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ABSTRACT

The popularity of mobile devices has stimulated rapid progress in both Wi-Fi and cellular

technologies. Before LTE was widely deployed, Wi-Fi speeds dominated cellular network

speeds. But that is no longer true today. In a study we conducted with a crowd-sourced

measurement tool used by over 1,000 users in 16 countries, we found that 40% of the

time LTE outperforms Wi-Fi, and 75% of the time the difference between LTE and Wi-Fi

throughput is higher than 1 Mbits/s.

Thus, instead of the currently popular "always prefer Wi-Fi" policy, we argue that mo-

bile devices should use the best available combination of networks: Wi-Fi, LTE, or both.

Selecting the best network combination, however, is a challenging problem because: 1)

network conditions vary with both location and time; 2) many network transfers are short,

which means that the decision must be made with low overhead; and, 3) the best choice is

determined not only by best network performance, but also constrained by practical factors

such as monetary cost and battery life.

In this dissertation, we present Delphi, a software controller for network selection on

mobile devices. Delphi makes intelligent network selection decisions according to cur-

rent network conditions and monetary cost concerns, as well as battery-life considerations.

Our experiments show that Delphi reduces application network transfer time by 46% for

web browsing and by 49% for video streaming, compared with Android's default policy

of always using Wi-Fi when it is available. Delphi can also be configured to achieve high
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throughput while being energy efficient; in this configuration, it achieves 1.9 x the through-

put of Android's default policy while only consuming 6% more energy.

Delphi improves performance but uses the cellular network more extensively than the

status quo, consuming more energy than before. To address this problem, we develop a

general method to reduce the energy consumption of cellular interfaces on mobile devices.

The key idea is to use the statistics of data transfers to determine the best times at which to

put the radio in different power states. These techniques not only make Delphi more useful

in practice but can be deployed independently without Delphi to improve energy efficiency

for any cellular-network-enabled devices. Experiments show that our techniques reduce

energy consumption by 15% to 60% across various traffic patterns.

Dissertation Supervisor: Hari Balakrishnan

Title: Professor
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Chapter 1

Introduction

By the end of 2014, the number of mobile-connected devices had exceeded the world's

population [74]. The popularity of these devices has stimulated further rapid progress in

both Wi-Fi and cellular technology. Now the 802.11 standard provides a Wi-Fi link rate as

high as I Gbps [1]. Cellular networks have advanced from EDGE to 3G to LTE, or 4G,

with peak downlink speed also in the order of 1 Gbps [2].

Despite all these high-speed wireless technologies being widely deployed, the lack of an

intelligent network selection mechanism prevents mobile device users from fully exploiting

available network resources. Today's mobile operating systems typically hard-code the

decision of which network to use when confronted with multiple choices. If the user has

previously associated with an available Wi-Fi network, the mobile device uses that over a

cellular option. This choice often leads to frustrating results. For example, when walking

outdoors, users often find their device connecting to a Wi-Fi access point inside a building

and experience poor performance when the right answer is to use the cellular network.

Even inside homes and buildings, a static choice is not always the best: there are rooms

where the Wi-Fi network might be much slower than the cellular network, depending on

other users, time of day, and other factors. Thus, network selection for mobile devices

needs to be done dynamically since Wi-Fi and cellular networks are not evenly distributed,

either spatially or temporally.

Moreover, in practice, users care not just about performance but also about the monetary

cost of using wireless networks as well as battery life. These factors increase the difficulty
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of the network-selection problem. Indeed, one reason many current mobile devices always

prefer Wi-Fi over cellular is because Wi-Fi is generally free, whereas cellular is generally

not. However, for some users with a monthly cellular data plan, the downside of being too

conservative with using cellular networks is that they may end up paying a subscription

fee every month while using little of their data plan budget. Meanwhile, the economics

of cellular data plans are changing. After being offered beginning in 2007, "unlimited"

plans were halted in 2011 by several carriers (although pre-existing users could hold on to

them). Since 2013, however, unlimited plans have made a resurgence, especially in Tier-2

operators, where 45% of the users have such plans today [74]. In addition, an increasing

number of major app providers like Facebook, Google, and WhatsApp, have proposed and

are deploying "zero rating" plans so that mobile device users will not be charged when

these apps generate cellular traffic [83]. Thus, an intelligent network selection mechanism

should be able to cope with different monetary cost models.

Another major concern is energy consumption. It is well known that the cellular ra-

dio consumes significant amounts of energy; on the iPhone 6 Plus, for example, the stated

internet-use time is "up to 12 hours on 3G or LTE" (i.e., when the 3G radio is on and in

"typical" use) and the talk-time is "up to 24 hours".1 On the Nexus 5, the equivalent num-

bers are "up to 7 hours on LTE for internet-use" and "up to 17 hours for talk time" 2 . Thus,

to improve overall user experience, an intelligent network selection mechanism should not

merely aim for increasing the network speed.

This dissertation begins with a measurement study analyzing the network performance

of mobile devices in the real world. This measurement study also shows that significant

improvements may be achieved if network selection is done properly. Then, we present

Delphi, a software controller for network selection on mobile devices. Delphi makes intel-

ligent network selection decisions according to current network conditions, monetary cost

concerns, as well as battery level. Delphi's design is based on data collected during the

measurement study. We also implement Delphi and show that it can improve network per-

formance in real-world experiments. Finally, we take a deeper look into the causes of high

lhttp://www.apple.com/iphone-6/specs/
2https://support.google.com/nexus/answer/3467463?hl=en&ref-topic=

3415523
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energy consumption when a mobile device uses the cellular network, and develop software

solutions to improve the energy-efficiency of cellular interfaces.

1.1 Measuring Wi-Fi and Cellular Networks

We conducted a set of measurements using a crowd-sourced network measurement tool as

well as with controlled experiments ( 2). The conclusions from this measurement study

are as follows:

1. Over 73% of the time, the throughput of one of the networks was higher than the

other by at least 1 Mbit/s. When the throughput difference was at least 1 Mbit/s,

LTE/4G had higher throughput 56% of the time, and Wi-Fi 44% of the time; that is,

it was roughly split down the middle. The throughput differentials depended on the

transfer size, due to the dynamics of TCP congestion control.

2. Over 83% of the time, the round-trip latency of one of the networks was higher than

the other by at least 100 ms.

3. Multipath TCP (MPTCP) [77], which uses multiple interfaces whenever possible,

did not always out-perform single-path TCP connections. A key factor in MPTCP's

performance was the choice of primary subflow, that is, the network on which the

initial connection and data transfer is done. This choice has a strong effect on the

throughput, particularly for short and medium-sized transfers.

These conclusions left a key question open: How do we design a practical software

module for mobile devices to select the best network for applications? This question is

important for both single-path and multi-path TCP transfers.

1.2 Network Selection for Multi-homed Mobile Devices

To answer this question, we designed Delphi ( 3), a mobile software controller that helps

mobile applications select the best network among available choices for their data transfers.

Our starting point is from the perspective of users and applications rather than the trans-

port layer or the network. Depending on the objectives of interest, Delphi makes different
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decisions about which network to use and in what order.

We consider three objectives (though the framework handles other objectives as well):

1. minimize the time to complete an application-level transfer (the ratio of transfer size

to transfer throughput);

2. minimize the energy per byte of the transfer, which usually (but not always) entails

picking only one network; and

3. minimize the monetary cost per byte of the transfer.

Delphi provides a framework to optimize these and similar objectives. This problem

is challenging because the answer changes with time, and depends on location and user

movement.

Delphi has four components:

1. Network Performance Predictor estimates the latency and throughput of different

networks by running a machine-learning predictor using features obtained from the

Network Monitor.

2. The Network Monitor uses passive observations of wireless network properties such

as the Received Signal Strength Indicator (RSSI) and channel quality, lightweight

active probes, and an adaptive method that uses active probes only when passive

indicators suggest a significant change in conditions.

3. Traffic Profiler provides an estimate of the length of transfers; this component is

required because throughput depends on the size of the transfer.

4. Network Selector uses network performance predictions, transfer lengths, and the

specified objectives for application transfers to determine which network to use for

each transfer.

Our evaluation shows that:

1. In our simulations over traces collected from 22 locations, Delphi improved the me-

dian throughput by 2.1 x compared with always using Wi-Fi, the default policy on

Android devices today. Delphi can also be configured to achieve high throughput

while being energy-efficient; in this mode, it achieves 1.9 x throughput while con-

suming only 6% more energy compared with Android's default policy.

2. When running with unmodified applications, Delphi reduces applications' network
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transfer time by 46% for web browsing and by 49% for video streaming, compared

with Android's default policy.

3. Delphi is also proactive in switching networks when the device is moving. It can de-

tect that the network that is currently in use is performing worse than the alternatives

and can switch before the connection breaks. In our experiment, Delphi switched

networks 30 seconds earlier than the MPTCP handover mode proposed in [57] did.

1.3 Reducing the Energy Consumed by the Cellular Inter-

face
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Figure 1-1: Energy consumed by the 3G interface. "Data" corresponds to a data transmis-
sion; "DCH Timer" and "FACH Timer" are each the energy consumed with the radio in
the idle states specified by the two timers, and "State Switch" is the energy consumed in
switching states. These timers and state switches are described in 4.2.

The results in our measurement study indicate that cellular networks should be used
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more often to achieve better performance. However, it is well known that the 3G/LTE

radio consumes significant amounts of energy. We show the measured values of 3G energy

consumption for multiple Android applications in Figure 1-1.3 This bar graph shows the

percentage of energy consumed by different 3G radio states. For most of these applications

(which are all background applications that can generate traffic without user input, except

for Facebook), less than 30% of the energy consumed was during the actual transmission

or reception of data. Previous research arrived at a similar conclusion [14]: about 60%

of the energy consumed by the 3G interface is spent when the radio is not transmitting or

receiving data.

In Chapter 4, we develop a solution to reduce 3G/LTE energy consumption. Unlike cur-

rently deployed methods that simply switch between radio states after fixed time intervals-

an approach known to be rather crude and sub-optimal [81, 15, 40, 66]-our approach is

to observe network traffic activity on the mobile device and switch between the different

radio states by adapting to the workload. We apply statistical learning techniques to predict

network activity and make transitions that are suggested by the statistical models. This

approach is well-suited to the emergingfast dormancy mechanism [3, 4] that allows a radio

to rapidly move between the Active and Idle states and vice versa. Our goal is to reduce

the energy consumed by networked background applications on mobile devices.

1.4 Contributions

This dissertation makes the following contributions:

1. Our measurement study analyzes mobile network performance in the real world. This

measurement study also demonstrates that significant potential improvement may be

achieved if network selection is done properly.

2. The design and implementation of Delphi demonstrates a way to coordinate different

concerns when making network interface selections. Inside Delphi, we employ ma-

chine learning methods to make network selections. The machine learning models

3An HTC GI phone connected to a power monitor [43], with only one application running, at one indoor
location.
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are trained using network performance data we collected during the measurement

study. In the future, as wireless networks advance, the specific parameters we trained

for the current solution or even the machine learning algorithm may not be applica-

ble to make good network selections; however, our modular design makes sure that

the algorithms can be easily replaced. Thus, as long as there are co-existing net-

works whose performances are not evenly distributed spatially or temporally, Del-

phi's framework can always be applicable.

3. Both our network selection and energy-efficient solutions require no modification to

the application running on the mobile devices. Thus, they can be easily deployed and

improve the performance and user experience of millions of apps already deployed.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 describes our measurement

study on the performance of Wi-Fi and cellular networks as well as transferring data on

both networks. Chapter 3 presents the design, implementation and evaluation for Delphi.

Chapter 4 analyzes the energy-efficiency issue of cellular networks in detail and presents

our solution to reduce energy consumption. Chapter 5 concludes the dissertation and dis-

cusses directions for future work.
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Chapter 2

Measurement Study

Access to Wi-Fi and cellular wireless networks is de rigueur on mobile devices today.

With the emergence of LTE, cellular performance is starting to rival the performance of

Wi-Fi. Moreover, when Wi-Fi signal quality is low or in crowded settings, the anecdotal

experience of many users is that cellular performance may in fact be considerably better

than Wi-Fi performance. But just how good are LTE and Wi-Fi networks in practice, and

how do they compare with each other? Should applications and transport protocols strive to

select the best network, or should they simply always use Multi-Path TCP (MPTCP) [77]?

To answer these questions, we implemented a crowd-sourced network measurement

tool ( 2.1) to understand the flow-level performance of TCP over Wi-Fi and LTE in the

wild from 16 different countries over a nine-month period, encompassing 3,632 distinct

1-Mbyte TCP flows. We used this data to measure transfer times for different amounts of

data transferred.

MPTCP is not widely deployed yet on most phones.1 As a result, we manually mea-

sured flow-level MPTCP performance and compared it with the performance of TCP run-

ning exclusively over Wi-Fi or LTE in 20 different locations, in 7 cities in the United

States ( 2.2). Finally, to complement our empirical flow-level analysis, we used an ex-

isting record-and-replay tool to analyze ( 2.3) and run ( 2.4) mobile apps on emulated

cellular and Wi-Fi links, using it to study the impact of network selection on application

'The Apple iOS is an exception [49]. MPTCP is observed to be used for Siri. MPTCP on iOS operates

in master-backup mode using Wi-Fi as the primary path, falling back to a cellular path only if Wi-Fi is

unavailable.
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Figure 2-1: Cell vs. Wi-Fi User Interface. 

performance. 

2.1 Cell vs. Wi-Fi Measurement 

In September 2013, we published an Android app on Google Play, called Cell vs. Wi-Fi 

(http: I /web .mit. edu/cel l -vs-wifi). Cell vs. Wi-Fi measures end-to-end Wi­

Fi and cellular network performance and uses these measurements to tell smartphone users 

if they should be using the cellular network or Wi-Fi at the current time and location. The 

app also serves as a crowd-sourced measurement tool by uploading detailed measurement 

data to our server, including packet-level traces. Over a nine-month period after the app 

was published, it attracted over 750 downloads. We collected over IO GB of measurement 

data from 3,632 distinct TCP connections over this duration from these users. 

2.1.1 Cell vs. Wi-Fi App 

Figure 2-1 shows the user interface of Cell vs. Wi-Fi. Users can choose to measure network 

performance periodically or once per click. Users can also set an upper bound on the 
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Figure 2-2: Cell vs. Wi-Fi: single measurement collection run.

amount of cellular data that the app can consume, especially for devices on a limited cellular

data plan.

33

Start MeasurementI

No
Wi-Fi on? Turn Wi-Fi on

YesI

Wi-Fi No Scan and
Associated? Associate

Yes

( YesSuccess?



The flow chart in Figure 2-2 shows a single measurement collection run. When the user

clicks the Start button, or the pre-set periodic measurement timer expires, one run of

measurement collection starts, shown as Step J in the figure. If Wi-Fi is available, and the

phone successfully associates with an Access Point (AP), Cell vs. Wi-Fi collects packet-

level t cpdump traces for a 1-Mbyte TCP upload and a 1-Mbyte TCP download between

the mobile device and our server at MIT.

After measuring Wi-Fi, Cell vs. Wi-Fi turns off the Wi-Fi interface on the phone and

attempts to connect to the cellular network. If the user has turned off the cellular data

network, Cell vs. Wi-Fi aborts the cellular measurement. If Cell vs. Wi-Fi successfully

connects to the cellular network, then in Step 0 it collects a similar set of packet-level

t cpdump traces for both an upload and a download. Once both Wi-Fi and cellular network

measurements are finished, in Step @ Cell vs. Wi-Fi uploads the data collected during this

measurement run, together with the user ID (randomly generated when a smartphone user

uses the app for the first time) and the phone's geographic location, to our server at MIT.

More information about Cell vs. Wi-Fi can be found at http: / /web . mit . edu/

cell-vs-wifi.

2.1.2 Results

Cell vs. Wi-Fi collected network-performance data from locations in five continents: North

America, South America, Europe, Africa, and Asia. We observed that some users use this

app to measure only Wi-Fi or LTE performance, but not both. We do not consider these

measurement runs because our goal is to compare LTE and Wi-Fi performance at nearly the

same place and time. To ensure that we measured only performance of LTE or an equivalent

high-speed cellular network, such as HSPA+, we used the Android network-type API [12]

and picked only those measurement runs that used LTE or HSPA+. When using the term

LTE in this dissertation, we mean either LTE or HSPA+. After these filtering steps, our

dataset contains over 1,606 complete runs of measurement, that is, both LTE and Wi-Fi

transfers in both directions.

In Table 2.1, we group nearby runs together using a k-means clustering algorithm, with
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Location Name (Lat, Long) # of Runs LTE %
US (Boston, MA) (42.4, -71.1) 884 10%

Israel (31.8, 35.0) 276 55%
US (Portland) (45.6, -122.7) 164 45%

Estonia (59.4, 27.4) 124 71%
South Korea (37.5, 126.9) 108 66%

US (Orlando) (28.4, -81.4) 92 35%
US (Miami) (26.0, -80.2) 84 52%

Malaysia (4.24, 103.4) 76 68%
Brazil (-23.6, -46.8) 56 4%

Germany (52.5, 13.3) 40 20%
Spain (28.0, -16.7) 40 80%

Thailand (Phichit) (16.1, 100.2) 40 80%
US (New York) (40.9, -73.8) 24 33%

Japan (36.4, 139.3) 16 25%
Sweden (59.6, 18.6) 16 0%

Thailand (Chiang Mai) (18.8, 99.0) 16 75%
US (Chicago) (42.0, -88.2) 16 25%

Hungary (47.4, 16.8) 8 0%
Italy (44.2, 8.3) 8 0%

US (Salt Lake City) (40.8, -111.9) 8 0%
Colombia (7.1, -70.7) 4 0%

US (Santa Fe) (35.9, -106.3) 4 0%

Table 2.1: Geographical coverage and diversity of the crowd-sourced data collected from
16 countries using Cell vs. Wi-Fi, ordered by number of runs collected. The last column
shows the percentage of runs in which LTE's throughput is higher than Wi-Fi's throughput.

a cluster radius of r = 100 kilometers (i.e., all runs in each group are within 200 kilometers

of each other). For each location group, we also list the percentage of measurement runs

where LTE has higher throughput than Wi-Fi does.

