libraries. We propose

two key techniques to explore correlations in the library variable space. The first

is a novel ultra-compact, analytical model for gate timing characterisation, and the

second is a Bayesian learning algorithm for the parameters of the aforementioned

timing model using past library characterizations along with a very small set of ad-

ditional simulations from the target technology. Bayesian approaches were initially

introduced in the area of VLSI design for post-Silicon validation and parameter ex-

traction [48, 50, 83, 96, 97]. The intrinsic simplicity of the proposed timing model

combined with the Bayesian learning [44] framework is capable of building very ac-

curate circuit response representations.

The rest of this chapter is organized as follows. Section 5.2 introduces basic nota-

tion and formulates the problem of statistical characterization in the library variable

space. Section 5.3 describes prior work on gate delay modelling and presents our novel

ultra-compact analytical model for gate delay and slew [98]. Section 5.4 presents our

Bayesian algorithm which learns timing model parameters from past library charac-

terizations and a very small set of additional simulation runs in the target technology.

The foundation of this algorithm is the use of maximum a posteriori (MAP) estima-

tion, as applied to other problems in Chapter 3 and 4. In Section 5.5, our new

methods are validated on the library characterization in state-of-the-art 14nm and

28nm technology and compared with the LUT method.
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5.2 Problem Formulation

In library characterization, an accurate model for cell delay (Td) and output slew

(Sout) is developed given the following variable data: a cell type, input slew (Sin),

output load capacitance (Cload), transition direction (RISE/FALL), and supply volt-

age (Vdd). To formalize the library characterization problem, we consider an indi-

vidual logic gate with multiple inputs and one output, and for simplicity, we start

from the standard assumption that only one timing arc is modelled at a time, which

implies that we do not consider simultaneous input switching. For p cell variables

(ξ = {ξ1, ξ2, ..., ξp}), such as Sin, Vdd, Cload, etc., the cell response is modeled as the

following two functions:

Td = fT (ξ1, ξ2, ..., ξp) (5.1)

Sout = fS(ξ1, ξ2, ..., ξp) (5.2)

The problem of nominal library characterisation is to estimate fT and fS given k

cell variable vectors {ξ} = {ξ(1), ξ(2), ..., ξ(k)} and k output observations {T (1)
d , T

(2)
d , ..., T

(k)
d }

and {S(1)
out, S

(2)
out, ..., S

(k)
out}, such that the timing prediction error with respect to a base-

line case is minimized under the condition that k is very small. The nominal baseline

case is defined by SPICE simulations under n different variable vectors (n >> k)

sampled randomly within the variable space ξ.

We denote by {Td} an ensemble of delay observations. This ensemble has been

generated for a given variable vector but under varying process parameters. Now

we formulate the problem of statistical library characterisation in variable space as

that of estimating fT and fS given k variable vectors {ξ} = {ξ(1), ξ(2), ..., ξ(k)} and

k ensembles of output observations {{T (1)
d }, {T

(2)
d }, ..., {T

(k)
d }} and {{S(1)

out}, {S
(2)
out}, ...,

{S(k)
out}}, such that the prediction error for the statistical metrics with respect to a

statistical baseline case is minimized under the condition that k is very small. The

statistical baseline case is defined by statistical SPICE simulations using the same n

different variable vectors (n >> k) as in the nominal baseline case, where the SPICE

simulations are now executed according to the Monte Carlo method in process space.
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The metrics of the statistical baseline case include the mean and standard deviation

of delay and output slew at each variable vector i ∈ {1, ..., n}. They are denoted as

µ
(i)
Td

, µ
(i)
Sout

and σ
(i)
Td

, σ
(i)
Sout

(i = 1, 2, ..., n), respectively.

5.3 Model for Delay and Output Slew

Accurate gate level modeling for delay and slew estimation has become a major

challenge for nanometric technologies. Historically, the transistor delay has been

simply approximated by CloadVdd/Idsat, where Idsat is the drain current at Vgs = Vds =

Vdd. A more accurate model, named the alpha-power law, was later proposed in the

early 1990s [58] where a closed-form expression was derived for the delay of an inverter.

