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Abstract

Energy efficiency is the main limitation to the performance of parallel systems. Current
architectures often focus on making cores more efficient. However, data movement
is much more costly than basic compute operations. For example, at 28 nm, a
main memory access is 100x slower and consumes 1000x the energy of a floating-
point operation, and moving 64 bytes across a 16-core processor is 50 x slower and
consumes 20 x the energy. Without a drastic reduction in data movement, memory
accesses and communication costs will limit the scalability of future computing systems.
Conventional hardware-only and software-only techniques miss many opportunities to
reduce data movement.

This thesis presents computation and data co-scheduling (CDCS), a technique that
jointly performs computation and data placement to reduce both on-chip and off-chip

data movement. CDCS integrates hardware and software techniques: Hardware lets

software control data mapping to physically distributed caches, and software uses

this support to periodically reconfigure the chip, minimizing data movement. On a

simulated 64-core system, CDCS outperforms a standard last-level cache by 46% on

average (up to 76%) in weighted speedup, reduces both on-chip network traffic (by
11 x) and off-chip traffic (by 23%), and saves 36% of system energy.

Thesis Supervisor: Daniel Sanchez
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

Energy efficiency is the main limitation to performance in future computing systems.

Traditional architectures have focused on optimizing computation, neglecting data

movement. However, without significant improvements, data movement will become a

major limitation: A main memory access is 100 x slower and consumes 1000 x more

energy than a floating point instruction; moving 64 bytes across a 16-core multicore is

50 x slower and consumes 20 x more energy [14]. Thus, this work focuses techniques

to minimize data movement. To systematically reduce data movement, future systems

require changes in both hardware and software. This thesis thus proposes a data-

centric view of computation that minimizes data movement instead of maximizing

core utilization.

The cache hierarchy is one of the common methods to reduce data movement

in current CMPs [14,21], but the trend towards many simpler and specialized cores

further constrains the energy and latency of cache accesses [14]. To address this

problem, cache architectures are becoming increasingly non-uniform (NUCA [33]),

providing fast access to physically close banks, and slower access to far-away banks.

For systems to scale efficiently, data must be close to the computation that uses it to

minimize on-chip traffic. This requires keeping cached data in banks close to threads

(to minimize on-chip data movement), while judiciously allocating cache capacity

among threads (to minimize off-chip data movement). '
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Ideally, threads and data should be allocated and placed jointly across the chip

to account for competing tradeoffs and avoid hotspots. Nevertheless, prior work

has not addressed this problem in a unified way. On the one hand, dynamic and

partitioned NUCA techniques [2, 3,4,8, 10, 11, 20, 27,41,50,62] allocate cache space

among threads, and then place data close to the threads that use it. However, these

techniques ignore thread placement, which can have a large impact on data movement.

On the other hand, thread placement techniques mainly focus on non-uniform memory

architectures (NUMA) [7,15,28,56,58,63] reduce the distance to data, and use policies,

such as clustering, that do not translate well to NUCA. Applying these techniques

separately leaves significant performance on the table.

1.2 Contribution: computation and data co-scheduling

The focus of this work is to investigate and design hardware and software mechanisms

for data-centric computing. We treat the hardware NUCA cache as a resource pool

with different capacity and latency tradeoffs, and build virtual caches from these

resources that minimizes the application's data movement. This design takes a cross-

layer approach, in which hardware monitors applications' performance and virtualizes

the cache, and software uses a simple but accurate performance model to place

thread and find the best virtual cache hierarchy. A cross-layer approach is a must

for data-centric computation: hardware alone cannot optimize the full system, while

software alone cannot control the cache without help from hardware. We believe this

design will improve performance and energy efficiency substantially over conventional,

hardware-only caches with low overheads.

With the cross-layer method in mind, this thesis proposes CDCS, a technique

that manages cache capacity and schedules threads at the same time to reduce data

movement. By taking both data allocation and access intensity into account, a

prototype of CDCS is proposed to jointly place threads and data across CMP tiles,

depicted in Fig. 1-1. CDCS builds on a partitioned NUCA baseline and reconfigures

the system periodically. It takes the cross-layer approach, in which hardware monitors

applications' performance and provides flexible configuration technique, and software

decides how to place threads and data. Since the joint placement is a complex, multi-

14
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Figure 1-1: Example configuration of CDCS system with five running applications

dimensional optimization problem, this thesis proposes a heuristic-based, hierarchical

optimization method to solve the problem efficiently. The proposed design works on

arbitrary mixes of single- and multi-threaded processes and reconfigures the system

with small overheads.

1.3 Thesis Structure

This thesis is organized as follows: Chapter 2 discusses prior work related to compu-

tation and data co-scheduling. Chapter 3 introduces the baseline architecture used

in both CDCS. Chapter 4 cover the design and implementation of CDCS. Chapter 5

presents the methodology used in the thesis. Chapter 6 shows the evaluation for CDCS

with different benchmarks and that those proposed techniques improve performance

and energy efficiency. Chapter 7 concludes the thesis.

15
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Chapter 2

Related work

This section discusses prior work related to computation and data co-scheduling. First,

we discuss related work about data placement in multicore last-level caches (LLCs).

Next, we present a case study that compares different NUCA schemes and shows that

thread placement significantly affects performance. Finally, we present prior work on

thread placement in different contexts.

2.1 Data placement techniques to reduce data move-

ment

Non-uniform cache architectures NUCA techniques [33] reduce access latency

of distributed caches, and are concerned with data placement, but do not place threads

or divide cache capacity among them. Static NUCA (S-NUCA) [33] spreads data

across banks with a fixed line-bank mapping, and exposes a variable bank latency.

Commercial CMPs often use S-NUCA [34]. Dynamic NUCA (D-NUCA) schemes

adaptively place data close to the requesting core [2,3,8,10,11,20,27,41,50,62] using

a mix of placement, migration, and replication techniques. Placement and migration

bring lines close to cores that use them, possibly introducing capacity contention

between cores depending on thread placement. Replication makes multiple copies of

frequently used lines, reducing latency for widely read-shared lines (e.g., hot code) at

the expense of some capacity loss.