Figure 2-3 shows the CDF of difference in throughput between Wi-Fi and LTE on the

uplink and the downlink. We can see that the throughput difference can be larger than 10

Mbit/s in either direction. The gray region shows 42% (uplink) and 35% (downlink) of

the data samples whose LTE throughput is higher than Wi-Fi throughput. If we combine

uplink and downlink together, 40% of the time LTE outperforms Wi-Fi. Figure 2-4 shows

the CDF of ping RTT difference between LTE and Wi-Fi. During our measurement, we

sent 10 pings and took the average RTT value. The shaded area shows that in 20% of
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Figure 2-3: CDF of difference between Wi-Fi and LTE throughput. The gray region shows
42% (uplink) and 35% (downlink) of the data samples whose LTE throughput is higher
than Wi-Fi throughput.
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Figure 2-4: CDF of the difference between average Ping RTT with Wi-Fi and LTE. The
gray region shows 20% of the data samples whose LTE RTT is lower than Wi-Fi RTT.

our measurement runs, LTE has a lower ping RTT than Wi-Fi does, although the cellular

network is commonly assumed to have higher delays.

The simple network selection policy used by mobile devices today forces applications

to use Wi-Fi whenever available. However, our measurement results indicate that a more

flexible network selection policy will improve the network performance of mobile applica-

tions.
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2.2 MPTCP Measurements

When Wi-Fi and cellular networks offer comparable performance, or when each varies sig-

nificantly with time, it is natural to use both simultaneously. Several schemes transmitting

data on multiple network interfaces have been proposed in the past [84, 62, 54, 77]. Among

these, the most widespread is MPTCP [77]. MPTCP can be used in two modes [57]: Full-

MPTCP mode, which transmits data on all available network interfaces at any time, and

Backup mode, which transmits data on only one network interface at a time, falling back

to the other interface only if the first interface is down. Unless stated otherwise, all experi-

ments in this chapter used MPTCP in Full-MPTCP mode. For completeness, we compare

the two modes in 2.2.6. We used a modified version of Cell vs. Wi-Fi to carry out MPTCP

measurements. We observed the following:

1. We found that MPTCP throughput for short flows depends significantly on the net-

work selected for the primary subflow2 in MPTCP; for example, changing the net-

work (LTE or Wi-Fi) for the primary subflow changes the average throughput of a 10

KByte flow by 60% in the median (Figure 2-12 in 2.2.4).

2. For long flows, selecting the proper congestion control algorithm is also important.

For example, using different congestion control algorithms (coupled or decoupled)

changes the average throughput of a 1 MByte flow by 34% in the median (Figure 2-

17 in 2.2.5).

3. MPTCP's Backup mode is typically used for energy efficiency: keeping fewer in-

terfaces active reduces energy consumption overall. However, we found that for

MPTCP in Backup mode, if LTE is set to the backup interface, very little energy can

be saved for flows that last shorter than 15 seconds ( 2.2.6).

2.2.1 MPTCP Overview

MPTCP initiates a connection in a manner similar to regular TCP: it picks one of the

available interfaces and establishes a TCP connection using a SYN-ACK exchange with

the server over that interface. Every TCP connection that belongs to a MPTCP connection

2We define subflows in 2.2.1.
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is called an MPTCP subflow. The first established subflow is called the primary subflow.

We used the Linux MPTCP implementation for our measurements [52] (Ubuntu Linux

13.10 with Kernel version 3.11.0, with the MPTCP Kernel implementation version vO.88).

In this implementation, MPTCP initiates the primary subflow on the interface used as the

default route on the machine. Once the primary subflow is established, if there are other

interfaces available, MPTCP creates an additional subflow using each new interface and

combines the new subflow with the existing subflows on the same MPTCP connection. 3

For example, a mobile device can establish an MPTCP primary subflow through Wi-Fi to

the server and then add an LTE subflow to the server. To terminate the connection, each

subflow is terminated using four-way FIN-ACKs, similar to TCP. In 2.2.4 we study the

effect of choosing different interfaces for the primary subflow on MPTCP performance.

There are two kinds of congestion-control algorithms used by MPTCP: decoupled and

coupled. In decoupled congestion control, each subflow increases and decreases its conges-

tion window independently, as if they were independent TCP flows [19]. In coupled con-

gestion control, each subflow in an MPTCP connection increases its congestion window

based on ACKs both from itself and from other subflows [77, 37] in the same MPTCP con-

nection. In 2.2.5 we compare the coupled and decoupled algorithms and find that using

different congestion control algorithms has less impact on throughput compared with se-

lecting the correct interface for primary subflows for short flows. However, for long flows,

changing congestion control algorithms results in a substantial throughput difference.

2.2.2 Measurement Setup

Figure 2-5 shows the MPTCP measurement setup. The MPTCP client is a laptop running

Ubuntu 13.10 with MPTCP installed. We tethered two smartphones to the laptop, one in

"airplane" mode with Wi-Fi enabled, and the other with Wi-Fi disabled but connected to

LTE (either the Verizon or the Sprint LTE network). The MPTCP server is located at MIT,

with a single Ethernet interface, also running Ubuntu 13.10 with MPTCP installed.

We installed a modified version of Cell vs. Wi-Fi on both phones. The phone with Wi-Fi

3For simplicity, here we explain only how MPTCP works when the server is single-homed (like the server
in our experiments), and the client alone is multi-homed.
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Figure 2-5: Setup of MPTCP measurement.

enabled measures only Wi-Fi performance (Step ( in Figure 2-2). The phone connected

to LTE measures only cellular network performance (Step ( in Figure 2-2).

The experimental setup also allows us to measure the energy consumption separately

for each interface, which we present in 2.2.6.

Each measurement run comprises the following:

1. Single-path TCP upload and download using modified Cell vs. Wi-Fi through LTE.

2. Single-path TCP upload and download using modified Cell vs. Wi-Fi through Wi-Fi.

3. MPTCP upload and download in Full-MPTCP mode with LTE as the primary sub-

flow.

4. MPTCP upload and download in Full-MPTCP mode with Wi-Fi as the primary sub-

flow.

We conducted the measurements at 20 different locations on the east and west coasts

of the United States, shown in Table 2.2. At each city, we conducted our measurement

at places where people would often use mobile devices: cafes, shopping malls, university

campuses, hotel lobbies, airports, and apartments. At 7 of the 20 locations, we measured

both Verizon and Sprint LTE networks using both MPTCP congestion-control algorithms:

decoupled and coupled. At the other 13 locations, we were able to measure only the Verizon

LTE network with coupled congestion control.

In Figure 2-6, we compare the Wi-Fi and LTE throughput distributions for the data we
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ID City Description
1 Amherst, MA University Campus, Indoor
2 Amherst, MA University Campus, Outdoor
3 Amherst, MA Cafe, Indoor
4 Amherst, MA Downtown, Outdoor
5 Amherst, MA Apartment, Indoor
6 Boston, MA Cafe, Indoor
7 Boston, MA Shopping Mall, Indoor
8 Boston, MA Subway, Outdoor
9 Boston, MA Airport, Indoor

10 Boston, MA Apartment, Indoor
11 Boston, MA Cafe, Indoor
12 Boston, MA Downtown, Outdoor
13 Boston, MA Store, Indoor
14 Santa Babara, CA Hotel Lobby, Indoor
15 Santa-Babara, CA Hotel Room, Indoor
16 Santa Babara, CA Conference Room, Indoor
17 Los Angeles, CA Airport, Indoor
18 Washington, D.C. Hotel Room, Indoor
19 Princeton, NJ Hotel Room, Indoor
20 Philadelphia, PA Hotel Room, Indoor

Table 2.2: Locations where MPTCP measurements were conducted.
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Figure 2-6: CDF for Wi-Fi and LTE throughput measured using regular TCP at 20 locations
(shown as "20-Location") compared with the CDF in Figure 2-3 (shown as "App Data").

collected at these 20 locations and the data collected from Cell vs. Wi-Fi in 2.1. We can

see that for both upload and download, the "20-Location" CDF curves are close to the CDF
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curves from 2.1, implying that the 20 locations that were selected have similar variability

in network conditions as the Cell vs. Wi-Fi dataset. For simplicity, in the rest of 2.2, we

show only results of downlink flows from the server to the client.

2.2.3 TCP vs. MPTCP

10 LTE 10 LTE ----
9 Wi-Fi - 9 Wi-Fi

i MPTCP(LTE, Decoupled) --8-- MPTCP(LTE, Decoupled) -
S MPTCP(Wi-Fi, Decoupled) -- MPTCP(Wi-Fi, Decouple)

7 MPTCP(LTE, Coupled) S 7 MPTCP(LTE, Coupled)
S6 MPTCP(Wi-Fi, Coupled) ---- E MPTCP(Wi-Fi, Coupled)

2L &5
~ 4 - 40

3 3

2 - ~2

0 0
1 10 100 1000 1 10 100 1000

Flow Size (KB) Flow Size (KB)

(a) MPTCP performs worse than single TCP. (b) MPTCP performs better than single TCP.

Figure 2-7: MPTCP throughput vs single-path TCP throughput at 2 representative loca-
tions. Figure 2-7a shows a case in which MPTCP throughput is lower than the best through-
put of single-path TCP. Figure 2-7b shows a case where MPTCP throughput (in this case,
MPTCP (Wi-Fi, decoupled)) is higher than that of single-path TCP for large flow sizes.

A natural question pertaining to MPTCP is how the performance of MPTCP compares

with the best single-path TCP performance achievable by an appropriate choice of networks

alone. To answer this, we looked at all four MPTCP variants (two congestion control

algorithms times two choices for the network used by the primary subflow) and both single-

path TCP variants (Wi-Fi and LTE) as a function of flow size. Figure 2-7 illustrates two

qualitatively different behaviors.

Figure 2-7a shows a case in which the performance of MPTCP is always worse than

the best single-path TCP regardless of flow size. This occurs in a particularly extreme

scenario in which a large disparity in link speeds between the two networks (LTE and Wi-

Fi) leads to degraded MPTCP performance irrespective of flow size. On the other hand,

Figure 2-7b shows an alternative scenario where MPTCP is better than the best single-path

TCP at larger flow sizes. In both cases, however, picking the right network for single-path
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Figure 2-8: Acknowledged data vs. time for TCP and MPTCP.
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Figure 2-9: MPTCP sent and acknowledged
receiver side.
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data sequence number vs. time on sender and

TCP is preferable to using MPTCP for smaller flows. These results suggest that it may not

always be advisable to use both networks, and an adaptive policy that automatically picks

the networks to transmit on and the transport protocol to use would improve performance

relative to any static policy.

To investigate why MPTCP do not give higher throughput in certain cases, we con-
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ducted experiments in a lab environment where Wi-Fi has a much higher link speed than

LTE has. Figure 2-8 shows the ACK packet seen on the sender side when using Wi-Fi for

single-path TCP and using Wi-Fi and LTE for MPTCP. We can see that between time 1.0

second and 1.5 seconds, the MPTCP sender sees fewer ACKs; thus, the average throughput

decreases. To explain why MPTCP slows down at time 1.0 second, Figure 2-9 shows the

MPTCP data sequence numbers sent out and ACK sequence numbers received on its Wi-Fi

subflow and LTE subflow. We can see that in Figure 2-9a MPTCP starts sending data on

the LTE subflow at time 0.82 seconds. It sends out 10 back-to-back packets (with sequence

numbers from 514008 bytes to 519720 bytes) because the initial congestion control win-

dow is set to 10 by default. The LTE subflow receives the first ACK at time 1.02 seconds,

that is, the RTT for LTE subflow is 0.2 seconds, much longer than Wi-Fi subflow's RTT

(which is 0.03 seconds on average during this transfer). However, as shown in Figure 2-9b,

due to long delays on the LTE subflow, it receives the first three data packets on the LTE

subflow at 1.0, 1.02, and 1.16 seconds, respectively. Since MPTCP sends ACKs with the

highest in-order received sequence number, it keeps sending ACKs with sequence number

515436 to the sender although the Wi-Fi subflow has sent out packets with higher sequence

numbers. This causes the Wi-Fi subflow to stop sending higher sequence number packets

and to start retransmitting packets with sequence number 515436 at time 1.18 seconds. The

retransmission phase ends at time 1.45 seconds because there are 10 packets scheduled to

be sent on the LTE subflow at the beginning, and the sender needs to make sure all 10

packets are received before it can transmit further packets. In this case, seven packets are

retransmitted on the Wi-Fi subflow. This effect is mentioned as "head-of-line blocking" in

previous work [58].

One possible approach to reduce throughput degradation caused by head-of-line block-

ing is to reduce the initial congestion control window; thus, the Wi-Fi subflow will retrans-

mit fewer packets. To verify this assumption, we configured the initial congestion control

window for MPTCP to be 1 and ran the same experiment. The results are shown in Fig-

ures 2-10 and 2-11. We can see that in Figure 2-11 a because only one packet is sent on

the LTE subflow at time 0.31 seconds, and is ACKed at time 0.47 seconds, there is no more

retransmission on the Wi-Fi path due to head-of-line blocking.
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Figure 2-11: MPTCP sent and acknowledged data sequence number vs. time on sender and

receiver side, when initial congestion control window is 1 MSS.

2.2.4 Primary Flow Measurement

We then studied how the choice of the network for the primary subflow can affect MPTCP

throughput for different flow sizes. To show this quantitatively, we calculate the relative

throughput difference as:
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Figure 2-12: CDF of relative difference between MPTCPLTE and MPTCPi-Fi, for differ-

ent flow sizes. The median relative difference for each flow size is: 60% for 10 KBytes,
49% for 100 KBytes and 28% for 1MByte. Thus, throughput for smaller flow sizes is more

affected by the choice of the network for the primary subflow.

IMPTCPLTE -MPTCPWi-Fi
MPTCPWi-Fi

Here, MPTCPLTE is the throughput achieved by MPTCP using LTE for the primary

subflow, and MPTCPWi-Fi is the throughput achieved by MPTCP using Wi-Fi for the pri-

mary subflow (in this subsection, we ran MPTCP using only decoupled congestion control).

Figure 2-12 shows the CDF of the relative throughput difference for three flow sizes: 10

KBytes, 100 KBytes, and 1 MByte. We see that using different networks for the primary

subflow has the greatest effect on smaller flow sizes.

2.2.4.1 MPTCP Throughput Evolution Over Time

To understand how using different networks for the primary subflow affects MPTCP through-

put evolution over time, we collected t cpdump traces at the MPTCP client during the

measurement. From the traces, we calculated the average throughput from the time the

MPTCP session was established, to the current time t. In Figures 2-13 and 2-14, we plot
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Figure 2-13: MPTCP throughput over time, measured at a location where LTE had higher
throughput than Wi-Fi had. MPTCP throughput grows faster over time when using LTE
for the primary subflow.
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Figure 2-14: MPTCP throughput over time, measured at a location where Wi-Fi had higher
throughput than LTE had. MPTCP throughput grows faster over time when using Wi-Fi
for the primary subfiow.

the average throughput as a function of time. Each sub-figure shows the throughput of the

entire MPTCP session (shown as MPTCP) and the throughput of the individual Wi-Fi and

LTE subflows.

Figure 2-13 shows traces collected at a location where LTE had much higher throughput

than Wi-Fi had. At time 0, the client sent the SYN packet to the server. In Figure 2-13a,

it took the client 1 second to receive the SYN-ACK packet from the server over Wi-Fi.

MPTCP throughput was the same as the throughput of the Wi-Fi subfiow until the LTE
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subflow was established. Because LTE had much higher throughput at this location and

time, once the subflow was established on LTE, it quickly increased its throughput (and

therefore MPTCP's throughput). By contrast, in Figure 2-13b, the client received the SYN-

ACK faster, and MPTCP throughput increased more quickly because the first subflow was

on the higher-throughput LTE network. Because of the smaller SYN-ACK RTT and higher

throughput on the first primary subflow, the MPTCP connection using LTE for the primary

subflow (Figure 2-13b) had a higher average throughput than the MPTCP connection using

Wi-Fi for the primary subflow (Figure 2-13a).

Similarly, Figure 2-14 shows traces collected at a location where Wi-Fi had higher

throughput than LTE had. Here, using Wi-Fi as the primary subflow for MPTCP results in

higher throughput.

2.2.4.2 MPTCP Throughput as a Function of Flow Size
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(a) Absolute throughput difference: larger dif- (b) Relative throughput ratio: larger difference

ference between Wi-Fi and LTE for larger flow between Wi-Fi and LTE for smaller flow sizes.

sizes.

Figure 2-15: Absolute throughput difference and relative throughput ratio as a function of

flow size when LTE has higher throughput than Wi-Fi has.

Figures 2-15a and 2-16a show how MPTCP throughput changes as the flow size in-

creases. The flow size is measured using the cumulative number of bytes acknowledged in

each ACK packet received at the MPTCP client. Figures 2-15b and 2-16b show the relative

throughput ratio change as flow size increases. The relative throughput ratio is defined as:
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Figure 2-16: Absolute throughput difference and relative throughput ratio as a function of

flow size when Wi-Fi has higher throughput than LTE has.
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Although the absolute value of the difference in throughputs is smaller for small flow

sizes (Figures 2-15a and 2-16a), the relative throughput ratio is larger (Figures 2-15b and 2-

16b). Thus, for a connection with a given flow size, using the correct interface for MPTCP

primary subflow can reduce the flow completion time, and the relative reduction can be

significant for smaller flow sizes. For example, in Figure 2-15a, the absolute throughput

difference between LTE and Wi-Fi is 0.5 Mbit/s for a 100-KByte flow, and about 3 Mbit/s

for a 1 -MByte flow. But in Figure 2-15b, the relative throughput ratio is 2.2x for a 100-

KBybte flow, larger than the 1.5 x for a 1 -MByte flow.

2.2.5 Coupled and Decoupled Congestion Control

To understand how the choice of congestion control algorithm within MPTCP affects its

throughput, at 7 of the 20 locations, we measured the following different MPTCP configu-

rations on the Verizon LTE network and each location's dominant Wi-Fi network:

1. LTE for primary subflow, coupled congestion control.

2. LTE for primary subflow, decoupled4 congestion control.

4Here, the decoupled congestion control uses TCP Reno for each subflow.
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3. Wi-Fi for primary subflow, coupled congestion control.

4. Wi-Fi for primary subflow, decoupled congestion control.

At each location, we measured 10 runs for each of the 4 configurations, along both

the uplink and the downlink. Thus, each of the four configurations has 140 data points

((10 + 10) x 7).
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Figure 2-17: CDF of relative difference between MPTCPoupled and MPTCPdecoupled, for

different flow sizes. The median relative difference for each flow size: 16% for 10 KBytes,
16% for 100 KBytes and 34% for 1 MByte. Thus, throughput for larger flow sizes is most

affected by the choice of congestion control.