A simplified version of the alpha-power law was proposed in [99]. More recently, a

simple analytical expression for the intrinsic MOSFET delay, using physics-based

models for the effective current and the total gate switching charge, was proposed to

better describe nanometric technologies [100].

Although these advanced delay models provide accurate description of transition

activity in the cell, they are still quite complex, and detailed process information is

required to fit the entire model.

Our first goal therefore is to contribute an ultra compact timing model that is at

once a generalisation of older models but whose parameters allow a sparse represen-

tation of vell variable space vectors. Fig. 5-1 (a) shows the key factors that affect

the delay and output slew of an inverter. In this work, we consider the impact of

input slew (Sin), output load capacitance (Cload), supply voltage (Vdd), and driving

strength (Ieff ).

To find our ultra compact model, we first study gate delay in a simple inverter

and generalize it to any combinational logic cell. Recent studies [101, 102, 103] show

that the simple CloadVdd/Idsat metric follows the experimental inverter delay much

better if the on-current in the denominator is replaced with an effective current Ieff

representing the average switching current. In line with the intrinsic transistor delay
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4 

(a) (b) 

Figure 5-1: (a) Key factors that affect the delay and output slew of an inverter. (b)
NAND2 equivalent inverter: The pull-up network is replaced with an “equivalent”
PMOS while the pull-down network is replaced with an “equivalent” NMOS device.

defined in [100], we model cell delay as

Td = kd
∆Q

Ieff
(5.3)

where kd is a scaling factor used to obtain a good fit to the actual cell delays. Ieff is

defined as

Ieff =
Id(Vgs = Vdd, Vds = Vdd

2
) + Id(Vgs = Vdd

2
, Vds = Vdd)

2
(5.4)

and can be evaluated easily through performance modeling or through a circuit sim-

ulation that takes into account process variations [100, 55]. Since our focus is to

model delay and output slew as functions of cell variables, (5.1) and (5.2), we assume

we know Ieff for each variable vector. Note that the direct link between process

parameters and delay is still preserved in the Ieff current. To generalize the above

model to any combinational logic cell, we simply replace each gate with an “equiv-

alent inverter” and use the inverter characterization to estimate delays and output

slews [104, 105, 106]. Each pull-up or pull-down network is modeled as a four terminal

transistor by matching the “I − V ” curves through SPICE simulation. Fig. 5-1(b)
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shows the equivalent inverter of a NAND2 where the pull-up network is replaced with

a PMOS and the pull-down network is replaced with an NMOS device. The charge

transferred to or from the load capacitance during switching is equal to

∆Q = (Vdd + V ′)(Cload + Cpar + αSin) (5.5)

where Cpar, V
′ and α are all fitting parameters. Compared with the simple CloadVdd/Idsat

metric, several effects have been considered: (1) Cpar is introduced to account for par-

asitic capacitance, such as those associated with junctions and interconnects, which

are not included in Cload; (2) V ′ is introduced to compensate for the inaccuracy of

the delay model at low Vdd; and (3) a linear coefficient α is introduced to account for

input slew Sin’s impact on delay. The estimates of fT and fS are then converted to

parameter extraction problems for {kd, Cpar, V ′, α}.

A special feature of this simple delay model is that the same format is used to

describe not only delay but also output slew Sout, albeit with a different set of values

for the fitting parameters {kd, Cpar, V ′, α}.

To validate the proposed model, Td ·Ieff/(Vdd+V ′) and Sout ·Ieff/(Vdd+V ′) versus

different Vdd values are shown in Fig. 5-2, where Td and Sout are simulated through

SPICE using a 14nm industrial design kit, and two separate V ′ values are extracted

for Td and Sout. For different groups of Cload and Sin combinations, a constant value

of Td · Ieff/(Vdd + V ′) and Sout · Ieff/(Vdd + V ′) is observed under different Vdd.