Most D-NUCA designs build on a private-cache baseline, where each NUCA bank

17



is treated as a private cache. All banks are under a coherence protocol, which makes

such schemes either hard to scale (in snoopy protocols) or require large directories

that incur significant area, energy, latency, and complexity overheads (in directory-

based protocols). To avoid these costs, some D-NUCA schemes instead build on a

shared-cache baseline: banks are not under a coherence protocol, and virtual memory

is used to place data. Cho and Jin [11] use page coloring and NUCA-aware allocation

to map pages to banks. R-NUCA [20] specializes placement and replication policies

for different data classes (instructions, private data, and shared data), on a per-page

basis, outperforming prior D-NUCA schemes. Shared-baseline schemes are cheaper, as

LLC data does not need coherence, and have a simpler lookup mechanism. However,

remapping data is expensive as it requires page copies and invalidations.

Conventional D-NUCA techniques are chiefly concerned with data placement, and

do not explicitly allocate capacity. This incurs unnecessary misses and degrades

performance [4] and cannot achieve isolation or quality of service.

Partitioned shared caches Partitioning enables software to explicitly allocate

cache space among threads or cores, but it is not concerned with data or thread

placement. Partitioning can be beneficial because applications vary widely in how

well they use the cache. Cache arrays can support multiple partitions with small

modifications [9, 37, 39, 52, 55, 61]. Software can then set these sizes to maximize

throughput [51], or to achieve fairness [43], isolation and prioritization [12, 18, 31],

and security [46]. Unfortunately, partitioned caches scale poorly because they do

not optimize placement. Moreover, they allocate capacity to cores, which works for

single-threaded mixes, but incorrectly accounts for shared data in multi-threaded

workloads.

Partitioned NUCA Recent work has developed techniques to perform spatial

partitioning of NUCA caches. These schemes jointly consider data allocation and

placement, reaping the benefits of NUCA and partitioned caches. However, they

do not consider thread placement. Virtual Hierarchies rely on a logical two-level

directory to partition the cache [40], but they only allocate full banks, double directory

overheads, and make misses slower. CloudCache [35] implements virtual private

18



caches that can span multiple banks, but allocates capacity to cores, needs a directory,

and uses broadcasts, making it hard to scale. Jigsaw [4] is a shared-baseline NUCA

with partitionable banks and single-lookup accesses. Jigsaw lets software divide the

distributed cache in finely-sized virtual caches, place them in different banks, and map

pages to different virtual caches. Using utility monitors [51], an OS-level software

runtime periodically gathers the miss curve of each virtual cache and co-optimizes

data allocation and placement. Since Jigsaw let software control data placement,

techniques proposed in this project will build on Jigsaw to leverage its data placement

technique.

2.2 Case study: Tradeoffs in thread and data place-

ment

To explore the effect of thread placement on different NUCA schemes, we simulate a

36-core CMP running a specific mix. The CMP is a scaled-down version of the 64-core

chip in Fig. 3-1, with 6 x 6 tiles. Each tile has a simple 2-way 000 core and a 512 KB

LLC bank.

We run a mix of single- and multi-threaded workloads. From single-threaded

SPEC CPU2006, we run six instances of omnet (labeled 01-06) and 14 instances

of milc (M1-M14). From multi-threaded SPEC OMP2012, we run two instances of

ilbdc (labeled II and 12) with eight threads each. We choose this mix because it

illustrates the effects of thread and data placement-chapter 6 uses a comprehensive

set of benchmarks.

Fig. 2-1 shows how thread and data are placed across the chip under different

schemes. Each square represents a tile. The label on each tile denotes the thread

scheduled in the tile's core (labeled by benchmark as discussed before). The colors on

each tile show a breakdown of the data in the tile's bank. Each process uses the same

color for its threads and data. For example, in Fig. 2-1b, the upper-leftmost tile has

thread 01 (colored blue) and its data (also colored blue); data from 01 also occupies

parts of the top row of banks (portions in blue).

Fig. 2-la shows the thread and data breakdown under R-NUCA when applications

19



Legend
Tile (1 core+LLC bank) - Example Threads n x 8 12 x 8
Thread running on core 11 (ilbdc) thread ilbdc
LLC data breakdown - Data from 01 and 02 Data

Threads 01 02 03 04 05 06 Threads M1 M2 MU14
omnet Data milc Data --- --- ---

(a) R-NUCA (b) Jigsaw+Clustered

(c) Jigsaw+Random (d) CDCS

Figure 2-1: Case study: 36-tile CMP with a mix of single- and multi-threaded
workloads (omnet x 6, milc x 14, 8-thread ilbdc x 2) under different NUCA organizations
and thread placement schemes. Threads are labeled and data is colored by process.

are grouped by type (e.g., the six copies of omnet are in the top-left corner). R-NUCA

maps thread-private data to each thread's local bank, resulting in very low latency.

Banks also have some of the shared data from the multithreaded processes I1 and 12
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120

100 -omnet
milc

80 ibdc
Q 60 - -

40

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

LLC Size (MB)

R-NUCA 1.09 0.99 1.15 1.08

Jigsaw+Cl 2.88 1.40 1.21 1.48
Jigsaw+Rnd 3.99 1.20 1.21 1.47

CDCS 4.00 1.40 1.20 1.56

Figure 2-2: Application miss Table 2.1: Per-app and weighted speedups for the

curves. mix studied.

(shown hatched), because R-NUCA spreads shared data across the chip. Finally, code

pages are mapped to different banks using rotational interleaving, though this is not

visible in this mix because apps have small code footprints. These policies excel at

reducing LLC access latency to private data vs. an S-NUCA cache. This helps milc

and omnet, as shown in Fig. 2.1. Overall, R-NUCA speeds up this mix by 8% over

S-NUCA.

In R-NUCA, other thread placements would make little difference for this mix, as

most capacity is used for either thread-private data, which is confined to the local

bank, or shared data, which is spread out across the chip. But R-NUCA does not use

capacity efficiently in this mix. Fig. 2-2 shows why, giving the miss curves of each app.

Each miss curve shows the misses per kilo-instruction (MPKI) that each process incurs

as a function of LLC space (in MB). omnet is very memory-intensive, and suffers

85 MPKI below 2.5 MB. However, over 2.5 MB, its data fits in the cache and misses

turn into hits. ilbdc is less intensive and has a smaller footprint of 512 KB. Finally,

milc gets no cache hits no matter how much capacity it is given-it is a streaming

application. In R-NUCA, omnet and milc apps get less than 512 KB, which does not

benefit them, and ilbdc apps use more capacity than they need.