To quantify the throughput difference between configurations, we compute:

rnetwork
IMPTCPLTE.coupled -MPTCPWi-Fi coupled I

MPTCPWi-Fi.coupled

IMPTCPLTE decoupled -MPTCPwi Fi.decoupled|
rnetwork - MPTCPWi-Fidecoupled

Here, rnetwork is the relative throughput difference when using different networks for

primary subflow. MPTCPn,c is the throughput measured when using network n for primary

subflow and using congestion control algorithm c. We also compute:

MPTCPLTE.decoupled -MPTCPLTE.coupled I
rcwnd = MPTCPLTE.coupled
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rcwnd - MPTCPW1-Fi coupled

Here, rcwnd is the relative throughput difference when using different congestion control

algorithms.
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Figure 2-18: CDF of relative difference using different networks for primary subflow (la-

beled as "Network") vs. using different congestion control algorithms (labeled as "CC"),
across 3 flow sizes. Median values for CC curves are: 16% for "10 KB", 16% for "100
KB", and 34% for "1 MB". Thus, using different congestion control algorithms has more
impact on larger flows. Median values for Network curves are: 60% for " 10 KB", 43% for
"100 KB" , and 25% for "1 MB". Thus, using a different network for the primary subflow
has greater impact on smaller flows.

Figure 2-17 shows the CDF of the relative throughput difference between using coupled

and decoupled congestion control for three flow sizes: 10 KBytes, 100 KBytes, and I

MByte. The rightmost CDF curve corresponds to the relative difference for 1 MByte, while

the left-most one is for 10 KBytes. Thus, using different congestion control algorithms has

a greater impact on larger flow sizes. In Figure 2-18, a pair-wise comparison between

using different networks (labeled with"Network") and using different congestion control

algorithms (labeled with "CC") for each flow size shows the following:

1. For small flow sizes, throughput is more affected by the choice of network for the

primary subflow. For example, in Figures 2-18a and 2-18b, "Network" is to the right

of "CC".

2. For large flow sizes, throughput is more affected by the choice of congestion control

(decoupled or coupled) algorithms. For example: in Figure 2-18c, "CC" is to the

right of "Network". However, the choice of network for the primary subflow is also

important.
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In practice, selecting the best network for the primary subflow is more feasible than

changing congestion control algorithms for each MPTCP connection, since the primary

flow can be defined solely by the MPTCP endpoint initiating the connection, while the

congestion control algorithm requires support at both endpoints.

2.2.6 Full-MPTCP and Backup Modes

In 2.2.4 and 2.2.5, all measurements were done using Full-MPTCP mode, since our

focus was on how MPTCP's throughput changes under different configurations, when all

paths are fully utilized. Backup mode is an MPTCP mode where only a subset of paths are

used to save energy, especially on power-constrained mobile devices. In this section, we

first show how Backup mode differs from Full-MPTCP at the per-packet level. Then we

discuss the energy efficiency of both Full-MPTCP and Backup modes.

2.2.6.1 Packet-Level Behavior of Full-MPTCP and Backup Modes

Figure 2-19 shows the packet-transmission pattern over time for a long flow employing

MPTCP, using Full-MPTCP and Backup modes. We use t cpdump at the MPTCP client to

log packet transmission and ACK reception times. In Figure 2-19, we plot a vertical line at

time t if there is a packet sent or ACK received at time t in the t cpdump trace. t = 0 is the

time when the first SYN packet is sent. Each sub-figure contains the packet-transmission

patterns on both the Wi-Fi and LTE interfaces for one MPTCP flow. Sub-figures on the left

column are packet transmission (sending and receiving) patterns captured when using LTE

for the primary subflow, while sub-figures on the right are for using Wi-Fi for the primary

subflow.

Figures 2-20a and 2-20b show that in Full-MPTCP mode, packets are transferred through

both Wi-Fi and LTE during the entire MPTCP connection.

Figures 2-19c and 2-19d illustrate the Backup mode where one network is set to be

the backup interface. For example, in Figure 2-19c, when Wi-Fi is set to backup, we see

only the SYN and SYN ACK packets transferred during the 3-way handshake procedure

at t = 1, when the connection establishes a Wi-Fi subflow, as well as FIN and FIN-ACK
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packets at t = 19, when the connection ends. A similar pattern is shown in Figure 2-19d,

when LTE is set to be the backup interface.

Figures 2-19e and 2-19f show packet transmissions in Backup mode when the primary

network is disabled mid-flow. We disable the interface by setting the interface to "multipath

off" in iproute. In Figure 2-19e, Wi-Fi is set to backup. When the connection starts,

it transfers data through LTE. At t = 7, we disable LTE so no data can be transferred over

that interface. We see that the subflow over Wi-Fi is brought up and transfers data until the

flow ends. A similar behavior is seen in Figure 2-19f.

In Figures 2-19g and 2-19h, we disable one network by unplugging the USB cable

connecting the phone to the laptop instead of disabling it using iproute. Interestingly,

we observe different behaviors in this experiment. Figure 2-19h shows that when LTE is

set to backup, and we unplug Wi-Fi in the middle of the transfer (at t = 6), the LTE path is

brought up immediately to finish transferring the rest of the data. This behavior is similar to

when Wi-Fi was disabled by changing iproute. However, in Figure 2-19g, when Wi-Fi

is set to backup and we unplug the LTE network in the middle of the transfer (at t = 3), the

client transfers only one TCP Window Update packet to the server through the Wi-Fi

subflow and then halts. At t = 68, we re-connect the phone with the laptop. Then, the

connection resumes, transfers the rest of the data through the LTE subflow, and ends the

session by sending FIN packets on both path.

The reason disabling paths by physically disconnecting them can cause different be-

haviors from disabling them in software is still under investigation.

2.2.6.2 Energy Efficiency in Backup Mode

As shown in Figures 2-19c and 2-19d, if MPTCP is set to Backup mode, the backup inter-

face still transfers SYN and FIN packets when a connection starts and ends. In Figure 2-

20, we show that in certain configurations, these SYN/FIN packets can consume excessive

amounts of energy on a mobile device. Here, we measure the power level of the tethered

phones using a power monitor [43] when each phone serves as the backup or non-backup

interface. In all sub-figures of Figure 2-20, the base power consumed is 1 watt. This is the

power consumed when the network interfaces are not active. It is the total power consumed
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Figure 2-20: Power level for LTE and Wi-Fi when used as non-backup subflow. LTE has a
much higher power level than Wi-Fi in non-backup mode. LTE also consumes an excessive
amount of energy even in backup mode.

by the other parts of the phone, such as the screen and the CPU.

Figure 2-20a shows the power level of LTE when it is actively transmitting data, that is,

Wi-Fi is set as a backup interface. Similarly, Figure 2-20b shows the power level of Wi-Fi

when it is active. We can see that the Wi-Fi power level is much lower than that of LTE.

Also, in Figure 2-20a, after the FIN packet is sent, there is a 15-second period in which

the LTE power level stays at 2 watts, instead of the 1-watt base power level. The energy

consumed in this 15-second period is called the tail energy [16, 26].

Figures 2-20c and 2-20d show the power level when Wi-Fi or LTE is set to be the

backup interface. In Figure 2-20d, the energy consumed by Wi-Fi is negligible. However,

in Figure 2-20c, when a SYN or a FIN packet is transmitted through LTE, the power level

stays high for about 15 seconds due to the tail energy effect. Thus, even if only SYN and

FIN packets are transferred through LTE, the LTE interface still consumes an excessive

amount of energy. For flows shorter than 15 seconds, little energy can be saved if the

LTE interface is set to be the backup interface. To actually reduce energy consumption in
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this case, fast dormancy [31] should be used to quickly put the LTE interface in the low-

power mode after a SYN and FIN. Alternatively, the Backup mode should be implemented

in a break-before-make manner. Prior work [57] has proposed Single-Path mode, which

establishes a new MPTCP subflow only after the current subflow is inactive, at the expense

of two more round-trip times compared with the current Backup mode.

2.3 Mobile App Traffic Patterns

So far, our measurements have looked at the flow-level performance of TCP over Wi-Fi or

LTE, and of MPTCP over both Wi-Fi and LTE. We next turn to how the choice of networks

for a multi-homed mobile device affects application-level performance as perceived by a

mobile app that uses one or more of these networks. To measure performance at the level of

a mobile app, we first record ( 2.3.1) and analyze traffic ( 2.3.2) originating from a mobile

app, and then replay it under emulated link conditions ( 2.4).

2.3.1 Record-Replay Tool

Mahimahi [53] is a record-and-replay tool that can record and replay client-server interac-

tions over HTTP. Mahimahi's RecordShell is a UNIX shell that records HTTP traffic and

stores it as a set of request-response pairs. Later, during replay, Mahimahi's ReplayShell-

another modified UNIX shell-matches incoming requests to stored requests, ignoring

time-sensitive fields in the request header (e.g., If-Modified-Since) that have likely changed

since recording.

Mahimahi also includes shells to emulate network delays and fixed-rate and variable-

rate network links using packet-delivery traces. We extend these capabilities and develop a

new shell, MpShell, to emulate multiple links along with their associated link delays. This

allows us to mimic a multi-homed mobile phone that can use both cellular and Wi-Fi links.

We use a trace-driven approach, as Mahimahi does, to emulate both the cellular and Wi-Fi

links.

Because Mahimahi is agnostic to the specific client or server that generates the HTTP

traffic, we use it to record all HTTP traffic to and from a mobile app running inside an An-
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droid emulator. Later, using ReplayShell and MpShell, we run the same mobile app within

the Android emulator under appropriately emulated network conditions. This enables us

to evaluate how MPTCP-or any other multipath-capable transport-affects application

performance of a real mobile app.

2.3.2 Traffic Patterns of Mobile Apps

Figure 2-21 shows typical traffic patterns we observed across different mobile apps run

inside RecordShell. We observed that apps tend to initiate multiple TCP connections when

launched or in response to a user interaction. Most of these connections transfer only a

small amount of data (e.g., connection ID 2 in Figure 2-21c). Some connections, such as

connection ID 2 in Figure 2-21a, persist after small data transfers.

A few connections, such as connection ID 30 in Figure 2-21d and connection ID 8

in Figure 2-21f, transfer significant amounts of data, lasting several seconds. The first

example (ID 30) occurred when the user clicked a link to play a movie trailer. The app

downloaded the entire trailer in one HTTP request. The second example (ID 8) occurred

when the user clicked a PDF file in the user's Dropbox folder and the app downloaded the

whole file.

In summary, we can categorize app traffic patterns as short-flow dominated and long-

flow dominated. Short-flow dominated apps have only short connections or long-lived

connections with little data transferred. Long-flow dominated apps have one or multiple

long-lasting flows transferring large amounts of data.

2.4 Mobile App Replay

We feed the app traffic patterns described in 2.3 into Mahimahi's ReplayShell for sub-

sequent replay. To accurately emulate different network conditions, we use the recorded

single-path TCP packet traces on both Wi-Fi and LTE as a proxy for the true packet-delivery

trace for Wi-Fi and LTE5 . We use these TCP traces to emulate the Wi-Fi and LTE links
5This approach does underestimate the true packet-delivery trace of the underlying network because TCP

takes a finite duration to reach the link capacity due to slow start.
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Figure 2-21: Traffic patterns for app launching and user interacting. Figures 2-21d and 2-
21f show the "long-flow dominated" traffic pattern; the other figures show the "short-flow
dominated" pattern.

within MpShell. We emulate 20 distinct network conditions using the Wi-Fi and LTE TCP

data previously collected at 20 locations ( 4.6.1).

We present results from replaying two traffic patterns. We refer to the first as the short-
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flow dominated app in which, as shown in Figure 2-21a (CNN launch), an app initiates

several connections but transfers only a small amount of data on each connection. We refer

to the second as the long-flow dominated app in which, as shown in Figure 2-21 f (Dropbox

user click), an app initiates several connections and transfers a large amount of data for

a few seconds over a small subset of the connections. We run each app pattern over the

20 different network conditions (we show only the results from 4 representative conditions

due to space limitations). For each network condition, we emulate 6 configurations:

1. Wi-Fi-TCP: Single-path TCP running on Wi-Fi.

2. LTE-TCP: Single-path TCP running on LTE.

3. MPTCP-Coupled-Wi-Fi: MPTCP with coupled congestion control using Wi-Fi for

the primary subflow.

4. MPTCP-Coupled-LTE: MPTCP with coupled congestion control using LTE for the

primary subflow.

5. MPTCP-Decoupled-Wi-Fi: MPTCP with decoupled congestion control using Wi-Fi

for the primary subflow.

6. MPTCP-Decoupled-LTE: MPTCP with decoupled congestion control using LTE for

the primary subflow.

Using t cpdump during the emulation, we collect the timestamp at the start and end of

each HTTP connection. Then, we calculate the app response time: the time between the

start of the first HTTP connection and the end of the last HTTP connection6

2.4.1 Short-Flow Dominated App Replay

Figure 2-22 shows the app response time for the CNN app launching in different configura-

tions under different network conditions. For clarity, we show only the emulation results for

4 representative network conditions out of the 20 we emulated; results for other conditions

are similar.

Network Condition IDs 1 and 2 emulate locations where Wi-Fi has a much higher bulk

6 This metric does not account for computation time that might be spent in the app itself after the last HTTP
connection ends, but this is impossible to measure without instrumenting or rewriting existing applications to
report these numbers.
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Figure 2-22: CNN app response time under different network conditions.

Figure 2-23: CNN normalized app response reduction by different oracle schemes.

TCP throughput than LTE has, and in Network Condition IDs 3 and 4, LTE outperforms

Wi-Fi. In Figure 2-22, we observe that:

1. Selecting the proper network to transmit for single-path TCP significantly affects
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app response time. For example, in Network Condition 1, the app response time

for Wi-Fi-TCP is 2.7 seconds, while LTE-TCP has an app response time of 5.5 sec-

onds, implying that using the proper network for single-path TCP can reduce the

app response time by about 2.0x. For a network condition in which LTE has bet-

ter performance, such as Network Condition ID 4, the app response times for TCP

over Wi-Fi (shown as "TCP-Wi-Fi" in Figure 2-22) and TCP over LTE (shown as

"TCP-LTE" in Figure 2-22) are 7.2 seconds and 2.8 seconds, respectively. In this

case, using LTE can reduce the app response time by 2.6 x.

2. Using MPTCP does not provide much improvement for the short-flow dominated app

pattern. For instance, in Network Condition , MPTCP-Coupled-LTE and MPTCP-

Decoupled-LTE have app response times of 5.3 and 4.0, respectively. Compared to

TCP over LTE, these MPTCP schemes reduce the app response time by only 4% and

15%, much smaller improvements than the 2x improvement seen when using TCP

over Wi-Fi compared to TCP over LTE.

In summary, Figure 2-22 shows that the choice of network for the primary subflow has a

strong impact on app response time. This result is consistent with the results we show in

2.2.5.

We also study the extent to which app response times can be reduced if we have ac-

cess to an optimal network selection algorithm: an oracle that knows the right network

to use, given a particular congestion control strategy (coupled vs decoupled) and another

oracle that knows the right congestion control strategy to use given a particular choice for

the network used by the primary subflow. Figure 2-23 shows the app response time with

different oracle schemes, averaged across all 20 network conditions and normalized by the

app response time with single-path TCP over Wi-Fi (the default on Android today). The

oracle schemes are:

1. Single-Path-TCP Oracle: Uses single-path TCP and knows which network mini-

mizes app response time.

2. Decoupled-MPTCP Oracle: Uses MPTCP decoupled congestion control and knows

which network to use for the primary subflow to minimize app response time.

3. Coupled-MPTCP Oracle: Uses MPTCP coupled congestion control and knows which
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network to use for the primary subflow to minimize app response time.

4. MPTCP-Wi-Fi-Primary Oracle: Uses MPTCP with Wi-Fi for primary subflow and

knows which congestion control algorithm to use to minimize app response time.

5. MPTCP-LTE-Primary Oracle: Uses MPTCP with LTE for primary subflow and

knows which congestion control algorithm to use to minimize app response time.

We can see in Figure 2-23 that the 50% reduction in app response time with Single-

Path-TCP Oracle is the most substantial, while the reductions with the MPTCP Oracles

range from 15% to 35%. This suggests that MPTCP does not reduce app response time as

significantly as selecting the right network for single-path TCP does.

2.4.2 Long-flow Dominated App Replay
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Dropbox app-response time under different network conditions.

Figures 2-24 and 2-25 show emulation results for the long-flow dominated traffic pat-

tern, using the same data analysis methods and oracles as used in the previous subsection.

In Figure 2-24, Network Condition IDs 1 and 2 emulate places where Wi-Fi has a much

higher TCP throughput than LTE has, and Network Condition IDs 3 and 4 represent places

where LTE outperforms Wi-Fi. We observe that:
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1. Using MPTCP helps to reduce app response-time. For example, at Network Condi-

tion 1, when using single-path TCP, the app response time is 10 seconds for Wi-Fi

and 15 seconds for LTE. When using MPTCP, the app response time is 5 seconds.

2. Selecting the proper network is important; for example, at Network Condition ID 2,

the app response time for MPTCP-Coupled-Wi-Fi is 8 seconds, but if LTE is used

for the primary flow, response time increases to 14 seconds.

3. Selecting the proper congestion control algorithm also affects app response time. For

example, at Network Condition ID 1, when using LTE for the primary subflow, the

app response time for coupled congestion control is 4 seconds, while the response

time with decoupled congestion control is 13 seconds.

In Figure 2-25, we can see that:

1. MPTCP Oracles reduce the app response time by up to 50%, while the Single-Path-

TCP Oracle reduces app response time by only 42%. So, using MPTCP can help

improve performance for long-flow dominated apps.

2. For MPTCP Oracles, both selecting the proper network for the primary flow and

selecting the appropriate congestion control can reduce the normalized app response
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time by about 50%, implying that both mechanisms are almost equally beneficial to

long-flow dominated apps.

2.5 Related Work

We discuss related work under two headings: prior work comparing Wi-Fi with cellular

network performance and Multi-Path TCP.