Fig. 5-3 shows Td/(Cload + Cpar + αSin) and Sout/(Cload + Cpar + αSin) versus

different Cload and Sin variable combinations. A similar result is observed here, that

for different Vdd and transition (RISE/FALL) combinations, Td/(Cload +Cpar +αSin)

and Sout/(Cload + Cpar + αSin) are approximately constant.

Table 5.1 shows extracted parameters for the delay model from INV, NAND2

and NOR2 in three different technologies with their fitting errors. Strong similari-

ties in extracted parameters are observed among different cells and technologies from

different nodes, which serves as a basis for minimizing the required cell variable com-

binations in statistical characterization in the next section. Although our proposed
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Figure 5-2: For a NOR2 cell designed in a commercial state-of-the-art 14-nm tech-
nology, a constant value of Td · Ieff/(Vdd + V ′) and Sout · Ieff/(Vdd + V ′) is observed
versus different Vdd and RISE/FALL combinations.

model captures major physical effects, for some technologies there might be an offset

between the proposed model and circuit simulations. In those cases, extra fitting

terms (e.g., Sin ·Cload) might be needed. The optimal model complexity will be given

by a trade-off between model accuracy of degree of data compression.

5.4 Bayesian Inference with Maximum A Posteri-

ori (MAP) Estimation

In this section, we present a Bayesian inference approach with maximum a posteriori

(MAP) estimation, where instead of computing {Td, Sout} at each cell variable con-

dition separately, we will estimate {kd, Cpar, V ′, α} globally by maximizing the joint

probability of observing (ξ(i), T
(i)
d ) or (ξ(i), S

(i)
out), (i = 1, 2, ..., k). The formulation here

is analogous to that presented in Chapter 4 for MVS model learning and estimation,

but now applied to the problem of statistical timing characterization of a cell.

The first step is to transfer observed training samples (ξ(i), T
(i)
d ) or (ξ(i), S

(i)
out),
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Figure 5-3: For a NOR2 cell designed in a commercial state-of-the-art 14nm technol-
ogy, a constant value of Td/(Cload + Cpar + αSin) and Sout/(Cload + Cpar + αSin) is
observed versus different Cload, Sin and RISE/FALL combinations.

(i = 1, 2, ..., k) to the parameter subspace {kd, Cpar, V ′, α} and use both to derive

a probability distribution on the parameter space. The pdf ’s on {kd, Cpar, V ′, α} for

delay and output slew can then be calculated and the parameter extraction problem

solved using maximum a posteriori (MAP) estimation.

Without loss of generality, we describe the MAP estimation for delay parameters

group PT = {kd, Cpar, V ′, α}. Parameters for output slew are estimated in a similar

manner.

First, we assume that PT follows a multivariate Gaussian distribution PT ∼

N (µPT
,ΣPT

):

pdf(PT) =
1

4π2
√
|ΣPT
|
· exp[−1

2
(µPT

− PT )TΣ−1PT
(µPT

− PT )] (5.6)

where µPT
and ΣPT

are the mean vector and covariance matrix of the parameter sub-

group PT, respectively. Next, we assume that the µPT
follows a conjugate Gaussian

prior distribution µPT
∼ N (µt0,Σt0).
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Table 5.1: Extracted parameters for delay model from INV, NAND2 and NOR2 in
three different technologies with their fitting error.

Tech Cell kd Cpar(fF ) V ′(V ) α % error
A INV 0.389 0.951 -0.266 0.092 1.56%
A NAND2 0.372 1.328 -0.209 0.034 1.98%
A NOR2 0.356 1.186 -0.241 0.102 0.91%
B INV 0.416 1.046 -0.287 0.103 1.50%
B NAND2 0.403 1.471 -0.228 0.034 2.05%
B NOR2 0.374 1.276 -0.253 0.104 1.12%
C INV 0.389 0.978 -0.272 0.107 1.84%
C NAND2 0.383 1.12 -0.258 0.050 1.94%
C NOR2 0.368 1.225 -0.264 0.117 1.47%

pdf(µPT
) =

1

4π2
√
|Σt0|

· exp[−1

2
(µPT

− µt0)TΣ−1t0 (µPT
− µt0)] (5.7)

where µt0 and Σt0 are the mean vector and covariance matrix of µPT
, respectively.