Jigsaw uses capacity more efficiently, giving 2.5 MB to each instance of omnet,

512 KB to each ilbdc (8 threads), and near-zero capacity to each milc. Fig. 2-1b shows

how Jigsaw tries to place data close to the threads that use it. By using partitioning,

Jigsaw can share banks among multiple types of data without introducing capacity

interference. However, the omnet threads in the corner heavily contend for capacity of

neighboring banks, and their data is placed farther away than if they were spread out.
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Clearly, when capacity is managed efficiently, thread placement has a large impact on

capacity contention and achievable latency. Nevertheless, because omnet's data now

fits in the cache, its performance vastly improves, by 2.88x over S-NUCA (its AMAT

improves from 15.2 to 3.7 cycles, and its IPC improves from 0.22 to 0.61). ilbdc is

also faster, because its shared data is placed close by instead of across the chip; and

because omnet does not consume memory bandwidth anymore, milc instances have

more of it and speed up moderately (Fig. 2.1). Overall, Jigsaw speeds up this mix by

48% over S-NUCA.

Fig. 2-1c shows the effect of randomizing thread placement to spread capacity

contention among the chip. omnet instances now have their data in neighboring banks

(1.2 hops on average, instead of 3.2 hops in Fig. 2-1b) and enjoy a 3.99x speedup

over S-NUCA. Unfortunately, ilbdc's threads are spread further, and its performance

suffers relative to clustering threads (Fig. 2.1). This shows why one policy does not

fit all: depending on capacity contention and sharing behavior, apps prefer different

placements. Specializing policies for single- and multithreaded apps would only be a

partial solution, since multithreaded apps with large per-thread footprints and little

sharing also benefit from spreading.

Finally, Fig. 2-1d shows how CDCS handles this mix. CDCS spreads omnet

instances across the chip, avoiding capacity contention, but clusters ilbdc instances

across their shared data. CDCS achieves a 4x speedup for omnet and a 40% speedup

for ilbdc. CDCS speeds up this mix by 56%.

In summary, this case study shows that partitioned NUCA schemes use capacity

more effectively and improve performance, but they are sensitive to thread placement,

as threads in neighboring tiles can aggressively contend for capacity. This presents

an opportunity to perform smart thread placement, but fixed policies have clear

shortcomings.

2.3 Thread placement to reduce data movement

NUMA thread scheduling Prior work has studied NUMA-aware thread schedul-

ing and migration in multi-socket systems. Tam et al. [56] profile which threads have

frequent sharing and place them in the same socket. DINO [7] clusters single-threaded
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processes to equalize memory intensity, places these clusters in different sockets, and

migrates pages along with threads. While DINO directly considers the relationship

between thread and data placement, it does not address applications with data sharing.

Linux will consider swapping two threads across NUMA nodes instead of migrating

their remote pages [13]. Multi-socket NUMA systems have simple off-chip topologies

(e.g., dance-hall), and thread clustering is all-or-nothing proposition: threads either

are in the same socket and enjoy fast sharing, or they are not and suffer slow shared

data accesses. In contrast, on-chip networks (e.g., meshes) have more continuous

latency profiles, which make the spatial mapping of thread to cores more lenient but

computationally harder. In the context of on-chip NUMA systems, Tumanov et al. [58]

and Das et al. [15] profile memory accesses and schedule high-intensity threads closer

to their memory controller. As in multi-socket systems, the goal of these schemes is to

minimize network latency while balancing controller load. These NUMA schemes focus

on equalizing memory bandwidth, whereas in this project, proper cache allocations

cause capacity contention to be the main constraint on thread placement in NUCA.

Cache contention-aware thread scheduling Rather than focus on bandwidth

limitation in NUMA, this thesis proposes to use thread placement to address cache

contention problem in multicore system. Among few prior work that shares same

motivation, CRUISE [28] is the closest work to the technique proposed in the thesis.

CRUISE schedules single-threaded apps in CMPs with multiple fixed-size last-level

caches, each shared by multiple cores and unpartitioned. CRUISE takes a classification-

based approach, dividing apps in thrashing, fitting, friendly, and insensitive, and applies

fixed scheduling policies to each class (spreading some classes among LLCs, using

others as filler, etc.). CRUISE bin-packs apps into fixed-size caches, but partitioned

NUCA schemes provide flexibly sized virtual caches that can span multiple banks. It

is unclear how CRUISE's policies and classification would apply to NUCA. CRUISE

improves on DI [63], which profiles miss rates and schedules apps across chips to balance

intensive and non-intensive apps. Both schemes only consider single-threaded apps,

and have to contend with the lack of partitioned LLCs. In contrast to CRUISE, CDCS,

the first technique proposed in this thesis, addresses capacity contention problem

for NUCA within single socket, and is applicable to both single- and multi-threaded
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applications.

Static schedulers Prior work has used high-quality static mapping techniques to

spatially decompose regular parallel problems. For example, integer linear program-

ming is useful in spatial architectures [44], and graph partitioning has been extensively

used in stream scheduling [48,49]. While some of these techniques can be applied to

the thread and data placement problem, they are too expensive to use dynamically.

2.4 Summary

All the prior work mentioned in the previous two sections tries to reduce data movement

by either placing threads close to their data or placing data close threads. CDCS,

instead, aims to consider thread and data placement at the same time and thus is

different from prior work. Moreover, papers relate to thread and data co-scheduling

deal with balancing the memory requirements of multiple co-scheduled threads over

multiple intervals. In contrast, CDCS deals with the spatial scheduling and resource

management aspects of large-scale, non-uniform, non-overcommitted multi-cores.
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Chapter 3

Baseline architecture

CDCS builds on Jigsaw [4], a partitioned NUCA technique. Fig. 3-1 shows the tiled

CMP architecture and the hardware additions of Jigsaw. Each tile has a core and a

slice of the LLC. An on-chip network of arbitrary topology connects tiles, and memory

controllers are at the edges. Pages are interleaved across memory controllers, as in

Tilera and Knights Corner chips [6].

3.1 Virtual caches

Jigsaw lets software divide each cache bank in multiple partitions and uses Vantage [52]

to efficiently partition banks at cache-line granularity. Collections of bank partitions

are ganged and exposed to software as a single VC (originally called a share in Jigsaw).