2.5.1 Wi-Fi/Cellular Comparison

Several prior papers compare cellular network performance with Wi-Fi. Sommers et al. [71]

analyzed crowd-sourced data from SpeedTest . net. Each data sample represents one

run of a TCP upload/download test triggered by a mobile phone user when the phone is

connected to the Internet through either Wi-Fi or a cellular network. We also collected

our data in a crowd-sourced manner. However, our mobile app, Cell vs. Wi-Fi, measures

both Wi-Fi and cellular network performance on the same device at (almost) the same

time. Thus, our dataset reflects the performance difference observed from a single device

at almost the same time. Deshpande et al. [28] measured both 3G and Wi-Fi performance

simultaneously using a single device, but their measurement was focused on a vehicular

setting, and they measured only 3G, not LTE. Our dataset focuses on LTE measurements

instead. In our app, we used an activity-recognition API provided by Google [6], which

shows that most of our measurements happen when users are still. Moreover, our data was

collected in a crowd-sourced manner, allowing it to capture a wide diversity of conditions.

2.5.2 Multi-Path TCP

Multipath TCP (MPTCP) [77] and its recent implementation in iOS 7 [49] allow a sin-

gle TCP connection to use multiple paths. MPTCP provides TCP's reliable, in-order

bytestream abstraction while taking advantage of multiple paths for increased throughput

and fault tolerance. Previous work has looked at MPTCP in a mobile context. Raiciu et

al. studied mobility with MPTCP [67]. Pluntke et al. designed a scheduler that picks radio
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interfaces with a view to reduce mobile energy consumption [63]. Paasch et al. proposed

different MPTCP modes to be used by mobile devices for mobile/Wi-Fi handover [57].

Barlow-Bignell et al. [18] studied MPTCP performance in the presence of Wi-Fi interfer-

ence where multiple devices connected to the same AP could interfere with each other if

they transmitted packets simultaneously. Closest to our work is the work of Chen et al.,

who measured MPTCP performance over cellular networks and Wi-Fi [24]. Their mea-

surement focuses on using different numbers of subflows and fine-grained statistics, such

as out-of-order delivery and round-trip times. Instead, our focus is on studying the choice

of networks for the primary subflow, the choice of congestion-control modes, MPTCP's

energy consumption, and MPTCP's effect on higher-level metrics such as flow completion

times and app response times.

2.6 Chapter Summary

This chapter describes the measurement study of single-path TCP and MPTCP over LTE

and Wi-Fi networks. For single-path TCP, we found that LTE outperforms Wi-Fi 40% of the

time-a higher percentage than one might expect at first sight. We also found that MPTCP

offers no appreciable benefit over TCP for shorter flows, but it does improve performance

for longer flows. For MPTCP, we found that, especially for short flows, it is crucial to select

the correct network for the primary subflow. For long flows, it is equally important to select

the proper congestion control algorithm. To understand how TCP and MPTCP over LTE

and Wi-Fi can affect mobile app performance, we analyzed mobile apps' traffic patterns,

and categorized apps as either short-flow dominated or long-flow dominated. For each

category, we emulated app traffic patterns and the results we observed match our MPTCP

measurement findings.

Our findings also bring up new research questions: How can we automatically decide

when to use single-path TCP and when to use MPTCP? How should we decide which

network to use for TCP or which network to use for a subflow with MPTCP? We think

these are non-trivial questions due to the high mobility of devices and rapidly changing

network conditions. Also, with energy consumption being a major concern for mobile
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devices, how can we make the decisions when trying to minimize energy consumption?

We will address these problems in the following chapters.

65



66



Chapter 3

Delphi: A Controller for Mobile

Network Selection

In the previous chapter, our measurement study shows that there is a need for mobile de-

vices to select the best network for applications, adapting to current network conditions as

well as traffic shape. In this chapter, we present the design, implementation, and evaluation

of Delphi, a software module that achieves this goal. Our starting point is from the per-

spective of users and applications rather than the transport layer or the network. Depending

on the objectives of interest, Delphi makes different decisions about which network to use

and in what order.

We consider three objectives (though the framework handles other objectives as well):

1. minimize the time to complete an application-level transfer (the ratio of transfer size

to transfer throughput);

2. minimize the energy per byte of the transfer, which usually (but not always) entails

picking one network; and

3. minimize the monetary cost per byte of the transfer.

Delphi provides a framework to optimize these and similar objectives. This problem

is challenging because the answer changes with time and depends on location and user

movement.
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Figure 3-1: Delphi design.

3.1 Overview

Delphi uses three pieces of information to select the network(s) to use for a data transfer:

1. App traffic profile regarding how much data a transfer sends or receives, for example,

as part of a HTTP transaction.

2. Network conditions for the wireless interfaces, for example, channel quality, current

load in the network, end-to-end delay, etc. This information allows us to estimate

higher-layer network performance metrics, such as flow completion time, average

burst throughput, etc.

3. The objective function to be optimized, such as the flow completion time, energy per

byte, or monetary cost for the transfer.

Figure 3-1 shows the four components in Delphi, which is implemented as a software

controller between the application and transport layers. The Traffic Profiler ( 3.2) esti-
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mates transfer sizes, and the Network Monitor ( 3.3) collects data needed for the Predictor

to predict current network performance. The Predictor ( 3.4) feeds the prediction to the

Network Selector ( 3.5), which selects the network(s) to optimize the specified objective.

Implementing this design requires no modification to applications ( 3.6).

3.2 Traffic Profiler

A recent study [25] analyzed 90,000 Android apps and found that 70,000 of them used

HTTP or HTTPS, and that among the 70,000, 70% of them used HTTP and not HTTPS.

Thus, we designed the Traffic Profiler by first focusing on HTTP.

When a mobile user downloads a file using an HTTP GET, the HTTP GET response

header usually contains a "Content-Length" field specifying the length of the response.

During uploads, the mobile device issues an HTTP POST whose Content-Length field

specifies the transfer size. In both cases, the Content-Length field provides the relevant

transfer size information to the Traffic Profiler readily.

Count Percentage
HTTP Transactions 59679 100%
Transactions with Content-Length 50865 85%
Predictable Transactions 50613 84%
Chunked-Encoding Transactions 3559 6%

Table 3.1: HTTP transaction data lengths for the Alexa top 500 sites. 84% of the transfer
lengths are predictable by the Traffic Profiler.

However, the Content-Length field is not mandatory for HTTP headers; for instance,

HTTP transactions often use chunked encoding when the length of data to be transmit-

ted is dynamic. To determine how many HTTP transactions contain the Content-Length

header, we use a record-and-replay tool, Mahimahi [53], to record the HTTP requests and

responses when loading the homepage of the Alexa top-500 websites [9]. The results are

listed in Table 3.1. When each site is loaded once, the total number of HTTP transactions is

59,679. We note that 84% of the transactions are predictable by the Traffic Profiler. Here,

predictable means the relative difference between the Content-Length value and the actual

amount of data transmitted is less than 10%. Thus, using the Content-Length field to pre-
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dict the size of the data transfer works for most (84%) HTTP transactions. For HTTPS, the

header is encrypted. To be able to look into the headers, we could set up an SSL proxy on

the mobile device and make all traffic go through it [73].

Delphi also provides an API for the application to let the Traffic Profiler know how

much data it is going to transfer. Compared with the Traffic Profiler monitoring data trans-

missions on its own, this API allows the Traffic Profiler to unambiguously determine the

amount of data the application is going to transfer. As shown in 3.4.2.1, providing ac-

curate transfer length helps Delphi make better network selections. This benefit can in-

centivize application developers to adopt the API for better performance while providing

better security guarantees (for applications using HTTPS).

The Traffic Profiler notifies the Predictor by sending it (TCP_CONNECTIONID,

data_length, direction) (direction means whether the device is downloading or

uploading data) when any of the following events occur:

1. an API call occurs from the app;

2. a request to initiate a new TCP connection is observed; or

3. an HTTP request/response is observed.

The Traffic Profiler may not be able to tell how much data is going to be transmitted

in Case 2 and sometimes in Case 3 (e.g., chunked encoding). In such cases, the Traffic

Profiler will simply return a data_length of 3 KBytes. If chunked encoding is

observed, the profiler updates the predicted transfer size to be 100 KBytes. We chose these

numbers because they are the median values of data transmission length observed in the

Alexa top 500 sites in US (April, 2014). 3.4.2.1 analyzes how these default data length

values affect network selection results.

3.3 Network Monitor

The Network Monitor tracks a set of network-condition indicators for both Wi-Fi and LTE,

and notifies the Predictor whenever an indicator value changes.
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Category Wi-Fi Indicators LTE Indicators
Passive indi- RSSI, Link Speed,Wi-Fi Signal Strength, DBM, RSSNR, CQI,RSRP,
cators AP Count RSRQ, Wi-Fi AP Count
Active prob- Max/Min/Mdev Ping RTT, DNS Lookup Time, UDP throughput, UDP loss-

ing rate, UDP packet inter-arrival-time mean/median/90th percentile

Table 3.2: Network indicators monitored by Delphi.

3.3.1 Network Indicators

Table 3.2 lists the indicators used by Delphi. These indicators are categorized into 2 sub-

groups: passive measurement and active probing. The passive measurements capture chan-

nel quality and contention for the last-hop wireless link, which is often the bottleneck along

both the forward and reverse paths between the mobile device and the Internet. However,

this last-hop information does not always reflect network conditions along the whole path.

For example, for LTE networks, the delay introduced by packet buffering at the cell tower

side can be significant [35], but it is not captured by last-hop passive measurements. Wi-Fi

access in public areas such as shopping malls, airports, etc. may be subject to bandwidth

limits introduced at the gateway to the Internet, and these are not captured by last-hop

measurements. To capture these non-last-hop, or end-to-end network performance factors,

Delphi also runs active probes between the mobile device and an Internet server (see 3.6).

To quantify how each indicator affects TCP throughput, we analyze data collected from

22 locations. Those locations included shopping malls, Wi-Fi-covered downtown areas,

and university campuses, where both Wi-Fi and LTE were available. At each location,

the total measurement time is at least 1 hour. We compute the Pearson Correlation [75]

between the throughput and each indicator. The correlation is a number between -1 and

+ 1, inclusive. A value close to + I or -1 signifies a strong positive or negative correlation.

A value close to 0 signifies weak correlation.

Figure 3-2 shows the absolute value for correlation between throughput and each indi-

cator. The bars in each sub-figure are sorted from strongest to weakest correlation. Fig-

ures 3-2a and 3-2b show the correlation over the entire dataset. For both Wi-Fi and LTE,

among the most correlated indicators, we see both active probing indicators (such as Wi-Fi

UDP throughput and LTE Average Ping RTT) and passive indicators. Figures 3-2c and 3-2d
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Figure 3-2: Correlation between Wi-Fi/LTE single path TCP throughput and each indicator.

show the correlation values calculated using data collected at only one location. Compared

to Figure 3-2a, at each location, the order of the correlation strength changes. Similar

results can be seen in LTE and MPTCP analysis.

3.3.2 Adaptive Probing

As shown in Figure 3-2, actively probing the network can provide important information

to estimate network performance. However, active probing can be expensive in terms of

energy, bandwidth, and delay. Table 3.3 summarizes the overhead in terms of delay, amount

of data transferred, and energy consumption.

To reduce the probing overhead, the Network Monitor probes the network adaptively,

only if there is a significant change in the passive indicators. Otherwise, it will reuse ac-

tive probing information collected previously. To further reduce probing overhead, Delphi
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Probe Type DNS Query 10 Pings UDP
Data Transferred (Bytes) 271 1K 200K
Wi-Fi Median Delay (Sec) 0.64 9.02 0.65
Wi-Fi Energy (mJ) 331 4730 366
Cellular Median Delay (Sec) 0.63 9.01 0.58
Cellular Energy (mJ) 1378 19697 1613

Table 3.3: Overhead for one occurrence of active probing. The delay values are the me-

dian value across all measurement data collected at 22 locations. The energy values are
measured in an indoor setting. The cellular energy values do not contain tail-energy [26].

adaptively probes only when the mobile device's screen is on, which suggests that the user

is currently interacting with the device and is more sensitive to network delays. There are,

of course, times when background applications also need low delays (e.g., a cloud-based

navigation app), but in the common case, delay is less of a concern in such situations.

For background transmissions, Delphi will probe the network only when these two condi-

tions occur: 1) there is a large change in the passive measurements; and 2) there is a data

transmission request.

Adaptive probing has two benefits:

1. It is more energy-efficient than with fixed-rate probing.

2. It is proactive compared with probing only on a transmission request, which would

delay the request.

To evaluate adaptive probing, we simulate it using our collected data as follows. At

each location, we collected data from a series of runs measured back to back. We take the

first run's passive and active measurement as input. Then, for the second run, we compare

the passive measurement values with the first run. If the passive measurement difference

d is less than a certain threshold Th, we keep the first run's active probing values as our

measured number and use the second run's active probing values as the ground truth to

calculate an error e. If d is greater than Th, we do active probing again.

The definitions of d and e for a run r are:

dr = PirPir-1 (3.1)
i=1 Pi,max - Pi,min
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Figure 3-3: As the adaptive probing threshold (x-axis) increases, the number of probing
decreases and the probing error increases. Here the left y-axis shows the probing frequency,
which is the average number of probing in every five minutes.

er = adj,r-aj,rl (3.2)
j=1 aj,r

Here, m is the total number of passive indicators; pi is the value of the passive indicator

i; Pimax and Pi,min are the max and min values for these indicators; n is the total number of

active indicators; dj,r is the active probing value for indicator j, and aj,r is the ground truth

value in run r.

Figure 3-3 shows that as the probing threshold increases, fewer probes are triggered.

Also, as the probing threshold increases, the error of reusing the previous active probing

value increases. In 3.4, we will analyze the extent to which the choice of network is

affected by this adaptive probing error.

74



3.4 Predictor

Delphi's Predictor takes the traffic profile and network status as input to estimate network

performance. In this section, we focus on how it estimates TCP flow completion time

because flow completion time is used in all our objectives mentioned in 3.5. However,

similar techniques can be used to estimate other metrics such as average throughput (for

streaming applications) or average RTT (for interactive applications).

To predict TCP flow completion time, or related metrics such as the end-to-end through-

put for Wi-Fi and LTE networks, previous work either uses historical data from the same

flow to predict current throughput [78], or it outputs binary results such as high/low through-

put [22]. However, for Delphi, the prediction is more challenging: First, it needs to make

its decision just before the connection transfers data, and recent historical data may not

always available. Second, it needs to return numerical values instead of binary results to be

fed into the Selector.

We use a machine learning model, the regression tree [56], to estimate TCP flow com-

pletion time. This learning method matches well with our problem definition, as it takes

multi-dimensional vectors as input and produces a real-valued result. In our case, the multi-

dimensional input includes data size and network condition indicators. Another advantage

of using a regression tree is that by assigning different weight to different indicators when

traversing through different branches, per-location differences (Figure 3-2) are captured

naturally. Regression trees have been used to solve other network performance estimation

problems [78] due to their low memory and computation overhead.

Delphi constructs four regression trees to predict the flow completion time for single-

path TCP over Wi-Fi or LTE, and for MPTCP using Wi-Fi or LTE for the primary subflow.

We estimate the flow completion time of MPTCP using separate trees instead of deriving it

from the flow completion time estimated for single-path TCP because a previous measure-

ment study [27] shows that throughputs of single-path TCP over two networks do not add

up to the throughput of MPTCP. Besides, there are cases where MPTCP over both networks

gives lower throughput than single-path TCP over a single network does.

The prediction accuracy is affected by two factors:

75



1.0 1.0

0.75 0.75

0.50 0.5

0.25 2Tree5

__SVR SVR

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Relative Error Relative Error

(a) TCP over Wi-Fi (b) TCP over LTE

Figure 3-4: Relative error when using the regression tree and support vector regression to
learn the flow completion time. The line marked with "Tree" shows the relative error of the
regression tree model. The line with "SVR" shows the relative error of the support vector
regression model.

1. the predictive power of the machine learning model, that is, whether regression trees

are a good model for predicting flow completion time, and

2. the measurement accuracy of the inputs to the machine-learning methods.

3.4.1 Regression Tree Prediction Accuracy

Here, we use our dataset collected from 22 locations to analyze Delphi's prediction accu-

racy. To train the regression tree model, we randomly select 10% of the total samples from

our dataset. We then use the remaining 90% as our testing data. As a comparison, we also

train support vector regression (SVR) models with the radio basis kernel [60], which also

takes a multi-dimensional vector as input and produces numerical results. The SVR mod-

els also consist of four separate models, each for one network configuration. To train each

SVR model, we first sort all the indicators from the most correlated to the least correlated

with the flow completion time. Here, we compute the correlation across all the data, not

just the 10% in the training set, so that the sorting will not be biased by the training set.

Then, we train the SVR model using the N most correlated features. As N increases, the

testing errors first decrease (because the model improves in predictive power) and then in-

crease (because the model overfits to the training set). For each SVR model, we choose the

N that gives the smallest error. Thus, the resulting models are the best that can be achieved
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Figure 3-5: Relative error when using an empirical flow size number (3 KBytes) to predict

flow completion time. The legends are the actual flow sizes.

using the SVR method given the features that we measure.

We test both models using the same testing set. Figure 3-4 shows the CDF of relative

error between the learned result and the ground truth when predicting Wi-Fi and LTE.

MPTCP predictions give similar results. Here, the regression tree model predicts the flow

completion time with smaller error than the SVR model. Regression tree is more powerful

because it is able to traverse through different paths in the tree when predicting different

locations.

The median testing error ranges from 2% to 10% across the four regression tree mod-

els. Given that the training set consists of only 10% of the data, this shows the TCP flow

completion time is predictable using regression trees.

3.4.2 Input Error Analysis

3.4.1 shows the prediction error when the input feature vectors are accurate. As described

earlier, the Traffic Profiler sometimes needs to guess the transfer size, and the Network

Monitor may reduce active probing frequency to reduce energy and traffic overhead. Thus,

the input to the regression tree is not always perfect. In this section, we investigate what
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Figure 3-6: Relative error when using adaptive probing to predict flow completion time.

impact these imperfections have.

3.4.2.1 Traffic Profiler Error

As mentioned in 3.2, when there is no Content-Length field specified in a burst of trans-

mission, the Traffic Profiler returns an empirical number of 3 KBytes. Figure 3-5 shows the

relative error using an inaccurate transfer size as a regression tree's input (in Figure 3-5, we

show only the results for TCP over LTE for clarity, but similar results hold for Wi-Fi and

MPTCP). Here, we split the testing dataset into smaller subsets; each subset contains mea-

surement done for a certain transfer size. As the difference between the actual transfer size

and 3 KBytes increases, the relative error increases. The prediction error is significantly

higher than the previous 2%-10%. Fortunately, however, only less than 15% of transfers

are affected by this error, as noted in 3.2.