We also define the delay model precision as βfTd , which equals the inverse variance of

modeling errors across different technologies. Given µPT
and βfTd , we calculate the

likelihood of observing the delay at the ith cell variable condition T
(i)
d associated with

subspace distribution pdf(PT ) as

pdf(T
(i)
d |µPT

, βfTd (ξ(i))) =

√
βTd(ξ(i))

2π

·exp[−1

2
(T

(i)
d − fT (ξ(i),µPT

))2βfTd (ξ(i))]

(5.8)

As in Chapter 4, the learning of precision βfTd is a key step in this method. In

practice, βfTd represents our “uncertainty” on the proposed delay model at differ-

ent cell variable conditions due to its inability to capture certain physical effects.

While they depend on the details of the technologies, these precisions show a strong

systematic trend across different cell variable conditions ξ. In this work, extracted

parameters µPT
from past technologies are used to learn the systematic precision βfTd

at different cell variable conditions. Characterizations from a variety of technology

nodes enable us to propagate our historical belief to a new technology node. While

generic or broad historical technologies can be used to learn approximate precisions,
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in order to achieve the highest applicable prior precision, the best historical technolo-

gies would be those with the same design or process choices as the target technology.

For example, if we intend to fit a library in a low power process, appropriate his-

torical technologies would also be technologies in low power processes. Therefore a

bias-variance tradeoff is needed in the selection of historical libraries.

The detailed learning process proceeds as follows. First, a full set of standard cell

libraries in Ntech fabrication processes and technology nodes (Ntech = 6 in Chapter 4,

including technologies from 14nm to 45nm, with both bulk-Silicon and SOI technolo-

gies and non-FINFET and FINFET technologies) are employed as “historical data”

to improve our confidence in predicting βfTd on an unknown library. After selection

of a group of historical libraries, each cell is fitted into the proposed delay model with

different cell variable conditions ξ. βfTd is then calculated by the inverse variance

of the relative difference between measurements and delay model predictions using

extracted parameters.

βfTd =
1

1
Ntech

∑Ntech

j=1 (
T

(j)
d −fT (P

(j)
T )

T
(j)
d

)2 − ( 1
Ntech

∑Ntech

j=1

∣∣∣∣T (j)
d −fT (P

(j)
T )

T
(j)
d

∣∣∣∣)2 (5.9)

As in Chapter 4, the maximum-a-posteriori (MAP) estimation finds optimal esti-

mates of µPT
that maximize the log likelihood of the posterior distributions lnpdf(µPT

|Td).

This can be mathematically formulated as an optimization problem

maximize
µPT

ln pdf(µPT
) +

k∑
i=1

ln pdf(T
(i)
d |µPT

, βfTd (ξ(i))) (5.10)

Substituting (5.7) and (5.8) into (5.10) and removing the constant items yield:

minimize
µPT

1

2
(µPT

− µt0)TΣ−1t0 (µPT
− µt0)

+
1

2

k∑
i=1

(T
(i)
d − fT (ξ(i),µPT

))2βfTd (ξ(i))

(5.11)

where (5.11) is the summation of a concave quadratic function. Hence the optimiza-

tion problem in (5.11) is also a convex programming problem and can be solved both
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efficiently and robustly.

So far we have achieved individual library cell characterization (no statistical char-

acterization included). The detailed efficient statistical library cell characterization

proceeds as follows. Nsample different seeds for each cell under process variation are

generated through Monte Carlo (MC) simulation or design of experiments (DoE) [90].