This allows software to define many VCs cheaply (several per thread), and to finely

size and place them among banks.

3.2 Mapping data to VCs

Unlike other D-NUCAs, in Jigsaw lines do not migrate in response to accesses. Instead,

between reconfigurations, each line can only reside in a single LLC bank. Jigsaw maps

data to VCs using the virtual memory subsystem, similar to R-NUCA [20]. Each page

table entry is tagged with a VC id. On an L2 miss, Jigsaw uses the line address and

its VC id to determine the bank and bank partition that the line maps to.
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Figure 3-1: Target CMP, with tile configuration and microarchitectural additions

introduced for Jigsaw. Jigsaw gangs portions of banks into virtual caches, and uses

the VTB to find the bank and bank partition to use on each access.

The virtual-cache translation buffer (VTB), shown in Fig. 3-1, determines the

bank and bank partition for each access. The VTB stores the configuration of all VCs

that the running thread can access [4]. In the implementation of Jigsaw, it is a 3-entry

lookup table, as each thread only accesses 3 VCs (as explained below).

Each VTB entry contains a VC descriptor, which consists of an array of N bank

and bank partition ids (in our implementation, N = 64 buckets). As shown in Fig. 3-1,

to find the bank and bank partition ids, the address is hashed, and the hash value

(between 0 and N - 1) selects the bucket. Hashing allows spreading accesses across

the VC's bank partitions in proportion to their capacities, which makes them behave

as a cache of their aggregate size. For example, if a VC consists of two bank partitions

A of 1 MB and B of 3 MB, by setting array elements 0-15 in the VC descriptor to A

and elements 16-63 to B, B receives 3x more accesses than A. In this case, A and B

behave like a 4 MB VC [4,5].

Periodically (e.g., every 25ms), software changes the configuration of some or

all VCs, changing both their bank partitions and sizes. The OS recomputes all VC

descriptors based on the new data placement, and cores coordinate via inter-processor

interrupts to update the VTB entries simultaneously. The two-level translation of

pages to VCs and VCs to bank partitions allows Jigsaw to be more responsive and take

more drastic reconfigurations than prior shared-baseline D-NUCAs: reconfigurations

simply require changing the VC descriptors, and software need not copy pages or alter

page table entries.



3.3 Types of VCs

Jigsaw's OS-level runtime creates one thread-private VC per thread, one per-process

VC for each process, and a global VC. Data accessed by a single thread is mapped

to its thread-private VC, data accessed by multiple threads in the same process is

mapped to the per-process VC, and data used by multiple processes is mapped to the

global VC. Pages can be reclassified to a different VC efficiently [4] (e.g., when a page

in a per-thread VC is accessed by another thread, it is remapped to the per-process

VC), though in steady-state this happens rarely.

3.4 Summary

Jigsaw provides a flexible mechanism to place data across the chip. It enables CDCS

to freely decide where to place data. Therefore, the proposed technique can focus on

how to leverage this mechanism to further perform data and thread co-scheduling and

optimize the system.
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Chapter 4

CDCS: computation and data

co-scheduling

4.1 Overview

CDCS uses a combination of hardware and software techniques to perform joint thread

and data co-scheduling. Fig. 4-1 gives an overview of the steps involved. Novel,

scalable performance monitors sample the miss curves of each virtual cache. OS

runtime periodically reads these miss curves and uses them to jointly place VCs and

threads using a 4-step procedure. Finally, this runtime uses hardware support to move

cache lines to their new locations. This hardware addresses overheads that would

hinder CDCS performance, especially on large systems.

Although CDCS leverages the data placement mechanism from Jigsaw, all aspects

of this optimization process differ from Jigsaw [4]. Jigsaw uses a simple runtime that

sizes VCs obliviously to their latency, places them greedily, and does not place threads.

Jigsaw also uses conventional utility monitors [51] that do not scale to large caches,

and reconfigurations require long pauses while banks invalidate data, which adds jitter.

All of the techniques are topology-agnostic; our algorithms accept arbitrary dis-

tance vectors between tiles. However, to make the discussion concrete, the following

discussion assumes a mesh topology.
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Figure 4-1: Overview of CDCS's periodic reconfiguration procedure

4.2 A simple cost model for thread and data place-

ment

As discussed in Sec. 2.3, classification-based heuristics are hard to apply to NUCA.

Instead, CDCS uses a simple analytical cost model that captures the effects of different

placements on total memory access latency, and uses it to find a low-cost solution.

This latency is better analyzed as the sum of on-chip (L2 to LLC) and off-chip (LLC

to memory) latencies.

Off-chip latency Assume a system with T threads and D VCs. Each thread t

accesses VC d at a rate at,d (e.g., 50 K accesses in 10 iis). If VC d is allocated sd lines

in the cache, its miss ratio is Md(sd) (e.g., 10% of accesses miss). Then the total

off-chip access latency is:

T D

Off-chip latency = E E at, x MAd(sd) x MeniLatency
t=1 d=1

(4.1)

where MemiLatency is the latency of a memory access. This includes network latency,

and relies on the average distance of all cores to memory controllers being the same

(Fig. 3-1). Extending CDCS to NUMA would require modeling a variable main

memory latency in Eq. 4.1.

On-chip latency

banks on chip, so

allocations, so that

Each VC's capacity allocation sd consists of portions of the N

that sd - E=1 sd,b. Tire capacity of each bank B constrains

B = ED-1 sd,b. Limited bank capacities sometimes force data to
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be further away from the threads that access it. Because the VTB spreads accesses

across banks in proportion to capacity, the number of accesses from thread t to bank

b is at, =ED x at,d - If thread t is placed in a core ct and the network distanceis d= Sd X~j f

between two tiles ti and t2 is D(ti, t2 ), then the on-chip latency is:

T N

On-chip latency = at,b x D(ct, b) (4.2)
t=1 b=1

4.3 Overview of CDCS optimization

With this cost model, the computation and data co-scheduling problem is to choose

the ct (thread placement) and st,b (VC size and data placement) that minimize total

latency, subject to the given constraints. However, finding the optimal solution is

NP-hard [24,47], and different factors are intertwined. For example, the size of VCs

and the thread placement affect how close data can be placed to the threads that use it.

Therefore, CDCS takes a multi-step approach to disentangle these interdependencies.

CDCS first adopts optimistic assumptions about the contention introduced by thread

and data placement, and gradually refines them to produce the final placement.