3.4.2.2 Network Monitor Error

Another source of error is adaptive probing. We run the regression tree testing over different

Th values, which is an adaptive probing parameter. Figure 3-6 shows the CDF curves of
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relative errors for LTE. Here, as Th increases (i.e., probing less frequently), the prediction

error increases. Wi-Fi and MPTCP predictions also gives similar results.

3.5 Network Selector

Delphi's Selector uses network performance predictions, transfer lengths, and the speci-

fied objectives for application transfers to determine which network to use. The choice of

network depends on three factors: throughput, energy efficiency, and monetary cost.

3.5.1 Objective Functions

Throughput, S: The Selector can estimate the average throughput of the current transfer

using the transfer size f that is provided by the Traffic Profiler and the flow completion

time t that is provided by the Predictor. Using the subscript i to refer to the choice of the

network (either Wi-Fi or LTE or MPTCP with a specified primary subflow), we have:

fSi = - (3.3)
ti

Energy per byte, Ei: Knowing the power level pi of each network choice i, together

with the above ti and f, the energy to transmit one byte is:

Ei = Pi -ti (3.4)
f

The energy per byte is a metric that captures both battery consumption and transfer

rate. A faster transfer over a network that has a higher power consumption may incur lower

energy per byte. As a result, minimizing energy per byte is not always the same as picking

the network with the lowest power consumption.

Monetary cost per byte, Mi: The "dollar" cost incurred when transferring each byte

of the transfer on network choice i.

By knowing Si, Ei, and Mi, the Selector chooses the network that maximizes the fol-

lowing objective function:
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S~a
Oi = ' (3.5)

Eig Miy

This objective function prefers networks with high Si values, meaning in a given second,

it wants the device to transfer more bytes. It also prefers networks with low Ei value,

meaning when consuming one joule of energy, it wants the device to transfer more bytes.

Similarly, it prefers networks with low Mi values, meaning when consuming one dollar, it

wants the device to transfer more bytes.

The exponents a, #, yE [0, oo) determine the relative importance of throughput, energy

efficiency, and monetary cost, respectively. For example, if a = 1, P = 0, and y = 0,

then Oi = Si, and the Selector will select the network with the highest average throughput.

This optimization is realistic if the device has an unlimited data plan and is connected to

an AC power source. As another example, if a = 0, P = 1, and y = 0, then Oi = I /Ei ,

and the Selector will select the network that consumes the least amount of energy. This

optimization is preferable when the device is about to run out of battery.

In our experiments, we set a, f, y to different values to experiment with different

scenarios. In a more realistic implementation, a, P, and y can be pre-defined by users or

decided by Delphi dynamically according to the phone's current status. For example, #
can increase as the battery level decreases. If the mobile device user has a limited monthly

data plan for a cellular network, y can increase as the amount of data plan consumed is

approaching the budget, and set at a large number once the cellular usage exceeds the

budget. Picking different values of a, f, and y makes the objective function expressive

enough to handle a range of preferences.

3.5.2 Energy Model

An energy model is required to estimate Ei. We measured the power level of both Wi-Fi

and LTE on a Galaxy Nexus phone by connecting it to a power monitor [43]. We measured

the power level during both TCP uploads and downloads using Wi-Fi and LTE. We also

measured the power level across different transmission rates for both Wi-Fi and LTE, by

changing the underneath channel quality. To do so, for Wi-Fi, we change the distance
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Interface LTE Wi-Fi
Send Tput (mbps) 2.3~4.4 7.4~9.4
Send Power (mW) 2778 56 536+23
Recv Tput (mbps) 0.1~1.5 7.3~9.5
Recv Power (mW) 1674+95 428+58

Table 3.4: Power level measurement for Wi-Fi and LTE in a indoor setting. The Wi-Fi
power is measured when the mobile device is associated with an AP deployed inside the
building. The LTE power is measured when the mobile device is connected to Verizon LTE
network.

between the phone and the access point. For LTE, we change the channel quality by moving

into and out of buildings.

Table 3.4 shows the results. For each network, both while uploading and downloading

data, the power level stays the same regardless of the data rate. Hence, we model the power

pi for each network using two constant numbers (one for upload and one for download).

However, for LTE, there is an additional tail energy [26] component that is consumed after

a transfer finishes, which we treat as a constant number. As a result, when estimating the

energy consumed for LTE, Delphi adds this tail energy to the total energy consumed.

3.5.3 Selector Performance

To quantify the Selector's performance, we run simulations using data that we collected

from 22 locations. We wrote a simulator that operates on this data set as described below.

The dataset collected earlier maps a feature vector (made up of all the features listed in

Table 3.2) to a t cpdump trace captured when running standard TCP on Wi-Fi and LTE

and a t cpdump trace for MPTCP in striped mode using Wi-Fi as the primary subflow and

using LTE as the primary subflow.

When evaluating any scheme, we assume all the features required by Delphi are avail-

able at the beginning of each run. We run Delphi's selection algorithms, described earlier,

using the features collected at the beginning of the run along with flow size as input. We

then pick the network interface that maximizes the objective function described above and

look at the previously collected t cpdump trace to determine the duration from the begin-

ning of the trace until a transfer size worth of bytes are transferred. We repeat the same
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procedure, without any prediction, for the other policies for every run at each location.

In these simulations, we set y =0, meaning we do not consider monetary cost. Figure 3-

7 shows the simulation results. The x-axis of the figure shows the number of bits that can

be transmitted when consuming one joule. The y-axis shows the throughput. We first draw

a frontier line by changing # from 0 to 5. When computing the frontier, we also use the

ground-truth value of each flow's completion time so that the frontier represents the best

that can be achieved if we have a perfect predictor. We call this line "Oracle Frontier".

In Figure 3-7, Wi-Fi, LTE, MPTCP(Wi-Fi), and MPTCP(LTE) are four fixed schemes

where the same network is used across all locations. Here, Wi-Fi and LTE refer to trans-

mitting data using single-path TCP over Wi-Fi or LTE. MPTCP(Wi-Fi) and MPTCP(LTE)

refer to transmitting data over MPTCP, while using Wi-Fi or LTE for primary subflow.

"Max(S)" and "Max(S/E)" are two schemes run by the Selector. In Figure 3-7, the two

Delphi schemes, Max(S) and Max(S/E), fall close to the frontier line. In Max(S), the Se-

lector set 0 = 0, meaning it is simply trying to maximize throughput. In Max(S/E), # = 1,
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tions.

meaning it tries to select networks with high throughput but without consuming too much

energy. We can see that Max(S) and Max(S/E) are much closer to the Oracle Frontier line

than any other schemes are.

Objective Max(S) Max(S/E) Wi-Fi
Throughput (Mbits/Sec) 3.0 2.6 1.4
Energy Efficiency (Mbits/J) 2.8 4.9 5.2

Table 3.5: Median values for Max(S), Max(S/E) and Wi-Fi as shown in Figure 3-7.

Table 3.5 lists the x and y-axis median values for Max(S) and Max(S/E), together with

the median value for the fixed scheme that always uses Wi-Fi for comparison. Here, Max(S)

gives the highest median throughput of 3.0 Mbit/s, which is a 2.1 x gain over Wi-Fi's 1.4

Mbit/s. Max(S/E) tries to achieve high throughput with high energy efficiency. Its median

energy efficiency is 4.9 Mbit/J, 6% worse than always using Wi-Fi, but it achieves a median

throughput of 2.6 Mbit/s, a 1.9 x gain over Wi-Fi.

We now take a closer look at each scheme. When an objective function is defined, how

many times is each available choice selected? Figure 3-8 shows the percentage of time that

each network choice is selected when trying to optimize different objectives. First, we can
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Figure 3-9: Success rate for different schemes.

see that Delphi makes very similar decisions compared with an omniscient oracle. How-

ever, for each specific objective function, Delphi chooses different networks. For exam-

ple, when maximizing throughput, Delphi selects LTE more often than Wi-Fi or any other

MPTCP-based scheme because LTE provides the highest throughput in a large number of

cases in our dataset. For Max(S/E) (maximizing throughput over energy) or for Max(l/E)

(minimizing energy consumption), Delphi tends to choose Wi-Fi much more often, since

Wi-Fi is generally more energy-efficient. However, both the oracle and Delphi still select

other network(s) because there are cases where Wi-Fi gives really low throughput, length-

ening the transfer and consuming significant energy in the process.

To understand these errors in more detail, we compare the decision made by the oracle

and by Delphi. We say that Delphi makes a successful decision if it selects the same

network(s) as the oracle. Figure 3-9 shows the ratio of successful decisions affected by

different error sources. Here, "Active" refers to using active probing information for flow-

completion time prediction. "Adaptive" refers to our adaptive probing technique described

earlier. "3 KB" refers to using active probing, in which the Traffic Profiler outputs 3 KBytes

in 16% of the total outputs. We selected 16% because we found that in 16% of the total

network transactions data size is not predictable (Table 3.1 in 3.2).
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We can see that Active gives the highest success ratio (93% for Max(S/E) and 85% for

Max(S)). As we add error to the network measurement input, or Adaptive, the success ratio

is lower (90% and 81%, respectively). Finally, inaccurate transfer size information gives

us the lowest success rate (86% and 78%, respectively). These results show that we can

achieve high success rates by adding active probing overhead. If the overhead is a concern,

removing active probing can still give reasonable results. However, being able to predict

the size of the burst of traffic is more important.

3.5.4 System Generalization

Model Type Obj. Throughput Energy Efficiency
(Mbits/Sec) (Mbits/J)

SVR Max(S) 2.3 1.6
Reg. Tree Max(S) 2.1 2.0
Wi-Fi Only - 1.4 5.6
LTE Only - 1.7 1.5
SVR Max(S/E) 1.4 5.6
Reg. Tree Max(S/E) 1.9 2.7

Table 3.6: Median values for throughput and energy efficiency when testing different mod-
els at new locations.

In our above analysis, both our training and testing datasets are generated from the 22

locations we measured. These results show the improvement when we have prior knowl-

edge of the network condition of each location. In this section, we show the results in a

more challenging condition: we test Delphi's performance when there is no prior knowl-

edge. This corresponds to the real use case when a smartphone user enters a new location

that he or she has never been to.

We trained Delphi using data collected from 21 out of the 22 locations and tested it

on the last location. We repeated this process 22 times by using each location to be the

testing set. Table 3.6 shows that when maximizing throughput, Delphi achieves up to 1.6 x

improvement (when using the SVR model) over Wi-Fi. When maximizing throughput over

energy consumption, Delphi behaves as well as Wi-Fi and better than using LTE only.

These results show that 1) when there is no prior knowledge, the improvement decreases,

and 2) the SVR model achieves higher improvement than the regression tree does. This is
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because the regression tree is powerful when it characterizes data in a training set, which

means it tends to overfit, and is less powerful when predicting new data. Thus, Delphi

can use the SVR model to make decisions when entering new locations, or crowd-sourcing

measurement techniques [68] can be used to feed the smartphone with prior knowledge of

new locations to further improve performance.

3.6 Implementation

We implemented Delphi on a laptop (2.4GHz Dual Core with 4GB RAM, comparable to

a smartphone) running MPTCP (Ubuntu Linux 13.10 with Kernel version 3.11.0, with the

MPTCP Kernel implementation version vO.88 [51]). We tethered two smartphones to the

laptop, one in airplane mode with Wi-Fi enabled and the other with Wi-Fi disabled but

connected to the Verizon LTE network. The reason we implemented Delphi on a laptop

instead of a smartphone is to utilize existing machine learning libraries. We also enabled

MPTCP on a Galaxy Nexus phone running Android 4.1 [48] to validate that all the follow-

ing functionality is feasible on smartphones. All the measurement data used for simulation

in the previous settings are also collected under the same setting.

The current implementation of Delphi is a user-level application implemented in Python.

One thread of Delphi serves as the Network Monitor; it continuously polls passive indicator

values from both phones over the USB interface every 500 milliseconds.

Switch Type Send Delay (ms) Reev Delay (ms)
LTE switch on 494 1 507 13
Wi-Fi switch on 495 t 2 782 47

Table 3.7: Switching delay, averaged across 10 measurements. The switching delay is
defined as the time between an ipt able rule-changing command being issued and a
packet transfer occurring on the newly brought-up interface. The send delay is the delay
for the first out-going packet showing up, and the receive delay is for the first ACK packet
coming from the server.

The other thread serves as the Traffic Profiler, Predictor, and Selector. It runs t cpdump

to monitor packet transmissions in real time. Once it sees that a network transfer has been

initiated, it looks for an HTTP request or response header and reads the Content-Length
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information from the header. It then calls the Predictor function to predict the transfer

completion time and then calls the Selector function to select a single network by changing

ipt able rules [50]. This procedure of turning an interface off allows MPTCP to migrate

to the new connection because it supports break-before-make semantics. When the network

is idle, this thread also reads the passive indicator values periodically (every 5 seconds), and

uses a default value of 3 KBytes as transfer length when calling the Predictor and Selector

functions so that the network can be pre-selected before a new TCP connection starts. When

a connection is actively transmitting, Delphi also periodically (every 500 milliseconds)

reads the passive indicator values so that it can detect significant network environment

changes in case the mobile device is moving. This allows Delphi to dynamically select

networks during long-running transfers. Once the Selector decides an interface switching

is required, it achieves the switch by changing ipt able entries for that specific TCP

connection. Table 3.7 shows the interface switching delay measured in an indoor setting.

Each number is an average across 10 measurements. The switching delay is defined as

the time between an ipt able rule-changing command being issued and a packet transfer

occurring on the newly brought-up interface. In our current implementation, the out-going

delay is 500 ms. During this 500 ms, the transfer does not pause but continues on the pre-

selected network. Notice that not all connections will experience this delay because Delphi

can pre-select the network configurations as it observes a network condition change. This

switch delay will happen only when 1) the network condition changes during a transfer

or 2) the network selection result based on the actual transfer size is different from the

result based on the default 3 KBytes value. In our experiments ( 3.7.2), 18% of HTTP

transactions incur a network switch during data transfer.

We configured the laptop to pass all its HTTP traffic through an MPTCP-enabled proxy

server. Because current app servers do not always support MPTCP, the proxy server allows

our client to run apps over MPTCP while talking to the apps' original server.
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3.7 Evaluation

In previous sections, we analyzed the performance of each module using a trace-driven

approach. This serves as a micro-benchmark evaluation of Delphi. In this section, we

focus on macro-benchmark evaluation done by emulation and real-world experiments.

3.7.1 Delphi Over Emulated Networks

To understand Delphi's performance under real application workloads, we used Mahimahi,

a record-and-replay tool that can record and replay client-server interactions over HTTP [53].

In our experiment, we recorded client-server interactions when the client ran two applica-

tions: web browsing and video streaming. During replay, Mahimahi replays the recorded

interactions on top of an emulated network. Mahimahi can emulate network delays and

variable-rate links using packet-delivery traces. In our experiment, we used the t cpdump

traces captured during our measurement at 22 locations as packet-delivery traces for net-

work emulation. During the t cpdump measurements, we also measured passive indicator

values, which were fed into Delphi during our emulation as inputs to the Network Moni-

tor. This emulation setup enabled us to compare different network selection schemes when

running exactly the same application traffic and under the same network conditions.

We used Delphi to optimize two different objective functions, 1) Max(S): maximizing

average throughput (i.e. minimizing transfer completion time) and 2) Max(S/E): max-
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imizing average throughput over energy per byte. In each experiment, we recorded the

actual value of S and S/E achieved by Delphi and by using different fixed choices. Af-

ter running Delphi and the fixed network(s) schemes at one location, we could determine

which network choices give the highest values of S and S/E. We call this highest value the

oracle value. We use the oracle value to normalize the predictions of all schemes that we

consider.

Figure 3-10 shows the median normalized value for each scheme across all locations.

Figure 3-10a shows the results for web browsing. For Max(S), Delphi gives the highest

throughput over all the other fixed schemes. When compared with Wi-Fi, which is the de-

fault network selection on most mobile devices, our throughput improvement is 83%, which

corresponds to a 46% reduction in transfer time. For Max(S/E) Delphi improves the me-

dian normalized throughput over energy per byte by 0% (over Wi-Fi since Wi-Fi tends to

be much more energy efficient than other schemes) to 6 x (over MPTCP(Wi-Fi)). In Fig-

ure 3-1Ob, for video-streaming applications, for Max(S) Delphi improves the throughput

by 93% over Wi-Fi, corresponding to a 49% reduction in transfer time. For Max(S/E),

Delphi's improvement ranges from 41% (over Wi-Fi) to 3.9 x (over MPTCP(LTE)).
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3.7.2 Experiments

To understand how Delphi behaves in the real world, we first trained Delphi's predictor

using data we collected at the 22 locations. The model training was done using a desktop

(Intel Xeon(R) CPU, 3.30GHz Quad Core, 16 GB RAM). The total training process took

five minutes. Then, among the 22 locations, we visited five close to our campus. On

our Delphi-enabled laptop, we ran wget to download files with various sizes (1 KByte, 3

KBytes, 10 KBytes, 100 KBytes, and 1000 KBytes) from a remote server. For comparison,

we also ran the same wget with only Wi-Fi or LTE enabled before or after we ran Delphi.

We randomized the sequence of configurations (file sizes, network measured). For each

configuration, we ran it five times.

Figure 3-11 shows the average improvement of Delphi over Wi-Fi and LTE, when Del-

phi's objective is set to maximize throughput. Due to high variation of the actual through-

put across different configurations, here we show the throughput normalized by Wi-Fi's

throughput. Figure 3-11 a shows Delphi's performance at each location. We can see that

Delphi does not perform perfectly. At Location 3, the LTE had a higher average throughput

than Wi-Fi, but Delphi still selected Wi-Fi. However, at other locations, Delphi performed

better than always using Wi-Fi or LTE. At Locations 2, 4, and 5, Delphi performed better

than both Wi-Fi and LTE, because it used MPTCP running over both networks. In Figure 3-

1 lb, we can see that Delphi achieves improvement for small (1 KByte, 3 KBytes, and 10

KBytes) and large (100 KBytes) transfers. A deeper investigation reveals that the middle-

sized (1 MByte) transfers are affected by the switching delay (explained in 3.6) the most:

Most of the transfers go through the sub-optimal network(s). However, for large transfers,

although it also transfers on the sub-optimal network(s) for some time, most of the transfers

happen after the network switch. Thus, Delphi performs well for large transfers. In sum-

mary, Delphi increases average throughput by up to 4 x compared with Android's default

policy that always uses Wi-Fi when it is available.
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Figure 3-12: When the mobile device is moving away from an access point, Delphi predicts

that Wi-Fi can be worse than LTE, then it switches to LTE at time 10.5 seconds. MPTCP

handover mode switches to LTE when it sees Wi-Fi loses the IP, which happens at time 41

seconds.