For jth seed in each cell, {Td} and {Sout} under k cell variable conditions are simulated

through a SPICE simulation using the .ALTER statement. P
(j)
T and P

(j)
S are extracted

through proposed Bayesian inference with maximum a posteriori (MAP) estimation

for the jth seed. For a targeted cell variable condition ξ, the probability distribution

of delay and output slew are calculated as pdf(fT (ξ, PT )) and pdf(fS(ξ, PS)).
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Figure 5-4: Proposed flow for statistical characterization with both old and new
libraries interacting, and priors being passed from an old library to a new library.

Fig. 5-4 summarizes the major steps of the proposed statistical library cell charac-

terization method, with both old and new libraries interacting, and priors being passed

from an old library to a new one. If we assume that library cell characterizations have
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been done in previous technologies, the total computation cost is O(k ·Nsample), which

is at least one order of magnitude smaller compared with O(NLUT ·Nsample) in prior

work and several order of magnitudes smaller than O(NLUT · NMC) in the standard

method. The total computation cost is O(k ·Nsample +NTech ·NLUT ) if we need to re-

run characterization for old technologies, which is still a moderate speed up compared

to traditional approaches.

5.5 Validation

In this section, two library cell characterization examples in several cutting-edge

CMOS technologies are used to demonstrate the efficiency of our proposed method.

All test cases as well as the historical library cell characteristics are generated using

different BSIM based industrial design kits reflecting real measurements. To test and

compare with traditional approaches, we have also implemented both deterministic

extraction and statistical extraction using a look-up table (LUT) approach.

The baseline characterization is defined in this work by a 1000 point Monte Carlo

simulation sampled randomly within the whole cell variable space ξ = {Sin, Cload, Vdd}.

Note that these points only represent different operating conditions for a target cell,

while the effects of process variation are not included. Fig. 5-5 shows a scatter plot for

1000 points among the cell variable space, where we will compare our characterization

results with standard methods.

The first example is to conduct a nominal delay and output slew characterization

for a library designed in a commercial state-of-the-art 14nm FINFET technology.

Both fitting and testing samples are generated through SPICE simulation using a

well calibrated compact transistor model. Fig. 5-6 shows average prediction error

compared with the baseline characterization using the proposed model with Bayesian

inference, the proposed model with least-square error (LSE) optimization, and a look-

up table approach. To achieve the same characterization accuracy on delay Td, our

proposed method achieves up to 15X sample size reduction compared to a traditional

lookup table approach, where 6X reduction is contributed by our proposed timing
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Figure 5-5: A scatter plot of 1000 points among the cell variable space ξ =
{Sin, Cload, Vdd} used for comparing our characterization results with standard meth-
ods.

model and an extra reduction of 2.5X is contributed by the Bayesian inference. Given

the prior and two additional fitting cell variable combinations, a 4.3% average error

compared with the baseline characterization is achieved for all combinations of Cload,

Sin and Vdd. This demonstrates the sparsity of effects across cell variable vectors and

the validity of the proposed delay model.

The second example is to conduct statistical delay and output slew characteriza-

tion for a library designed in a commercial state-of-the-art 28nm bulk-Silicon tech-

nology, which is different from the model used in the first example. The baseline

characterization is defined similar to the previous example, where 1000 cell variable

combinations are sampled randomly within the whole space ξ = {Sin, Cload, Vdd}. In

this case 1000 Monte Carlo simulations under process variation are generated for

each of 1000 cell variable combinations to obtain statistical distributions for delay

and output slew with different variable combinations.

The error functions for statistical characterization of E(µTd), E(µSout), E(σTd) and
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Figure 5-6: Average testing error for delay Td characterizing a library designed in a
commerical state-of-the-art 14nm technology. Error bars show one standard deviation
of testing error for different cell and RISE/FALL combination.