Specifically, this thesis proposes to reconfigure the system with four steps:

1. Latency-aware allocation divides capacity among VCs assuming all threads that

access each VC are placed as close as possible and data is compactly placed (no

capacity contention).

2. Optimistic contention-aware VC placement places VCs among banks to avoid

capacity contention. This step produces a rough picture of where data should be in

the chip.

3. Thread placement uses the optimistic VC placement to place threads close to the

VCs they access. For example, this step places single-threaded applications close to

the center of mass of their data, and clusters threads that shares data around their

shared data.

4. Refined VC placement improves on the previous data placement to, now that thread

locations are known, place data closer to minimize on-chip latency. For example, a

thread that accesses its data intensely may swap allocations with a less intensive

thread to bring its data closer; while this increases latency for the other thread,
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overall it is beneficial.

By considering data placement twice (steps 2 and 4), CDCS disentangles the

circular relationship between thread and data placement and therefore performs

efficient thread and data co-placement. This design can find high-quality solution for

the latency-minimization problem within a couple of milliseconds. With the solution,

CDCS reconfigures the system to minimize potential data movement and further

improve energy efficiency and performance of multicore processors.

U

U

_j

Capacity (bytes)

Access latency vs. capacity al-
Figure 4-3:
tended virtual

Optimistic uncon-

cache placement.

(a) Partial optimistic (b) Estimating (c) vc placed near
data placement contention for vc least contended tile

Figure 4-4: Optimistic, contention-aware virtual cache placement.

4.4 Latency-aware capacity allocation

Cache misses generally decrease with cache capacity, but not all threads see equal

benefits from additional capacity. For example, streaming applications access memory
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frequently and consume most of the capacity in unpartitioned caches, but they have

no reuse and do not benefit from this capacity. Prior work has partitioned cache

capacity to reduce cache misses [4,51], i.e. off-chip latency. However, it is well-known

that larger caches take longer to access [22,23,57]. Most prior partitioning work has

targeted fixed-size LLCs with constant latency. But capacity allocation in NUCA

caches provides an opportunity to also reduce on-chip latency: if an application sees

little reduction in misses from a larger VC, the additional network latency to access it

can negate the benefits of having fewer misses.

In summary, larger allocations have two competing effects: decreasing off-chip

latency and increasing on-chip latency. This is illustrated in Fig. 4-2, which shows

the average memory access latency to one VC (e.g., a thread's private data). Fig. 4-2

breaks latency into its off- and on-chip components, and shows that there is a "sweet

spot" that minimizes total latency.

This has two important consequences. First, unlike in other D-NUCA schemes,

it is sometimes better to leave cache capacity unused. Second, incorporating on-chip

latency changes the curve's shape and also its marginal utility [51], leading to different

cache allocations even when all capacity is used.

CDCS allocates capacity from total memory latency curves (the sum of Eq. 4.1

and Eq. 4.2) instead of miss curves. These curves estimate the total memory latency

from accessing one type of data over some interval, say the next 25 ms. However,

Eq. 4.2 requires knowing the thread and data placements, which are unknown at the

first step of reconfiguration. CDCS instead uses an optimistic on-chip latency curve,

found by the minimum-latency, uncontended placement, and compactly place the

VC around the center of the chip and computing the resulting average latency. For

example, Fig. 4-3 shows the optimistic placement of an 8.2-bank VC accessed by a

single thread, with an average distance of 1.27 hops. Optimistic data placement gives

a lower bound on the on-chip latency curve. CDCS computes the off-chip latency

curve by multiplying the miss curve by the main memory access latency, and add

both curves to produce the total memory latency curve.

With this simplification, CDCS uses the Peekahead optimization algorithm [4] to

efficiently find the sizes of all VCs that minimize latency. While these allocations

account for on-chip latency, they generally underestimate it due to capacity contention.
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Nevertheless, this scheme works well because the next steps are effective at limiting

contention.

4.5 Optimistic contention-aware VC placement

Once VC sizes are known, CDCS first finds a rough picture of how data should be

placed around the chip to avoid placing large VCs close to each other. The main goal

of this step is to inform thread placement by avoiding VC placements that produce

high capacity contention.

To this end, CDCS sort VCs by size and place the largest ones first. Intuitively,

this works well because larger VCs can cause more contention, while small VCs can

fit in a fraction of a bank and cause little contention. For each VC, the algorithm

iterates over all the banks, and chooses the bank that yields the least contention with

already-placed VCs as the center of mass of the current VC. To make this search

efficient, CDCS approximate contention by keeping a running tally of claimed capacity

in each bank, and relax capacity constraints, allowing VCs to claim more capacity

than is available at each bank. With N banks and D VCs, the algorithm runs in

O(N - D).

Fig. 4-4 shows an example of optimistic contention-aware VC placement at work.

Fig. 4-4a shows claimed capacity after two VCs have been placed. Fig. 4-4b shows the

contention for the next VC at the center of the mesh (hatched), where the uncontended

placement is a cross. Contention is approximated as the claimed capacity in the banks

covered by the hatched area-or 3.6 in this case. To place a single VC, CDCS computes

the contention from placing the VC centered around that tile. CDCS then place the

VC around the tile that had the lowest contention, updating the claimed capacity

accordingly. For instance, Fig. 4-4c shows the final placement for the third VC in our

example.

Optimistic data placement consists of a triply nested loop over VCs, tiles, and

neighboring banks. The run-time of this algorithm is nonetheless O(N -T), where N

and T are the number of cores and threads. The critical insight is that its impossible

for O(T) threads to each require O(N) banks to place their data, since that would

imply a total allocation greatly exceeding cache capacity. In fact across all threads,
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the total allocation equals N banks exactly. Thus while placing a large VC can take

O(N -T) time, the vast majority of VCs only check their local bank and are placed in

O(N). Summing over all VCs, the total number of tiles checked is thus O(N -T), and

this computation overhead is evaluated in Sec. 6.3.

4.6 Thread placement

Given the previous data placement, CDCS tries to place threads closest to the center

of mass of their accesses. Recall that each thread accesses multiple VCs, so this center

of mass is computed by weighting the centers of mass of each VC by the thread's

accesses to that VC. Placing the thread at this center of mass minimizes its on-chip

latency (Eq. 4.2).