3.7.3 Handling User Mobility

Another benefit of using Delphi is that by continuously monitoring the network conditions

using the Network Monitor, Delphi can tell whether the network performance is getting

worse and trigger handover proactively. This is best demonstrated when the mobile device

is moving. In this experiment, we kept Delphi running on the laptop while moving it from

inside a building to outside a building. The tethered Wi-Fi phone was initially connected

to the Wi-Fi AP inside the building. As we walked outside the building, the Wi-Fi signal

kept decreasing until the phone could not associate with the AP. We ran wget on the laptop

to download a large file from our proxy server. In this experiment, we configured Delphi

to Max(S) and to select only between Wi-Fi and LTE, not the MPTCP choices, to study

the handover behavior. In our experiment, We first ran wget without running Delphi, and

with only one interface at a time, to measure the throughput of Wi-Fi and LTE as the laptop

moved, shown as "Wi-Fi" and "LTE" in Figure 3-12. Then we ran Delphi while moving the

laptop along the same path. In Figure 3-12, we can see that at time 10.5, Delphi predicted
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Figure 3-13: Wi-Fi and LTE download throughput at the same location over 2.5 hours.

that Wi-Fi was worse than LTE and consequently triggered a switch, and the throughput

dropped but soon recovered to LTE's throughput. In Figure 3-12, we also marked the time

when the phone lost its Wi-Fi IP address; this is when a handover will happen according

to Multi-Path TCP Handover-Mode proposed in [57]. However, we can see that in this

case, Wi-Fi throughput had already dropped to zero before it lost the IP address. Compared

with this scheme, Delphi triggers LTE/Wi-Fi handover earlier so that the application sees

constantly high throughput.

3.8 Discussion

In this section, we discuss two alternative network selection schemes and compare them

with Delphi.

3.8.1 Purely Location-Based Algorithm

The first alternative algorithm is to use location information to make network selection

decisions. The assumption is that at certain locations, a mobile device tends to use a certain
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Figure 3-14: Wi-Fi and LTE download throughput measured indoors and outdoors. The

bar shows the average throughput over 10 measurements; the error bar shows the standard

deviation.

network combination. However, we argue that network location is not the only dominant

factor. Figure 3-13 shows the measured Wi-Fi and LTE throughput at one location over a

period of 2.5 hours. We can see that both Wi-Fi and LTE throughput varies significantly

during this period of time. Wi-Fi has higher throughput than LTE does at certain time

points, while LTE has higher throughput than Wi-Fi has at other times. Thus, if the goal

is to select the network with the highest throughput, a purely location-based method is not

guaranteed to make the correct choice all the time.

Another challenge for using location as the network selection signature is to select a

proper granularity of location. Figure 3-14 shows the TCP throughput for Wi-Fi and LTE

measured at two nearby locations, one inside a building and one outside the building. The

distance between the two locations is about 20 meters. We can see that the throughput

changes dramatically between these two locations; thus, the network selection for maxi-

mizing throughput will also change. Moreover, as shown in the previous section, when

moving from indoors to outdoors, Delphi can detect the network condition change and

switch between networks accordingly. To make a location-based approach have similar
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Figure 3-15: Throughput normalized by oracle. The histogram shows the median value;
the error bar shows the 20th and 80th percentiles. The bars labeled "Recent-best" show the
results for picking-the-recent-best.

capability, it needs to have location and network performance mappings within the granu-

larity of 20 meters or less. This requires intensive measurement done beforehand as well as

mobile devices having accurate localization capabilities both indoors and outdoors, which

can bring extra computational and energy overhead for the devices.

3.8.2 Picking the Recent-Best Choice

Another idea is to send traffic on each networks or network combinations then select the one

that gives the best performance for the rest of the data transfers. We applied this approach to

web traffic. A typical web page load consists of many small transfers (HTTP transactions);

thus, the first few transfers can be transferred on all available network combinations, and

then the rest of the transfers will be assigned to the best one according to the observed

performance. We compared this approach with Delphi. Figure 3-15 shows the results when

running both schemes to select the network with the highest average throughput. We find

that this picking-the-recent-best approach performs worse than Delphi does and even worse

than static approaches, in both web page loading and video streaming.
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To understand why this picking-the-recent-best scheme performs poorly, we take a

deeper look into the results and find that for web page loading, whose traffic consists of

many short transfers, the total page load time is dominated by the probing phase to pick the

best choice because some data has to be transmitted on the slow network choices.

The video streaming traffic contains a few short transfers at the beginning, which are

used for probing. However, because different transfer sizes may result in different network

performances, a fast network for short transfers may not be a fast network for long transfers.

This probing-while-transferring approach ends up using a slower network for the main

video file downloading. In our experiment, for video streaming the success rate (selecting

the same network as oracle) for Delphi is 60%, and it decreases to 50% for picking-the-

recent-best.

3.9 Related Work

We discuss related work on mobile network selection policies, MPTCP, scheduling algo-

rithms that generalize processor sharing [59] to multiple interfaces, roaming mechanisms

to seamlessly migrate between interfaces, and systems and APIs that allow applications to

benefit from multiple interfaces.

3.9.1 Mobile Network Selection

Zhao et al. [84] present a system that picks from one of three choices for every flow: reg-

ular IP, mobile IP [62] with triangle routing, and mobile IP with bidirectional tunneling.

Instead of selecting an entire path within the Internet, as Zhao et al. do, Delphi picks ei-

ther an LTE link or a Wi-Fi link for the last hop alone. CoolSpots [61] and SwitchR [7]

address the question of network selection between Wi-Fi and Bluetooth networks available

on the phone. In contrast, Delphi chooses between Wi-Fi and LTE on the last hop using

different techniques. MultiNets [54] proposes a mechanism to allow smartphones to use

multiple networks based on certain policies, such as energy saving, data offloading, and

performance. However, MultiNets explicitly assumes that Wi-Fi is faster than the cellular

link is, which no longer holds true [27]. ATOM [42] is a traffic management system allocat-
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ing mobile devices' traffic between LTE and Wi-Fi networks operated by the same service

provider. ATOM's selection decision was made at the service provider side in a centralized

way. However, Delphi is able to make selections across different Wi-Fi and LTE providers,

in a distributed approach, in which the mobile devices make the decision.

Theoretical work on this problem includes multi-attribute decision making [17], game

theory and reinforcement learning [55], and analytic hierarchy processes [72]. These are

primarily evaluated in simulation using simplified models of the network and workloads.

In contrast, our evaluation consists of trace-driven simulations and real-world experiments

with traffic from unmodified applications.

3.9.2 Multi-Path TCP

Multi-Path TCP (MPTCP) [77], and its recent implementation in iOS 7 [49] allow a single

TCP connection to use multiple paths. MPTCP does not specify if interfaces should be used

simultaneously or in master-backup mode. The iOS implementation operates in master-

backup mode using Wi-Fi as the primary path, falling back to a cellular path only if Wi-Fi

is unavailable. Other implementations, such as the default mode in Linux, use all available

interfaces in "striped" mode.1 Delphi can be viewed as specifying an MPTCP network-

selection policy when operating on mobile networks. The choice between a cellular link

and Wi-Fi is necessarily dynamic in such cases, and a static policy such as the one in

Android (use Wi-Fi if it is available) does not suffice.

3.9.3 Processor Sharing for Multiple Interfaces

Recent work [80] extends generalized processor sharing [59] to multiple interfaces. In

follow-up work [79], the authors also propose scheduling packets over multiple interfaces

while respecting relative preferences (e.g., Netflix should get twice the throughput of Drop-

box) and absolute preferences (e.g., give YouTube at least 5 Mbps). These algorithms

operate on every packet, while Delphi operates on flow level.

'Striped mode denotes that packets are striped across both interfaces with one being a primary interface
and is the mode in which we use MPTCP for this dissertation.
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3.9.4 Roaming Mechanisms

Mobile IP [62] and end-to-end alternatives [70, 76] allow a mobile device to freely roam be-

tween networks without disconnecting connections. Multi-Path TCP [77] supports break-

before-make semantics as well: an MPTCP connection can have no active subflows for

a short duration before a new subflow is created and attached to the connection. These

mechanisms are complementary to Delphi, and Delphi can determine the network-selection

policy while retaining the roaming mechanisms of the underlying transport protocol.

3.9.5 Systems and APIs to Exploit Multiple Interfaces

The idea of using multiple networks for increased capacity and fault tolerance has attracted

significant attention from researchers over the past decade. Early work [13] shows the

benefits of combining multiple networks and use cases where selecting the right network

can reduce energy consumption, enhance network capacity, and manage mobility.

FatVAP [36] and MultiNet [23] improve throughput by allowing a single Wi-Fi card

to connect to multiple APs. COMBINE [10] improves individual device throughput by

leveraging the wireless wide area network of neighboring devices. Blue-Fi [11] is a system

that uses Bluetooth and cellular tower information to predict whether Wi-Fi is available to

reduce the Wi-Fi duty cycle. Airdrop [8], a feature of Apple OS X, allows users to share

files over both Wi-Fi and Bluetooth. However, it is designed explicitly for the purpose of

file sharing (a long-running flow), while our system focuses on the more common case of

both short and long flows on mobile devices today.

Contact Networking [21] provides localized network communication between devices

with multiple networks and focuses on designing mechanisms that enable lightweight neigh-

bor discovery, name resolution, and routing. Intentional Networking [33] provides APIs

that allow apps to label their network flows. The labels include background or foreground

to specify whether the flow is delay tolerant and large or small to specify the amount

of data to be transmitted. Intentional Networking uses a connection scout that probes net-

work conditions periodically, an overhead Delphi can avoid by using passive measurement

only. We consider these abstractions orthogonal because Delphi's network selection pol-
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icy is agnostic to the API exposed by the system to applications. Delphi can be used as a

decision-making module to select network interfaces within these systems.

3.10 Chapter Summary

We presented Delphi, a software controller to help mobile applications select the best net-

work among multiple choices for their data transfers. Delphi's selection schemes are able

to handle trade-offs between high throughput and energy efficiency. Thus it outperforms

static schemes such as using Wi-Fi by default (the policy on Android today), or using LTE

by default, or always using both, since neither Wi-Fi nor LTE is unequivocally better than

the other.

Applications could care about other metrics such as average per-packet delay and tail

per-packet delay, or more app-centric metrics such as page-load time for web pages or

minimizing the risk of a stall for streaming video. We view Delphi as a first step in an-

swering these questions. One direction of our future work is to provide expressive APIs for

applications to express their specific needs to Delphi.

In our work, we use machine learning as a tool to make decisions where a static policy

does not suffice. Another direction can be explored in the future is to enhance Delphi's

learning capability by using online learning or crowd-sourced learning mechanisms. This

would allow mobile devices to make better network selection decisions when they enter

locations for the first time.
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Chapter 4

Energy Consumption for LTE and 3G

4.1 Introduction

Smartphones and tablets with wide-area cellular connectivity have become a significant,

and in many cases, dominant, mode of network access. Improvements in the quality of

such network connectivity suggest that mobile Internet access will soon overtake desktop

access, especially with the continued proliferation of 3G networks and the emergence of

LTE and 4G.

Wide-area cellular wireless protocols need to balance a number of conflicting goals:

high throughput, low latency, low signaling overhead (signaling is caused by mobility and

changes in the mobile device's state), and low battery drain. The 3GPP and 3GPP2 stan-

dards (used in 3G and LTE) provide some mechanisms for the cellular network operator

and the mobile device to optimize these metrics [82, 5], but to date, deployed methods to

minimize energy consumption have left a lot to be desired.

The 3G/LTE radio consumes significant amounts of energy; on the iPhone 6 Plus, for

example, the stated internet-use time is "up to 12 hours on 3G or LTE" (i.e., when the 3G

radio is on and in "typical" use) and the talk-time is "up to 24 hours".1 On the Nexus 5,

the equivalent numbers are "up to 7 hours on LTE for internet-use" and "up to 17 hours for

lhttp://www.apple.com/iphone-6/specs/
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talk time" 2 . The fact that the 3G/LTE interface is a battery hog is well-known to most users

anecdotally and from experience, and much advice on the web and on blogs is available

on how to extend the battery life of your mobile device. 3 Unfortunately, essentially all

such advice says to "disable your 3G data radio" and "change your fetch data settings to

reduce network usage". Such advice largely defeats the purpose of having an "always

on" broadband-speed wireless device, but it appears to be the best one can do in current

deployments.

We show the measured values of 3G energy consumption for multiple Android applica-

tions in Figure 4-1.4 This bar graph shows the percentage of energy consumed by different

3G radio states. For most of these applications (which are all background applications that

can generate traffic without user input, except for Facebook), less than 30% of the energy

consumed was during the actual transmission or reception of data. Previous research ar-

rived at a similar conclusion [15]: About 60% of the energy consumed by the 3G interface

is spent when the radio is not transmitting or receiving data.

In principle, one might imagine that simply turning the radio off or switching it to a

low-power idle state is all it takes to reduce energy consumption. This approach does not

work for three reasons. First, switching between the active and the different idle states takes

a few seconds because it involves communication with the base station, so it should be done

only if there is good reason to believe that making the transition is useful for a reasonable

duration of time in the future. Second, switching states consumes energy, which means

that if done without care, overall energy consumption will increase compared to not doing

anything at all. Third, the switching incurs signaling overhead on the wireless network,

which means that it should be done only if the benefits are substantial relative to the cost

on the network.

This chapter tackles these challenges and develops a solution to reduce 3G/LTE energy

consumption without appreciably degrading application performance or introducing a sig-

nificant amount of signaling overhead on the network. Unlike currently deployed methods

2https://support.google.com/nexus/answer/3467463?hl=en&reftopic=

3415523
3http://www.intomobile.com/2008/07/23/extend-your-iphone-3gs-battery-life/
4 An HTC GI phone connected to a power monitor [43], with only one application running, at one indoor

location.
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Figure 4-1: Energy consumed by the 3G interface. "Data" corresponds to a data transmis-

sion; "DCH Timer" and "FACH Timer" are each the energy consumed with the radio in

the idle states specified by the two timers, and "State Switch" is the energy consumed in

switching states. These timers and state switches are described in 4.2.

that simply switch between radio states after fixed time intervals-an approach known to be

rather crude and sub-optimal [81, 15, 40, 66])- our approach is to observe network traffic

activity on the mobile device and switch between the different radio states by adapting to

the workload.

The key idea is that by observing network traffic activity, a control module on the mo-

bile device can adapt the 3G/LTE radio state transitions to the workload. We apply statis-

tical machine learning techniques to predict network activity and make transitions that are

suggested by the statistical models. This approach is well-suited to the emerging fast dor-

mancy mechanism [3, 4] that allows a radio to rapidly move between the Active and Idle

states and vice versa. Our goal is to reduce the energy consumed by networked background

applications on mobile devices.
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4.2 Background

This section describes the 3G/LTE state machine and its energy consumption.

4.2.1 3G/LTE State Machine

The Radio Resource Control (RRC) protocol, which is part of the 3GPP standard, incorpo-

rates the state machine for energy management shown in Figure 4-2.

Inactivity Timer t1 CellDCH RRCCONNECTED
(Active) (Active)

Inactivity Timer t1

Cell_ FACH CellPCH/IDLE
(High Power Idle) (Idle) RRC IDLE

Inactivity Timer t2 (Idle)

(a) 3G RRC. (b) LTE RRC.

Figure 4-2: Radio Resource Control (RRC) State Machine.

The base station maintains two inactivity timers, t1 and t2, for each mobile device. For

a device maintaining a dedicated channel in the "Active" (CellDCH) state with the base

station, if the base station sees no data activity to or from the device for t1 seconds, it will

switch the device from the dedicated channel to a shared low-speed channel, transitioning

the device to the "High-power Idle" (CellFACH) state. This state consumes less power

than Active does but still consumes a non-negligible amount of power. If there is no further

data activity between the device and base station for another t2 seconds, the base station will

turn the device to either the CellPCH or IDLE state. We refer to the CellPCH and IDLE

states together as the "Idle" state because the device consumes essentially no power in ei-

ther state. For LTE networks (Figure 4-2b), there are only two states: RRCCONNECTED

and RRCIDLE (there are substates in RRCCONNECTED [34], which we do not discuss

here because they are not relevant), and one inactivity timer, shown as t1 .

The inactivity timers (t1 and t2) are useful because a state transition from Idle to Active
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(CellDCH) incurs significant delays. For example, in our measurements in the Boston

area (measured in September 2011), these values are - 1.4 seconds on AT&T's 3G net-

work, a 3.6 seconds on T-Mobile's 3G network, - 2.0 seconds on Sprint's 3G network,

_ 1.0 second on Sprint's LTE network, a 1.2 seconds on Verizon's 3G network, and _ 0.6

seconds on Verizon's LTE network (these numbers may vary across different regions). Each

state transition also consumes energy on the device and incurs signaling overhead for the

base station to allocate a dedicated channel to the device. The inactivity timers also pre-

vent the base station from frequently releasing and re-allocating channels to devices, which

causes per-packet delay for the device to be high.

The description given above captures the salient features of the 3GPP standard. Another

popular 3G standard is 3GPP2 [5]. Although 3GPP2 networks use different techniques,

from the perspective of energy consumption, they are essentially identical to 3GPP [81];

like 3GPP, 3GPP2 networks also have different power levels for different states on the

device side and use similar inactivity timers for state transitions. For concreteness, in this

paper, we focus on 3GPP networks.

4.2.2 Energy Consumption

We measured the power consumption and inactivity timer values using the Monsoon Power

Monitor [43]. Figure 4-3 shows graphs of our measurements during a radio state switches

cycle on an HTC Vivid smartphone in AT&T's 3G network and on a Galaxy Nexus smart-

phone in Verizon's LTE network. (We show results for other carriers in 4.6.) During the

High-power Idle (FACH for AT&T) and part of Active (DCH for AT&T, RRCCONNECTED

for Verizon) states, there is no data transmission. The RRC state machine keeps the radio

on here in case a new transmission or reception occurs in the near future. Consistent with

previous work [15], we use the term tail to refer to this duration when the radio is on but

there is no data transmission.