E(σSout) are defined as

E(µTd) =
1

n

n∑
i=1

∣∣∣µ(fT (ξ(i), PT )))− µ(i)
Td

∣∣∣ (5.12)

E(µSout) =
1

n

n∑
i=1

∣∣∣µ(fS(ξ(i), PS))− µ(i)
Sout

∣∣∣ (5.13)

E(σTd) =
1

n

n∑
i=1

∣∣∣σ(fT (ξ(i), PT )))− σ(i)
Td

∣∣∣ (5.14)

E(σSout) =
1

n

n∑
i=1

∣∣∣σ(fS(ξ(i), PS))− σ(i)
Sout

∣∣∣ (5.15)

Fig. 5-7 and Fig. 5-8 show average prediction error for mean and standard de-

viation of delay and output slew characterizing a library designed in a commercial

state-of-the-art 28nm technology using the proposed method and a look-up table ap-

proach, for the 1000 baseline combinations shown in Fig. 5-5. Up to 20X training

set size reduction is observed to achieve the same characterization accuracy in mean

value and standard deviation of Td and Sout.

Fig. 5-9 shows delay probability density simulated for variable combination Vdd =

0.734V , Sin = 5.09ps, Cload = 1.67fF , the proposed method with seven training vari-
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able combinations, and an interpolation of look-up tables with 60 training cell variable

combinations together with baseline distribution using SPICE Monte Carlo simula-

tion. The proposed method shows a much better prediction for delay distribution

that correctly predicts the non-Gaussian distribution for low Vdd.

18 

1 2 3 5 10 20 50 100
0

5

10

15

Training Samples

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

 

 

1 2 3 5 10 20 30 50 100
0

10

20

30

40

50

Training Samples

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

 

 
Proposed Model+Baysian Inference

Lookup Table

Proposed Model+Baysian Inference

Lookup Table

𝜇(𝑇𝑑) 𝜎(𝑇𝑑) 

17X reduction 
20X reduction 

Proposed Model+Bayesian Inference 

Lookup Table 

Proposed Model+Bayesian Inference 

Lookup Table 

Figure 5-7: Average testing error for mean and standard deviation of delay Td char-
acterizing a library designed in a commerical state-of-the-art 28nm technology. Er-
ror bars show one standard deviation of testing error for different cell types and
RISE/FALL combinations.
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Figure 5-9: Delay probability density simulated for cell variable combination Vdd =
0.734V , Sin = 5.09ps, Cload = 1.67fF , using proposed method and an interpola-
tion of look-up tables, together with baseline distribution using SPICE Monte Carlo
simulation.
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Chapter 6

Thesis Summary and Future Work

The contributions of this thesis, and possibilities for future work in this area are

discussed in this chapter.

6.1 Thesis Contributions

In this thesis, we propose accurate and efficient statistical techniques to solve the tran-

sistor compact model parameter estimation and post-Silicon performance estimation

problems. These techniques facilitate yield control throughout the product lifecy-

cle, from early technology evaluation to process monitoring during mass-production,

which is vital to rapidly improving yield.

More specifically, Fig. 6-1 shows several key issues in device variation and sta-

tistical compact modeling which are addressed by this thesis. The major technical

contributions of this thesis are summarized below:

• The existing MIT virtual source (MVS) model with necessary statistical for-

mulation is extended to support circuit variation analysis and extraction using back-

ward propagation of variance (BPV). Variability parameters from the statistical MVS

model have been derived directly from the nominal MVS model. Accurate statistical

circuit performance using the statistical MVS model is demonstrated, including sta-

tistical characterization for standard cells, SRAMs, and D flip-flops.
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11 

Device Variation & Statistical Compact Modeling Issues 

How to build valid statistical models 
enabling robust circuit design? 

How to efficiently extract transistor 
parameters ? 

How to predict circuit performance using 
mixtures of on-chip test measurements? 

What is the lower bound for the number 
of IV measurements to fit a model 
and how select those measurements? 

Figure 6-1: Key issues in device variation and statistical compact modeling.