Unfortunately, threads sometimes have the same centers of mass. To break ties,

CDCS places threads in descending intensity-capacity product (sum of VC accesses x

VC size for each VC accessed). Intuitively, this order prioritizes threads for which low

on-chip latency is important, and for which VCs are hard to move.

For multithreaded workloads, this approach clusters shared-heavy threads around

their shared VC, and spreads private-heavy threads to be close to their private VCs.

Should threads access private and shared data with similar intensities, CDCS places

threads relatively close to their shared VC but does not tightly cluster them, avoiding

capacity contention among their private VCs.

4.7 Refined VC placement

Finally, CDCS performs a round of detailed VC placement to reduce the distance

between threads and their data.

CDCS first simply round-robins VCs, placing capacity as close to threads as

possible without violating capacity constraints. This greedy scheme, which was used

in Jigsaw [4], is a reasonable starting point, but produces sub-optimal placements. For

example, a thread's private VC always gets space in its local bank, regardless of the

thread's memory intensity. Also, shared VCs can often be moved at little or no cost

to make room for data that is more sensitive to placement. This is because moving
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Trades

Figure 4-5: Trading data placement: Starting from a simple initial placement, VCs

trade capacity to move their data closer. Only trades that reduce total latency are

permitted.

shared data farther away from one accessing thread often moves it closer to another.

Furthermore, unlike in previous steps, it is straightforward to compute the effects

of moving data, since there is an initial placement to compare against. CDCS therefore

looks for beneficial trades between pairs of VCs after the initial, greedy placement.

Specifically, CDCS computes the latency change from trading capacity between vci

at bank b, and VC 2 at bank b 2 using Eq. 4.2. The change in latency for vc, is:

Accesses
ALatency = x (D(vc , bi) - D(vci, b2 ))

Capacity

The first factor is vc1's accesses per byte of allocated capacity. Multiplying by this

factor accounts for the number of accesses that are affected by moving capacity, which

varies between VCs. The equation for VC 2 is similar, and the net effect of the trade is

their sum. If the net effect is negative (lower latency is better), then the VCs swap

bank capacity.

Naively enumerating all possible trades is prohibitively expensive, however. Instead,

CDCS performs a bounded search by iterating over all VCs: Each VC spirals outward

from its center of mass, iterating over banks in order of distance while trying to move

its data closer. At each bank b along the outward spiral, if the VC has not claimed all

of b's capacity then it adds b to a list of desirable banks. These are the banks it will

try to trade into later. Next, the VC tries to move its data placed in b (if any) closer

by iterating over closer, desirable banks and offering trades with VCs that have data

in these banks. If the trades are beneficial, they are performed. The spiral terminates

when the VC has seen all of its data, since no farther banks will allow it to move any
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data closer.

Fig. 4-5 illustrates this for an example CMP with four VCs and some initial data

placement. CDCS spirals outward starting from VC1's center of mass at bank A, and

terminate at VC1's farthest data at bank C. Desirable banks are marked with black

checks on the left of Fig. 4-5. CDCS only attempts a few trades, shown on the right

side of Fig. 4-5. At bank B, VC1's data is two hops away, so CDCS tries to trade it

to any closer, marked bank. For illustration, suppose none of the trades are beneficial,

so the data does not move. This repeats at bank C, but suppose the first trade is now

beneficial. VC1 and VC4 trade capacity, moving VC1's data one hop closer.

This approach gives every VC a chance to improve its placement. Since any

beneficial trade must benefit one party, it would discover all beneficial trades. However,

for efficiency, in CDCS each VC trades only once, since CDCS has empirically found

this discovers most trades. Finally, this scheme incurs negligible overheads, as shown

in Sec. 6.3. Limiting the search space in this way greatly improves performance, by

10x over naive enumeration at 64 cores, because (similar to thread placement) CDCS

only considers a few nearby banks for the vast majority of VCs and even large VCs

only consider a few trades. Computation overhead for this scheme is negligible, as in

Sec. 6.3.

These techniques are cheap and effective. We also experimented with more expen-

sive approaches commonly used in placement problems: integer linear programming,

simulated annealing, and graph partitioning. Sec. 6.3 shows that they yield minor

gains and are too expensive to be used online.

4.8 Monitoring large caches

Monitoring miss curves in large CMPs is challenging. To allocate capacity efficiently,

it is important to manage it in small chunks (e.g., the size of the Lis) so that it isn't

over-allocated where it produces little benefit. This is crucial for VCs with small

working sets, which see large gains from a small size and no benefit beyond. Yet, miss

curves that cover the full LLC are needed because a few VCs may benefit from taking

most capacity. These two requirements-fine granularity and large coverage-are

problematic for existing monitors.
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Figure 4-6: GMONs enhance UMONs with varying sampling rate across ways, con-

trolled with per-way limit registers.

Conventional cache partitioning techniques use utility monitors (UMONs) [51] to

monitor a fraction of sets, counting hits at each way to gather miss curves. UMONs

monitor a fixed cache capacity per way, and would require a prohibitively large

associativity to achieve both fine detail and large coverage. Specifically, in an UMON

with W ways, each way models 1/W of LLC capacity. With a 32 MB LLC (chapter 5,

Table 5.1) if we want to allocate capacity in 64 KB chunks, a conventional UMON

needs 512 ways to have enough resolution. This is expensive to implement, even for

infrequently used monitors.

Instead, a novel monitor, called a geometric monitor (GMON) is developed.

GMONs need fewer ways-64 in our evaluation-to model capacities from 64KB

up to 32 MB. This is possible because GMONs vary the sampling rate across ways,

giving both fine detail for small allocations and large coverage, while using many fewer

ways than conventional UMONs. Fig. 4-6 shows this design: A GMON consists of

small set-associative, tag-only array. Instead of storing address tags, GMON tags

store 16-bit hashed addresses. GMONs also have a limit register per way. The limit

registers progressively decrease across ways, and are used to filter out a fraction of

lines per way as follows. In a conventional UMON, when an address is inserted or

moved up to the first way, all other tags are moved to the next way. (This requires

potentially shifting as many tags as ways, but only a small fraction of accesses are

monitored, so the energy impact is small.) In a GMON, on each move, the hash

value of the tag is checked against the way's limit register. If the value exceeds the

limit register, the tag is discarded instead of moved to the next way, and the process
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Memory controller Tile R L2 miss, GET request to home A

A miss, MOVE request to old home B

o B hit, MOVE response with data and
coherence, B invalidates own copy

R A adds sharer R, responds

(a) Demand move, old bank hit.