We measured the inactivity timer values in AT&T's 3G network in the Boston area to be

ti 6.2 seconds and t2 m 10.4 seconds. The energy consumed at the end of a data transfer

when the radio is in one of the two Idle states before turning off is termed the tail energy;
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Figure 4-3: The measured power consumption of the different RRC states. Exact values
can be found in Table 4.2. In these figures the power level for IDLE/RRCIDLE is non-zero
because of the CPU and LED screen power consumption.

this energy can be 60% or more of the total energy consumption of 3G [15].

3GPP Release 7 [3] proposed a feature called fast dormancy, which allows the device

to actively release the channel by itself before the inactivity timer times out on the base

station. One of the issues that then arises is that the base station loses control over the

connection when mobile devices are able to disconnect by themselves. In 3GPP Release

8 [4], fast dormancy was changed: The mobile device first sends a fast dormancy request,

and the base station will decide to release the channel or not. In Europe, Nokia Siemens

Networks has applied Network Controlled Fast Dormancy based on 3GPP Release 8 [30].

Because it is not entirely clear what policy any given network carrier will use to decide

whether to release the channel upon receiving a request at a base station, in our simplified

model, we assume that if the base station is running 3GPP Release 8, whenever the phone

sends a fast dormancy request to the base station, the base station will accept and release

the channel. Our goal is to evaluate the network signaling overhead of such a strategy as a

way to help inform network-carrier policy.
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4.3 Design

The key insight in our approach to reduce 3G energy consumption is that by observing

and adapting to network activity, a control module can predict when to put the radio into

its Idle state and when to move from Idle to Active state. These state transitions take a

nontrivial amount of time-between 1 and 3 seconds-and also add signaling overhead

because each transition is accompanied by a few messages between the device and the

base station. Hence, the intuition in our approach is to predict the occurrence of bursts of

network activity so that the control module can put the radio into the Idle mode when it

believes a burst has ended, which means there will not be any more traffic in the future

for a relatively long period of time. Conversely, the idea is to put the radio in active mode

when "enough" bursts of traffic accumulate.

To achieve the prediction, our approach needs to observe network activity and be able

to pause data transmissions. To make our approach work with existing applications, we

should not require any change to the application code. To achieve these goals, we modified

the socket layer and added a control module inside the Android OS source code.

Our system has two software modules: one that modifies the library used by applica-

tions to communicate with the socket layer and another that implements the control module,

as shown in Figure 4-4. The first module informs the control module of all socket calls; in

response, the control module configures the state of the radio. The fast dormancy interface

is shown as a dashed module because our system uses it if it is available.

The control module implements two different methods. The first method, called Makel-

dle, runs when the radio is in the Active state (CellDCH or RRCCONNECTED) and

determines when the radio should be put into the Idle (IDLE or CellPCH or RRCIDLE)

state. The second method, called MakeActive, runs when the radio is in the Idle state. In

this state, it cannot send any packets without first moving to the Active state; MakeActive

determines how long the radio should be idle before moving to the Active state.
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Figure 4-4: System design.

4.4 MakeIdle Algorithm

Instead of using a fixed inactivity timer, the MakeIdle method dynamically decides when

to put the radio into Idle mode after each packet transmission or reception. We first show in

4.4.1 how to compute the optimal decision given complete knowledge of a packet trace.

The result is that the radio should be turned to Idle if there is a gap of more than a certain

threshold amount of time in the trace, which depends on measurable parameters. Then, in

4.4.2, we develop an online method to predict idle durations that will exceed this threshold
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by modeling the idle time using a conditional probability distribution.

4.4.1 Optimal Decision From Offline Trace Analysis

Suppose we are given a packet trace containing the timestamps of packets sent and received

on a mobile device. Our goal is to determine offline when to turn the radio to the Idle state

to minimize the energy consumed.

IDLE' DCH FACH IDLE
i

Time (second)

State switches Data transmission ! Inactivity timers

Figure 4-5: Simplified power model for 3G energy consumption (for an LTE model, t2

equals to zero).

Figure 4-5 shows a simplified power model we use to calculate tail energy. If the inter-

arrival time between two adjacent packets is t seconds, then E(t), the energy consumed by

the current RRC protocol with inactivity timer values ti and t2 (see Figure 4-2), is

t- Pt, 0<t<t1

E(t)= t,-P,+ (t-t1)-Pt2 t1 <t<t +t 2

t.-Pt,+t2 -Pt2+ Eswitch t '> tl +t2

Here, Pt and P2 are the power values for the Active state and High-power Idle state,

respectively; the power consumed in the Low-power Idle state is negligible. Eswitch is the

energy consumed by switching the radio to Idle mode after the first packet transmission

and then switching it back to Active for the second packet transmission. It is a fixed value

for a given type of mobile device and is easy to measure. On the other hand, if the radio
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switches to Idle mode immediately after the first packet transmission finishes, the energy

consumed is just Eith.

Time (second) Time (second)

State switches transmission Inactivity timers

Figure 4-6: If the energy consumed by the picture on the right is less than the one on the
left, then turning the radio to Idle soon after the first transmission will consume less energy
than leaving it on. The energy is easily calculated by integrating the power profiles over
time.

To minimize the energy consumed between packets, the radio should switch to Idle

mode after a packet transmission if, and only if, Eswitch < E(t). Notice that because E(t)

is a monotonically non-decreasing function of t, there exists a value for t, which we call

tthreshold, for which Eswitch < E(t) if and only if t > tthreshold. This expression quantifies

the intuitive idea that after each packet, the radio should switch to Idle mode only if we

know that next packet will not arrive soon: concretely, not arrive in the following tthreshold

seconds. For example, on an HTC Vivid phone in the AT&T 3G network deployed in the

Boston area, tthreshold works out to be 1.2 seconds.

4.4.2 Online Prediction

To minimize energy consumption in practice, we need to predict whether the next packet

will arrive (to be received or to be sent) within tthreshold seconds. Of course, we would like

to make this prediction as quickly as possible, because we would then be able to switch

the radio to Idle mode promptly. We make this prediction by assuming that the packet

inter-arrival distribution observed in the recent past will hold in the near future. After each

packet, the method waits for a short period of time and sees whether any more packets
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arrive. If a packet arrives, the method resets and waits, but if not, it means a transfer may

be finished and the radio should switch to Idle mode.

The strategy works as follows:

1. Without loss of generality, suppose the current time is t =0. Compute the conditional

probability that no packet will arrive within twait + tthreshold seconds, given that no

packet has arrived in twait seconds.

P(twait) = P(no packet in twait + tthresholdIno packet in twait)

This conditional distribution is easy to compute given observations of the packet

arrival times of the last several packets.

From the traces we collected, we observed that P(twait) increases as twait increases,

when twait is in the range of [0, tthresholdl (if twait is greater than tthreshold, it means the

radio has been idle for too long a time after the packet transmission, and there is not

much room for energy saving). This property implies that the longer the radio waits

and sees no packet, the higher the likelihood that no packet will arrive soon.

2. Now we need to find twait in order to make the likelihood "high enough". During

twait, the radio consumes energy, so to decide how much is high enough, we should

take energy consumption into account. Our answer is: P(twait) is high enough if the

expected energy consumption of waiting for twait and then switching states is less

than the expected consumption of waiting for the inactivity timer to time out in the

next twait seconds.

The method determines twait by minimizing the expected energy consumption across

all possible values of twait and taking the value that minimizes the consumption. We

explain how below.

The expected energy consumption of waiting for twait and then switching states is:

E [Ewait switch] = [Es wjtch + E (twait )1

Here, E(twait) is the energy consumed by waiting for twait seconds, and Eswitch is the
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energy consumed by state switches.

The expected energy consumption of waiting for the inactivity timer to time out is:

ft2 d E (t )
IE [Eno-switch] = t2P(interiarrivaltime = t ) dt

t=0 dt

(4.1)

The following expression now is a function of twait:

f (twait) = E [Eno-switch] - IE [Ewaitswitch] . (4.2)

The best twait is the one that maximize f(twait), which means that the corresponding

value for twait gives us the highest expected gains over the current RRC protocol.

In implementing this algorithm, we take the latest n packets (we discuss how to choose

n in 4.6.3) that the control module has seen to construct the inter-arrival distribution. As

new packets are seen, the "window" of the n packet slides forward, and the distribution is

adjusted accordingly.

4.5 MakeActive Algorithm

MakeIdle reduces the 3G wireless energy consumption by switching the radio to Idle mode

frequently. Figure 4-7 (top) shows that MakeIdle may bring more state switches from Idle

to Active and from Active to Idle. These switches cause signaling overhead at the base

station. One idea to reduce the signaling overhead is to "shift" the traffic bursts in order to

combine several traffic bursts together [66, 15], as shown in Figure 4-7(middle and bottom

chart). The longer earlier bursts are delayed, the more bursts we can accumulate, and the

fewer state switches occur.

In this section, we consider only those background applications for which one can de-

lay the traffic for a few seconds without appreciably degrading the user's experience, not

interactive applications where delaying by a few seconds is unacceptable. Our approach

differs from previous work [66, 15], where the authors aim to reduce energy consumption
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Figure 4-7: "Shift" traffic to reduce number of state switches.

by batching bursts of traffic together so that they can share the tail energy. By contrast,

because the MakeIdle algorithm already reduces energy by turning the radio to the Idle

mode, MakeActive focuses on reducing the number of state switches to a level comparable

to the status quo. As a result, the amount of delay introduced by this method should be

much smaller than in previous work.

We first consider a relatively straightforward scheme in which the start of a session (i.e.,

a burst of packets) can be delayed by at most a certain maximum delay bound, Tfixdelay.

We then apply a machine learning algorithm, which induces the same number of state

switches as the fixed delay bound method but in addition reduces the delay for each traffic

burst. Our contribution lies in the application of this algorithm to learn idle durations for

the radio, balancing signaling overhead and increased traffic latency.
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4.5.1 Fixed Delay Bound

A simple strawman is to set a fixed delay bound, Tfix delay- When the radio is in Idle

state, and a socket tries to start a new session at current time t, and no other such requests

are pending, the control module decides to delay turning the radio to Active mode until

t + Tfix delay so that other new sessions that might come between time t and t + Tfix delay

will all get buffered and will start together at time t + Tfi.xdelay. There is a trade-off between

the delay bound and the number of sessions that can be buffered. Note that once a session

begins, its packets do not get further delayed, which means that TCP dynamics should not

be affected by this method.

In the current RRC protocol, the inactivity timers t1 and t2 guarantee that after each

traffic burst, any new burst that comes within t1 + t2 will not introduce extra state switches

between Idle and Active. So in our implementation, we make Tfix delay = k x (t, + t2 )

where k is the average number of bursts during each of the radio's active periods.

4.5.2 Learning Algorithm

The problem with a fixed delay bound is that it does not adapt to the traffic pattern. Every

time the delay is triggered, the first transmission may incur a delay of as long as Tfix-delay.

We show in the evaluation that a large portion of the traffic bursts get delayed by Tfixdelay-

However, waiting as long as Tfix delay may be overkill; as data accumulates (especially

from different sessions), there comes a point when the radio should switch to Active and

send data before this delay elapses, which will reduce the expected session delay while still

saving energy.

We apply the bank of experts machine learning algorithm [44, 47]. Each "expert" pro-

poses a fixed value for the session delay. In each iteration (each time the radio is in Idle

mode and a transmission occurs), we computed a weighted average value from the experts

and updated the weights according to a lossfunction. The process to update each expert's

weight is a standard machine learning process, detailed in the Appendix.

The loss function is a crucial component of the scheme and depends on the details of

the problem to which the learning is applied. Because our goal is to reduce number of state
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switches by batching, in addition to the delay, the loss function should express the trade-

off between the total time delayed for all the buffered sessions and the number of sessions

buffered. The following equation captures this tradeoff:

L(i) = yDelay(Ti) + , y > 0
b'

Here, y is a constant scaling parameter between the two parts of the loss function (we

chose 0.008 in our implementation because it gave the best energy-saving results among

the values we tried). Delay(Ti) is the aggregate time delayed over b sessions, if we choose

expert i; b is the number of sessions currently buffered, which is equivalent to the number

of state switches avoided. The 1/b term ensures that as the number of buffered sessions

increases, the value of this part of the loss function reduces, while the other term yDelay(Ti)

may increase.

Let tj be the arrival time of the jth session. Then,

b
Delay(T) = ' T - tj.

j=1

4.6 Evaluation

We evaluate MakeActive and MakeIdle using trace-driven simulation. We first describe the

simulation setup. Then, we evaluate the two methods using traces collected from popular

applications run by a few real users. Finally, we compare these methods across different

cellular networks.

4.6.1 Simulation Setup

Energy model. One challenge in our simulations is to accurately estimate the energy

consumed given a packet trace containing packet arrival times and packet lengths. Previous

work [34] showed that for 3G/LTE, the value of the energy consumed per bit changes as

the size of traffic bursts changes. Because our methods may change the size of the traffic

bursts (e.g., MakeIdle may decide to switch the radio to Idle mode within a burst), we built
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our energy model using the energy consumed per second, which is the power for sending

or receiving data.

Network Sending Power (mW) Receiving Power (mW)

AT&T3G 2,043 1,177
Verizon LTE 2,928 1,737

Table 4.1: Average power in mW measured on Galaxy Nexus in Verizon network. The

energy consumed by CPU and screen is subtracted.

Table 4.1 shows the average power consumed when the phone is sending or receiving

bulk data using UDP. Based on this value, we estimate the energy consumed within a traf-

fic burst using the packet inter-arrival time and the packet direction (incoming/outgoing):

For each packet reception, the energy consumed is the inter-arrival time multiplied by the

average receive power, and similarly for each packet transmission.

0.15

0.1

0.05

0

w
0

-0.05

-0.1

-0.15
3G LTE

Figure 4-8: Simulation energy error for Verizon 3G and LTE networks.

To justify this method, we measured the smartphone's energy consumption when it was

sending and receiving TCP bulk transfers of different lengths. Each experiment contains

five runs. In each run, the phone sends and receives TCP bulk transfers of three lengths
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(10 KBytes, 100 KBytes and 1000 KBytes) one after another, with a long-enough idle

period between each transfer. We found that, on average, the error in the estimated energy

consumption is within 10% or less of the true measured value.

One caveat in our energy model is that because fast dormancy is not yet supported on

US 3G/LTE networks when we conducted this measurement, we were unable to accurately

measure the delay to turn the radio from Active to Idle and the energy consumed. We

believe, however, that one can approximate this value by measuring the delay and energy

consumed in turning the data connection off on the phone. In practice, we expect the delay

and energy of fast dormancy switching to be lower, so we model the turn-off energy and

delay for fast dormancy to be 50% of the values measured while turning the radio off. We

also evaluated our methods for reasonable fractions (10%, 20%, 40%) other than 50%, and

found that the results did not change appreciably; hence, we believe that our conclusions

are likely to hold if one were to implement the methods on a device that supports fast

dormancy.

Trace data sets. We collected t cpdump traces on an HTC G 1 phone running Android 2.2

for the seven different categories of applications listed below. For each category, we chose

a popular application in the Android market. Each collected trace was 2 hours long. Most

of these applications have the "always on" property in that they usually send or receive data

over the network whenever they run, without necessarily requiring user input.

News: A news reader that has a background process running to fetch breaking news.

Instant Message (IM): An IM application that sends heartbeat packets to the server

periodically, typically every 5 to 20 seconds.

Micro-blog: A micro-blog application, which automatically fetches new tweets without

user input.

Game with ad bar: A game that can run offline but with an advertisement bar that

changes the content roughly once per minute.

Email: This application is run mostly in the background, synchronizing with an email

server every five minutes.

Social Network: A user using the social network application to read the news feeds,

clicks to see pictures, and posts comments. When running in the background, this appli-
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cation updates only every 30 minutes. We did not collect much background traffic from it.

We used the foreground traffic trace for a comparison trace.

Finance: An application for monitoring the stock market, which updates roughly once

per second when running in the foreground.

We also collected real user data from six different users using Nexus S phones in T-

Mobile's 3G network and from four different users using Galaxy Nexus phones in Verizon's

3G/LTE network. All the phones ran t cpdump in the background. Across all users, we

collected 28 days of data. For each user, the amount of data collected varies from two to

five days.

4.6.2 Comparison of Energy Savings
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Figure 4-9: Energy savings for different applications."4.5-second" sets the inactivity timer
to 4.5 seconds. "95% IAT" uses the 95th percentile of packet inter-arrival time observed
over the entire trace as the inactivity timer. "MakeIdle" shows the energy saved by our
MakeIdle algorithm. "MakeIdle +MakeActive Learn" and "MakeIdle +MakeActive Fix"
show the energy savings when running MakeIdle together with two different MakeActive
algorithms: learning algorithm and fixed delay bound algorithm. Oracle shows the maxi-
mum achievable energy savings without delaying any traffic.
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Figure 4-10: Energy savings and signaling overhead (number of state switches) across users
in the Verizon 3G network.
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Figure 4-11: Energy savings and signaling overhead (number of state switches) across users
in the Verizon LTE network.
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We compared MakeIdle against MakeIdle together with MakeActive (shown as MakeI-

dle+MakeActive) and against two other schemes. The first other scheme is proposed

in [29], in which a trace analysis found that 95% of the packet inter-arrival time values are

smaller than 4.5 seconds. The proposal sets the inactivity timer to a fixed value, t1 +t 2 = 4.5

seconds. We call this approach "4.5-second tail".

The second other scheme is that instead of using the value of 4.5 seconds, we drew the

CDF of our traces and got the 95th percentile of packet inter-arrival time observed in each

user's trace. We call this approach "95% IAT", which for the data shown in Figure 4-9 hap-

pened to be 1.67 seconds (the value does vary across users and also across applications). In

our evaluation, we are granting this scheme significant leeway because we test the scheme

over the same data on which it has been trained. Despite this advantage, we find that this

scheme has significant limitations.

The "Oracle" is an algorithm in which the packet inter-arrival time is known before the

packet comes, and the algorithm compares the inter-arrival time with the tthreshold defined

in 4.4.1. The Oracle scheme gives us an upper bound of how much energy can be saved

without introducing extra delay. Our MakeIdle + MakeActive algorithm sometimes out-

performs the Oracle because it can delay packets and further reduce the number of state

switches.

Figure 4-9 shows that MakeIdle consistently achieves energy savings close to the Oracle

scheme and outperforms the 4.5-second and 95% IAT schemes. When both MakeIdle and

MakeActive are combined, the savings are greater.

The 95% IAT scheme gives little or negative savings for News and IM, while the other

schemes provide significant positive savings. This is because the 95th percentile value of

the inter-arrival time is highly variable and cannot guarantee savings in all situations. It is

not a robust method.