• A novel methodology for integrated circuit performance estimation is proposed

by joint modeling of measurements from different on-chip test structures. The fact

that data arising from a variety of test structures are typically physically correlated

under different circuit configurations and topologies is exploited. This is first achieved

by a physical subspace projection technique to project different groups of on-chip

measurements to a unique subspace likelihood map spanned by a set of physical vari-

ables. Then a Bayesian treatment is developed by introducing prior distributions over

these subspace variables. Furthermore, an expectation-maximization (EM) algorithm

is applied for maximum a posteriori (MAP) estimation in circuit performance.

• A novel MOSFET parameter extraction method to enable early technology
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evaluation is proposed. The distinguishing feature of the proposed method is that

it enables the extraction of an entire set of MOSFET I − V model parameters us-

ing limited and incomplete I − V measurements from on-chip monitor circuits. An

important step in this method is the use of maximum a posteriori estimation where

past measurements of transistors from various technologies are used to learn a prior

distribution and its uncertainty matrix for the parameters of the target technology.

The proposed extraction can also be used to characterize the statistical variations of

MOSFETs, with the significant benefit that some constraints required by the back-

ward propagation of variance (BPV) method are relaxed.

• The lower bound requirement for number and selection of transistor measure-

ments to extract the full set of I − V parameters for a compact model is studied,

and an efficient algorithm is proposed and demonstrated for selecting the optimal

measurement biases by minimizing the average uncertainty.

• A novel flow to enable computationally efficient statistical characterization of

delay and slew in standard cell libraries is proposed. This is traditionally modeled

by a look-up table (LUT) approach. While existing work was focused on exploiting

the sparsity of the regression coefficients of the process space with a reduced process

sample size for each cell variable space vector, correlations between different cells

and different cell variable vectors within the same cell are exploited in our proposed

approach. Two key techniques are proposed to exploit correlations in library variable

space. The first is a novel ultra-compact, analytical model for gate timing characteri-

zation, and the second is a Bayesian learning algorithm for estimating the parameters

of the aforementioned timing model using past library characterizations along with a

very small set of additional simulations from the target technology.
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6.2 Future Work

Future work in this area could involve the refinement of the statistical techniques

developed in this work to predict circuit performance and provide more accuracy

through a deeper learning of fabrication process and device physics. Trends in process

development and physical modeling need to be modeled in a quantitative way using

a general method.

6.2.1 Extension of MIT Virtual Source (MVS) Model as a

Predictive Statistical Compact Model

In Chapter 2 and Chapter 4, we have shown that the MVS model is a physically-based

compact model and that model parameters can be correctly extracted individually

and statistically from measurements, even if they are strongly correlated. However, to

accurately predict the characteristics of nanoscale CMOS devices for early circuit de-

sign, it is critical to develop a predictive statistical ultra-compact model that includes

process variations and correlations among process model parameters. The predictive

MOSFET models should be ultra-compact, reasonably accurate, scalable with main

process and design knobs, and capable of correctly capturing emerging device physical

effects that are strongly influenced by these process trends. The MIT virtual source

(MVS) model is one natural candidate for extension to meet such requirements.

However, such predictive MOSFET models significantly rely on empirical extrap-

olations, in combination with the understanding of physical principles involved. One

approach is to integrate a methodology to correctly capture the correlations among

process model parameters into the model, as presented in [28]. For example, the

Predictive Technology Model (PTM) identifies and integrates critical correlations

among Leff , Vth, µ, and vsat. Then the scaling trend of key physical parameters

can be derived, as a function of geometry and process dependencies. For example,

Fig. 6-2 shows the trend of effective oxide thickness (EOT) scaling from 250 to 32nm

nodes [28]; such trends could be captured in an extended compact model. How-

ever, such extensions inevitably introduce extra dependencies in the model, and add
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Figure 6-2: Trend of effective oxide thickness (EOT) scaling from 250- to 32-nm
nodes [28].

complexities to the parameter extraction procedure.