Memory controller * Tile R L2 miss, GET request to home A

4DA miss, MOVE request to old home B

* B miss, request to memory

0 Memory responds to A

R 0 A adds sharer R, responds
(b) Demand move, old bank miss.

Figure 4-7: Messages and protocol used on incremental reconfigurations: demand
moves when old bank hits or misses.

terminates. Discarding lines achieves a variable, decreasing sampling rate per way,

so GMONs model an increasing capacity per way [4,5,32]. This increases sampling

rate geometrically across ways, and since the size of the modeled cache is inversely

proportional to the sampling rate, the coverage increases geometrically as well.

Limit registers are set to decrease the sampling rate by a factor 'y < 1, so the

sampling rate at way w is k, = -y less than at way zero, and then choose 'y to

cover the full cache capacity. For example, with a 32 MB LLC, a 64-way GMON

with y ~ 0.95 covers the full cache while having the first way model 64 KB. Modeled

capacity per way grows by 26x, from 0.125 to 3.3 banks. This means GMONs miss

curves are sparse, with high resolution at small sizes, and reduced resolution at large

sizes. We find these GMONs work as well as the impractical UMONs described above

(Sec. 6.3).

39



4.9 Incremental reconfigurations

Moving threads and data reduces steady-state network latency, but requires more

drastic reconfigurations. Jigsaw reconfigures through bulk invalidations: all bank

controllers walk the tag array and invalidate lines that should be mapped somewhere

else, which requires pausing cores for tens to hundreds of thousands of cycles [4]. This

is simple, but pauses, extra writebacks, and misses hurt performance. Because CDCS

reconfigures more frequently, this approach can significantly degrade performance.

With few hardware modifications, it is possible to spatially reconfigure the cache

incrementally, without pausing cores, by moving lines instead of invalidating them.

The key idea is to, upon a reconfiguration, temporarily treat the cache as a two-level

hierarchy. We add a shadow VC descriptor to each VTB entry, as shown in Fig. 3-1.

Upon reconfiguration, each core copies the VC descriptors into the shadow descriptors,

and updates the normal VC descriptors with the new configuration. When the shadow

descriptors are active, the VTB finds both the current and previous banks and bank

partitions for the line, and, if they are different, sends the old bank id along with its

request. Fig. 4-7 illustrates this protocol. If the current bank misses, it forwards the

request to the old bank instead of memory. If the old bank hits, it sends both the

line and its coherence state to the new bank, invalidating its own copy. This moves

the line to its new location. We call this a demand move (Fig. 4-7a). If the old bank

misses, it forwards the request to the memory controller (Fig. 4-7b). Demand moves

have no races because all requests follow the same path through both virtual levels,

i.e. they access the same sequence of cache banks. If a second request for the same

line arrives at the new bank, it is queued at the MSHR that's currently being used to

serve the first request.

Demand moves quickly migrate frequently used lines to their new locations, but the

old banks must still be checked until all lines have moved. This adds latency to cache

accesses. To limit this cost, banks walk the array in the background and incrementally

invalidate lines whose location has changed. Unlike bulk invalidations, these background

invalidations are not on the critical path and can proceed at a comparatively slow rate.

For example, by scanning one set every 200 cycles, background invalidations finish

in 100 Kcycles. Background invalidations begin after a short period (e.g., 50 Kcycles)
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to allow frequently-accessed lines to migrate via demand moves. After banks walk

the entire array, cores stop using the shadow VTB descriptors and resume normal

operation.

In addition to background invalidations, this thesis also experimented with back-

ground moves, i.e. having banks send lines to their new locationths instead of invalidat-

ing them. However, it was found that background moves and background invalidations

performed similarly-most of the benefit comes from not pausing cores as is done in

bulk invalidations. CDCS prefers background invalidations because they are simpler:

background moves require additional state at every bank (viz., where the line needs

to be moved, not just that its location has changed), and require a more sophisticated

protocol (as there can be races between demand and background moves).

Overall, by taking invalidations off the critical path, CDCS can reconfigure the

cache frequently without pausing cores or invalidating frequently-accessed data. As

Sec. 6.3 shows, background invalidations narrow the performance gap with an idealized

architecture that moves lines immediately to their destination banks, and are faster

than using bulk invalidations.

4.10 Overheads and applicability

4.10.1 Hardware overheads

Implementing CDCS as described imposes small overheads that the achieved system-

wide performance and energy savings compensate for:

" Each bank is partitioned. With 512 KB banks and 64-byte lines, Vantage adds 8 KB

of state per bank to support 64 bank partitions [4] (each tag needs a 6-bit partition

id and each bank needs 256 bits of per-partition state).

" Each tile's VTB is 588 bytes: 576 bytes for 6 VC descriptors (3 normal + 3 shadow)

and 12 bytes for the 3 tags.

" CDCS uses 4 monitors per bank. Each GMON has 1024 tags and 64 ways. Each

tag is a 16-bit hash value (it does not store full addresses, since rare false positives

are fine for monitoring purposes). Each way has a 16-bit limit register. This yields

2.1 KB monitors, and 8.4 KB overhead per tile.
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This requires 17.1 KB of state per tile (2.9% of the space devoted to the tile's bank)

and simple logic. Overheads are similar to prior partitioning-based schemes [4,51].

Unlike Jigsaw [4], CDCS places each VC's monitor in a fixed location on the chip

to avoid clearing or migrating monitor state. Since cores already hash lines to index

the VTB, CDCS store the GMON location at the VTB. For full LLC coverage with

- = 0.95 and 64 cores, CDCS sample every 64 th access. Monitoring is off the critical

path, so this has negligible impact on performance (traffic is roughly 1/ 6 4th of an

S-NUCA cache).

4.10.2 Software overheads

Periodically (every 25 ms in our implementation), a software runtime wakes up on

core 0 and performs the steps in Fig. 4-1. Reconfiguration steps are at most quadratic

on the number of tiles (Sec. 4.5), and most are simpler. Software overheads are small,

0.2% of system cycles, and are detailed in Sec. 6.3 and Table 6.1.