Figures 4-1 Oa and 4-11 a show the estimated energy savings for each user in the Verizon

3G and Verizon LTE networks, respectively. In these results, the different schemes are as

explained above, except that the 95% IAT scheme uses per-user (but not per-application)

inter-arrival time CDFs. The gains of MakeIdle and MakeActive over the other schemes are

substantial in most cases. In the LTE case, the 95% IAT scheme sometimes saves the most
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energy (for user 2 and user 3), but it sometimes performs worse than MakeIdle (for user 1);

it depends on the user, again showing a lack of robustness. Perhaps more importantly, the

number of state switches is enormous compared to the other schemes, making it extremely

unlikely to be useful in practice.

4.6.3 MakeIdle Evaluation

To understand why MakeIdle outperforms the other methods, we calculated the fraction of

false switches and missed switches for each method. We used Oracle as ground truth and

defined these ratios as follows:

FalseSwitch(FalsePositive) = NFS/ (NFS + N-N). Here, NFS is the number of cases in

which the algorithm switches the radio to Idle but Oracle decides to keep the radio in Active

mode. NTN is the number of cases in which both Oracle and the algorithm decide to keep

the radio Active.

MissedSwitch(FalseNegative) = NMS/ (NMS + NTp). Here, NMS is the number of cases

where the algorithm decides to keep the radio in the Active mode but Oracle switches the

radio to Idle. NTp is the number of cases where both Oracle and the algorithm switch the

radio to Idle. A high missed switch value means the algorithm tends to keep the radio in

Active mode, which may not be energy efficient.

Figure 4-12 shows these two ratios for different data sets. Note that these values for

MakeIdle are much smaller than for the other two algorithms.

Figure 4-13 shows the false positive and false negative rates (in percentage) as a func-

tion of the number of recent packets used to construct the distribution defined in 4.4.2.

We found that the false negative rate is relatively constant, while the false positive rate

decreases as the window size increases. For all the other results shown in 4.6, we used

n = 100.

Another factor that affects battery consumption is the waiting time between a packet

arrival and the time at which the algorithm actually switches the radio to Idle. For the 4.5-

second tail scheme, the waiting time is always 4.5 seconds. Similarly, the waiting time for

95% IAT is 0.85 seconds for 3G and 0.01 seconds for LTE. In contrast, MakeIdle chooses
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Figure 4-12: False ("FP" short for false positive) and missed switches ("FN" short for false

negative).

the waiting time dynamically, achieving better gains. Figure 4-14 shows an example of

waiting time changes in a user's trace in Verizon 3G network.
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4.6.4 MakeActive Evaluation

Although shortening twait with the MakeIdle algorithm saves considerable amounts of en-

ergy, it may bring about more state switches between the Low-power Idle and Active states.

But when there are multiple applications running at the same time, or when one application

starts multiple connections, we can reduce the number of state switches by delaying the

connections and batching them together using MakeActive.

Figures 4-10b and 4-1 lb show the number of state switches using different algorithms,

normalized by the number measured in the status quo. Each user has several applica-

tions running on the phone. For MakeIdle only, in the 3G/LTE network, the number of

state switches is at most four to five times higher than the status quo. For MakeIdle with

MakeActive, either using the learning algorithm or the fixed-delay bound, the number of

state switches is about the same as the status quo, meaning that by delaying traffic bursts,

our algorithm can reduce the energy consumption without introducing any extra signaling

overhead. Notice that for the 95% IAT algorithm in the LTE network, the number of state

switches is as high as 35 x the status quo because the corresponding timer value is only

0.01 seconds. As a result, this method will always switch the radio to Idle even if there

is only a small gap between packets. In a few cases, that does save energy, but at great

expense.

In 4.5, we described both the fixed-delay bound and a learning algorithm. Figure 4-15

shows that using the learning algorithm reduces the average delay for each traffic burst by

50% compared to the fixed-delay bound, while both methods induce a comparable number

of state switches (Figure 4-10b and Figure 4-1 ib). The learning algorithm is able to reduce

the delay because the loss function (defined in 4.5.2) balances the tradeoff between the

number of buffered bursts and the total delay. Figure 4-16 shows that due to the loss func-

tion, the algorithm will reduce the delay bound as the number of buffered bursts increase.

4.6.5 Different Carriers

To gain a better understanding on how different carriers' RRC state machine configurations

affect the observed improvement, in this part of the evaluation we ran our trace-driven sim-
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Figure 4-15: Mean and median delays for traffic bursts using learning algorithm and fixed
delay bound scheme.

ulation on different RRC profiles measured from the four major US carriers. In Table 4.2

we list the measured RRC parameters. There are two cases where the inactivity timer t2 = 0
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Figure 4-16: Delay value changes as the learning proceeds.

(effectively) because we cannot clearly distinguish t1 and t2 from the energy difference.

Network Psnd Prcv Pt t2 t t2

T-Mobile 3G 1,202 737 445 343 3.2 16.3

AT&T HSPA+ 1,539 1,212 916 659 6.2 10.4

Verizon 3G 2,043 1,177 1,130 1,130 9.8 0

Verizon LTE 2,928 1,737 1,325 - 10.2 -

Table 4.2: Power and inactivity timer values for different networks. Power values are in

mW; times are in seconds (measured in September 2011).

Network Mean Delay Median Delay

T-Mobile 3G 5.11 5.11
AT&T HSPA+ 4.80 4.65
Verizon 3G 4.67 4.48
Verizon LTE 4.62 4.38

Table 4.3: The mean and median session delays brought by MakeIdle for different carriers

(in seconds).

Figure 4-17 shows the percentage of energy saved compared to the status quo. Figure 4-

18 shows the corresponding signaling overhead. We found that the Makeldle+MakeActive
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Figure 4-17: Energy saved for different carrier parameters using different methods.

For MakeIdle, the maximum gain is 67% in the Verizon LTE network. For Makel-

dle+MakeActive, the maximum gain is 75% achieved in Verizon 3G.

T-Mobile ATT Verizon

Carriers3G

Figure 4-18: Number of state switches (signaling overhead) for different methods divided

by number of state switches using the current inactivity timers.
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method outperforms the 4.5-second tail method in all the carrier settings. Figure 4-18

shows the number of state switches (proportional to signaling overhead) of different schemes

divided by the number of state switches without using any scheme.

The maximum signaling overhead for MakeIdle is less than 3.1 x the baseline where

no fast dormancy is triggered. For Makeldle+MakeActive, the signaling overhead reduces

to only 1.33 x or less, a 62% reduction from the previous 3.1 x, and is close to the signal-

ing overhead of 4.5-second tail. The session delays brought by MakeActive are listed in

Table 4.3.

In both Figures 4-17 and 4-18, the result shown as MakeIdle has no traffic batching,

which corresponds to the case when all the traffic is treated as delay-sensitive, for example,

web browsing. The MakeActive method is disabled in this case to make sure that the

user's experience is not adversely affected. One possible method to decide when to disable

MakeActive is for the control module to maintain a list of delay-sensitive or interactive

applications; when any of these applications are running in the foreground, the system

disables MakeActive.

Even without MakeActive, the reduction in energy consumption is still significant in all

four carrier settings. The maximum gain is for Verizon LTE, where MakeIdle saves 67%

energy over the status quo. With MakeIdle, the maximum gain is Verizon 3G, where the

energy saving reaches 75%, and the corresponding median delay is 4.48 seconds.

4.6.6 Energy Overhead of Running Algorithms

To measure the energy overhead of running our methods, we implemented the algorithms

on our test phones. We then generated traffic from the phones based on the user traces we

collected. We ran the traffic generator with and without our methods enabled, ensuring that

it generated the same traffic in all the experiments. We used the power monitor to measure

the total energy consumed in both cases. The energy overhead for running our algorithm is

1.7% for AT&T HTC Vivid and 1.9% for Verizon Galaxy Nexus.
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Figure 4-19: Average power level measured when a Sony Xperia phone was transferring

data with and without MakeIdle enabled.

4.6.7 Implementation Results

Two years after our MakeIdle and MakeActive algorithms were developed, fast dormancy

was enabled in the US and we implemented MakeIdle with the help of our industrial col-

laborator, Foxconn. To achieve better performance, we implemented our algorithm at the

cellular driver layer, a non-open source part of the Android OS. We installed this modified

driver on a Sony Xperia phone connected to AT&T 3G network. We measured the energy

consumption when the phone transferred data with the following traffic patterns:

1. Periodic Ping with various periods,

2. Bulk (1 MByte) downloads with fixed idle interval between each two downloads, and

3. Bulk (1 MByte) downloads with random idle interval.

Figure 4-19 shows the average power level when the phone was transferring data with

different patterns. To calculate the power level, we measured the amount of energy con-

sumed during the transfer, average over the measuring time period. Thus, the energy over-

head of algorithm computation is also included. For comparison, we also measured the

average power level when the phone was loaded with the unmodified driver and was trans-

ferring data with the same traffic pattern. We find that for periodic ping traffic, MakeIdle

can reduce energy consumption by up to 62% (period set to 15 seconds). For bulk down-

load, the energy reductions are 15% for fixed 60-second idle interval and 20% for random

idle interval.
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4.7 Related Work

We divide related work into measurement studies of 3G energy consumption and approaches

to reduce that energy, 3G usage profiling, and Wi-Fi power saving methods.

4.7.1 3G Energy Mitigation Strategies

Past work aimed at eliminating the tail energy falls into three categories: inactivity timer

reconfiguration, tail cutting, and tail sharing.

Inactivity timer reconfiguration. Lee et al. [40] developed analytic models for energy

consumption in WCDMA and CDMA2000 and showed that the inactivity timer should be

dynamically configured. Falaki et al. [29] proposed an empirical method by plotting the

CDF of packet inter-arrival times for traces collected on smartphones communicating over

3G radio over a long period of time (several days). They found that 95% of the packet

inter-arrival time values are smaller than 4.5 seconds, and proposed setting the inactivity

timer to a fixed value, t1 + t2 = 4.5 seconds. Our approach finds a dynamic inactivity timer

value using traffic pattern information within a short period of time.

Tail cutting. Qian et al. [66] gave an algorilhm, TOP, to help the device decide when

to trigger fast dormancy based on the information provided by applications running on

the device. Their algorithm requires the application to predict when the next packet will

come and report it to the OS. This approach requires modifications to the applications,

and it is not clear how each application should make these predictions. Our work requires

no modification to the application code and does not require the application to predict its

traffic.

Traffic batching. Balasubramanian et al. [15] propose an application-layer protocol,

TailEnder, to coalesce separate data transfers by delaying some of them. For delay-tolerant

applications such as email, TailEnder allows applications to set a deadline for the incoming

transfer requests; they suggest and evaluate a relatively long delay of 10 minutes for such

applications. For applications that can benefit from prefetching, TailEnder prefetches 10

web documents for each user query. Their design needs to re-implement the application

and let each application propose its own delay tolerant timers, whereas our design is able
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to "pause" the traffic transmission at the OS layer.

Liu et al. [41] proposed TailTheft, a traffic queuing and scheduling mechanism to batch

traffic among different applications and share the tail energy among them. One idea of

this work is to set up a timeout value for delay-tolerant transfers and transfer data when

timeouts or other delay-sensitive transfers have triggered the radio to Active mode. Similar

to TailEnder, they require the application to specify how much delay is acceptable.

Another traffic batching approach is prefetching. Qian et al. [65] proposed a prefetching

algorithm for YouTube, which erases the tail between transfers of video pieces.

4.7.2 3G Resource Usage Profiling

Qian et al. [64] designed an algorithm to infer RRC state machine states using packet

traces. The per-application analysis shows that some of the popular mobile applications

have traffic patterns that are not energy-efficient, due to low bit-rate transmission, ineffi-

cient prefetching, and aggressive refresh.

4.7.3 Wi-Fi Power-Saving Algorithms

Much prior work has focused on Wi-Fi power-saving algorithms [38, 39, 69]. The prob-

lem in Wi-Fi networks is qualitatively different from 3G; in Wi-Fi, the time and energy

consumed to transition between states is negligible; what is important is to dynamically

determine the best sleep duration when the Wi-Fi radio is off. In this state, no packets

can be delivered, but the access point will be able to buffer them; the problem is finding

the longest sleep time that ensures that no packets are delayed (say, by a specified max-

imum delay). In the 3G context, changing the state of the radio consumes time, energy,

and network signaling overhead, but there is no risk of receiving packets with excessive

delay because the base station is able to notify a mobile device that packets are waiting

for it even if the device is in Idle state. Thus, we cannot simply apply Wi-Fi power-saving

algorithms to 3G networks. Also, machine learning algorithms have been applied to the

802.11 power saving mode configuration problem [46], but the problem setup is different

for the 3G energy environment because of different tradeoffs we aim to balance.
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4.7.4 Power-Saving for Processors

Though not directly related to the problem we address, previous work on processor power-

saving has used a similar model to ours in which the different power states and transitions

between different states are abstracted as a state machine [20]. Here, the power-saving

mechanisms are categorized into static methods and adaptive methods, with the adaptive

methods using a nonlinear regression over previous idle/active periods and knowledge of

how successful previous power-saving decisions were.

4.8 Chapter Summary

3G/LTE energy consumption is widely recognized to be a significant problem [15]. We

developed a system to reduce the energy consumption using knowledge of the network

workload. In evaluating the methods on real usage data from nine users over 28 total

days on four different carriers, we find that the energy savings range between 51% and

66% across the carriers for 3G, and is 67% on the Verizon LTE network. When allowing

for delays of a few seconds (acceptable for background applications), the energy savings

increase to between 62% and 75% for 3G, and 71 % for LTE. The increased delays reduce

the number of state switches to be the same as in current networks with existing inactivity

timers.

The key idea in this chapter is to adapt the state of the radio to network traffic. To put

the 66% saving (without any delays) or 75% saving (with delay) in perspective, we note

that according to the Nexus 5 specifications, the reduction in lifetime from using the 3G

radio is 10 hours; while it is not clear what application mix produces these numbers, one

might speculate that saving 66% of the energy might correspond to an increase in lifetime

by about 66% of 10 hours, or about 6.6 hours.
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Chapter 5

Conclusion

We conclude the dissertation with a summary of our contributions and discussion of future

work.

5.1 Contributions

This dissertation makes the following contributions:

1. Our measurement study analyzes the wireless network performance of mobile de-

vices in the real world. This measurement study also demonstrates significant poten-

tial improvement if network selection is done properly.

2. The design and implementation of Delphi demonstrated a way to coordinate differ-

ent concerns when making network interface selections. Inside Delphi, we employ

machine learning methods to make network selections. The machine learning mod-

els are trained using network performance data we collected during the measurement

study. As the wireless networks keep advancing, in the future, even the specific pa-

rameters we trained for the current solution, or even the machine learning algorithm,

may not be applicable to make good network selections; however, our modular de-

sign makes sure that the algorithms can be easily replaced. Thus, as long as there

are co-existing networks whose performances are not evenly distributed spatially or

temporally, Delphi's framework can always be applicable.

3. Both our network selection and energy efficiency solutions require no modification
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to the application running on the mobile devices. Thus, they can be easily deployed

and improve the performance and user experience of millions of apps already in the

app market.

5.2 Future Work

This dissertation opens up the following directions of future research directions:

Real-world Network Monitoring: As both Wi-Fi and cellular network technologies

keep advancing, it is necessary to keep measuring and monitoring the network performance

for end users. Also, as content distribution networks (CDN) are widely used, mobile de-

vices are more likely to interact with servers that are geographically close to them. Thus,

to reveal the end-to-end network performance, CDN-like measurement server networks

should be deployed.

Network Performance Prediction: As we show in the dissertation, Delphi's improve-

ment decreases when mobile devices enter new locations. One direction that can be further

explored is to enhance Delphi's learning capability by using online learning or crowd-

sourced learning mechanisms. This would allow mobile devices to make better network

selection decisions when they enter locations for the first time. Also, applications could

care about other metrics such as average per-packet delay, and tail per-packet delay or

more app-centric metrics such as page-load time for web pages or minimizing the risk of a

stall for streaming video. We view Delphi as a first step in answering these more involved

questions. One direction of our future work is to provide expressive APIs for applications

to express their specific needs to Delphi.
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Appendix A

Bank of Experts

Here we show how bank of experts [44, 47] works. We bound the maximum delay to n

seconds. Each expert "proposes" a delay value Ti:

Ti=i, iE I ... n.

The output of the algorithm is the weighted average over all the experts:

T = Ept f T
i=1

For each iteration of the updates, the algorithm calculates the probability of each pos-

sible hidden state (in our case, the identity of the expert) based on some observation yt.

Here, we can define the probability of predicting observation yt as P(yt T) = e-L(it). The

observation is the number of sessions we batched at time t, and L(i, t) is the loss function.

Then we can apply the following equation to get the weight pt (i):

Ptli) Pt-i (j) e L(j,1)P(ij, a).

Here, Zt is a normalization factor that makes sure Eipti = 1. The P(i j, a) shows the

probability of switching between experts. There are different versions to solve this part.

The one we chose [32] supports switching between the experts and is suitable for cases
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where the observation may change rapidly, which matches the bursty character of network

traffic. P(ijj, a) is defined as:

P(ijj, a) = 1-a) i=

naI i -f j

0 < a < 1 is a parameter that determines how quickly the algorithm changes the best

experts. a close to 1 means the network condition changes rapidly and the best expert

always changes. One problem with this algorithm is that it is hard to choose a good a. In

reality, a should not be a fixed value since the network traffic pattern may change rapidly

or remain stationary. We use a more adaptive algorithm, Learn-a [45, 47], to dynamically

choose a.

The basic idea is to first assign m a-experts and use the algorithm above to learn the

proper value of a in each iteration, and then use the up-to-date a to learn T [45, 47]. The

final equation for this "two-layer learning" is:

m n

T7 = L E Pt (j)pt,(i)Ti (A.1)
j=1 i=1

Here, p (j) is the weight for the jth a-expert, which is given by:

pt (j) = p'-j(jle-L(aJ,t-1) (A.2)

ztt
This equation shows that pj(j) is updated from the previous value p,__ (j); the initial

values are: p' (j) = 1/m. -L(aj,t - 1) is the a loss function, defined as:

n

L(aj , t) = -_log ptj(i)eL(it) (A.3)
i=1

Here, L(i,t) is the loss function, discussed in 4.5.2. t is the present time; the loss

function value for the current iteration is calculated from information learned at time t - 1.
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