A better approach is to include such process and device correlations in the param-

eter extraction procedure, rather than directly include the correlations in the model.

The Bayesian extraction framework proposed in Chapter 4 provides such benefits. A

new objective function can be described as

E(Psub) =
1

2
(µLeff

− µs0)TΣ−1s0 (µLeff
− µs0)

+
1

2

N∑
n=1

βlnFn{ln(Fn)− ln(f(Vn,Psub,Pabove))}2
(6.1)

The difference between µPsub
in (4.13) and µLeff

in (6.1) is illustrated conceptually

in Fig. 6-3, where µPsub
is the mean vector of extracted parameters from historical

technologies, and µLeff
is the empirical extrapolations of the extracted parameters.

The calculation of Σs0 needs to be adjusted accordingly, and the uncertainty of µLeff
is
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significantly smaller than that of µPsub
. This method allows us to preserve the physical

correlation among parameters, without needing to include any explicit correlation

equations in the MVS model.

P
a
ra

m
e
te

rs
 

𝐿𝑒𝑓𝑓 (nm) 

Extracted parameters 
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𝜇𝐿𝑒𝑓𝑓  

Figure 6-3: Difference between µPsub
and µLeff

: µPsub
is the mean vector of extracted

parameters from historical technologies, and µLeff
is the empirical extrapolations of

the extracted parameters. Thus trend for process parameters such Leff enable us to
extrapolate impact of process trends on device performance.

6.2.2 Variation Prediction in a Process Development Cycle

Using Bayesian Inference

For the Bayesian extraction framework described in Chapter 4, we made an impor-

tant assumption that the uncertainty matrix of each I − V measurement is fixed

given a detailed technology. We learn this uncertainty matrix for the parameters of

the target technology from historical technologies. However, this assumption is only

valid for a mature technology where key process steps are stable. In practical product

development, winning in the marketplace requires system development teams to bring
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better product to the market ahead of the competition, and to continually improve

yield of that product. In addition, to continue design success and make an impact

on leading products, advanced circuit design exploration must begin in parallel with

early silicon development. For example, Intel has adopted a development cycle model

named “Tick-Tock”, where one follows every microarchitectural change with a die

shrink of the process technology [107]. For a ”Tick” period, a new line of processors

are released shortly after a shrinking of the process technology. However, simulations

with an early version of the design kit may have large differences with realistic or

later manufacturing output of the technology. It would be interesting and important

to dynamically predict parameter variations for a later targeted release date, with

only early stage process information for the targeted technology, and with historical

information on how past technologies have evolved for a complete process develop-

ment cycle. That is to say, extrapolations of the shrinking covariance matrices for

model parameters over time as the process matures, could be used to predict yield

improvement trends or expectations.

An example is shown for hypothetical parameter variations for several process

development cycles in Fig. 6-4. For each process development cycle, the specification

for each technology is typically tighter than that which can be achieved early in its life

cycle. By the time the designs enters the fab in volume, the technology would have

been refined to the point that it is able to achieve tighter tolerances that typically at

the beginning of the technology introduction. Another observation is the trend that

more variation is associated with each generation in technology scaling. For example,

the device saturation current depends inversely on the channel length of the device; a

percent deviation from a smaller nominal channel length will result in a larger percent

deviation in saturation current than that caused by the same percent deviation from a

larger nominal channel length. A methodology could be introduced using the Bayesian

framework and uncertainty analysis proposed in Chapter 4 to learn the evolution of

process tolerances over the lifetime of a manufacturing technology. At the same time,

incorporation of major technology changes that substantially change the variation

trend could also be accommodated (e.g., the reduction of line edge roughness impact
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arising from multiple patterning approaches for FINFETs [108]).
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Figure 6-4: Hypothetical parameter variations for several process development cycles.
The goal is to dynamically predict parameter variations for a later targeted release
date with only early stage process information for the targeted technology and his-
torical information on how past technologies have evolved for a complete process
development cycle.
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