4.10.3 CDCS on other NUCA schemes

If partitioned banks are not desirable, CDCS can be used as-is with non-partitioned

NUCA schemes [11, 27,40]. To allow more VCs than threads, it is possible to use

several smaller banks per tile (e.g., 4x128KB), and size and place VCs at bank

granularity. This would eliminate partitioning overheads, but would make VTBs

larger and force coarser allocations. We evaluate the effects of such a configuration

in Sec. 6.3. CDCS could also be used in spilling D-NUCAs [50], though the cost

model (Sec. 4.2) would need to change to account for the multiple cache and directory

lookups.
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Chapter 5

Methodology

To evaluate proposed techniques, in this thesis, we use zsim, an open-source micro-

architectural x86-64 simulator [53] for modeling. Zsim is a parallel simulator and

adapts several novel techniques to be fast, scalable, and accurate. Zsim is suitable for

this project because of its speed and scalability: simulation of thousands of cores at

speeds of 100-1000s of MIPS.

5.1 Modeled System

We perform microarchitectural, execution-driven simulation using zsim [53], and model

a 64-tile CMP connected by an 8x8 mesh NoC with 8 memory controllers at the

edges. Each tile has one lean 2-way 000 core similar to Silvermont [29] and a 3-level

cache hierarchy with parameters shown in Table 5.1. This system is similar to Knights

Landing [26]. We use McPAT 1.1 [36] to derive the area and energy numbers of

chip components (cores, caches, NoC, and memory controller) at 22 nm, and Micron

DDR3L datasheets [42] for main memory. This system is implementable in 408 mm 2

with typical power consumption of 80-130 W in our workloads, consistent with area

and power of scaled Silvermont-based systems [26,29].

5.2 Schemes

We compare CDCS with Jigsaw, R-NUCA, and S-NUCA organizations. R-NUCA

and Jigsaw are implemented as proposed. R-NUCA uses 4-way rotational interleaving
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64 cores, x86-64 ISA, 2 GHz, Silvermont-like 000 [29]: 8B-wide
ifetch; 2-level bpred with 512x 10-bit BHSRs + 1024x 2-bit PHT,

Cores 2-way decode/issue/rename/commit, 32-entry IQ and ROB,
10-entry LQ, 16-entry SQ

Li caches 32KB, 8-way set-associative, split D/I, 3-cycle latency

L2 caches 128 KB private per-core, 8-way set-associative, inclusive, 6-cycle
s latency

512 KB per tile, 4-way 52-candidate zcache, inclusive, 9 cycles,L3 cache S-NUCA/R-NUCA/Jigsaw/CDCS

Coherence protocol MESI, 64 B lines, in-cache directory, no silent drops; sequential
consistency

Global NoC 8x8 mesh, 128-bit flits and links, X-Y routing, 3-cycle pipelined
routers, 1-cycle links

Memory controllers 8 MCUs, 1 channel/MCU, 120 cycles zero-load latency, 12.8 GB/s
per channel

Table 5.1: Configuration of the simulated 64-core CMP.

and page-based reclassification [20]. CDCS and Jigsaw use 64-way, 1 Kline GMONs

from Sec. 4.8, and reconfigure every 25 ms.

5.3 Workloads

We simulate mixes of single and multithreaded workloads, with a methodology similar

to prior work [4,51,52]. We simulate single-threaded mixes of SPEC CPU2006 appli-

cations. We use the 16 SPEC CPU2006 applications with >5 L2 MPKI: bzip2, gcc,

bwaves, mcf, milc, zeusmp, cactusADM, leslie3d, calculix, GemsFDTD, libquantum,

lbm, astar, omnet, sphinx3, and xalancbmk. We simulate mixes of 1-64 random

applications. We fast-forward all applications for 20 billion instructions. We use a

fixed-work methodology and equalize sample lengths to avoid sample imbalance, as in

FIESTA [25]: We simulate each application alone, and measure how many instructions

it executes in 1 billion cycles, Ii. Each experiment then runs the full mix until all

applications execute at least I, instructions, and consider only the first IA instructions

of each application to report performance. This ensures that each mix runs for at

least 1 billion cycles.

We simulate multithreaded mixes of SPEC OMP2012 workloads. Since IPC is

not a valid measure of work in multithreaded workloads [1], we instrument each

application with heartbeats that report global progress (e.g., when each timestep or

44



transaction finishes). For each application, we find the smallest number of heartbeats

that complete in over 1 billion cycles from the start of the parallel region when running

alone. This is the region of interest (ROI). We then run the mixes by fast-forwarding

all applications to the start of their parallel regions, and running the full mix until all

applications complete their ROI.

We report weighted speedup over the S-NUCA baseline, which accounts for through-

put and fairness [51,54]. To achieve statistically significant results, we introduce small

amounts of non-determinism as in [1], and perform enough runs to achieve 95%

confidence intervals <1%.
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Chapter 6

Evaluation

6.1 Single-threaded mixes

Fig. 6-la shows the distribution of weighted speedups that S-NUCA, R-NUCA,

Jigsaw, and CDCS achieve in 50 mixes of 64 randomly-chosen, memory-intensive

SPEC CPU2006 applications. We find that S-NUCA and R-NUCA are insensitive

to thread placement (performance changes by < 1%): S-NUCA because it spreads

accesses among banks, and R-NUCA because its policies cause little contention. There-

fore, we report results for both with a random scheduler, where threads are placed

randomly at initialization, and stay pinned. We report Jigsaw results with two sched-

ulers: random (Jigsaw+R) and clustered (Jigsaw+C). As we will see, neither choice

is better in general-different mixes prefer one over the other. Each line shows the

weighted speedup of a single scheme over the S-NUCA baseline, sorted along workload

mixes (x-axis) by improvement (inverse CDF).

Fig. 6-la shows that CDCS significantly improves system performance, achieving

46% gmean weighted speedup and up to 76%. Jigsaw+R achieves 38% gmean weighted

speedup and up to 64%, Jigsaw+C achieves 34% gmean weighted speedup and up to

59%, and R-NUCA achieves 18% gmean weighted speedup and up to 23%. Jigsaw+C

shows near-pathological behavior, as different instances of the same benchmark are

placed close by, introducing capacity contention and hurting latency when they get

large VCs. Jigsaw+R avoids this behavior and performs better, but CDCS avoids

capacity contention much more effectively and attains higher speedups across all
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Figure 6-1: Evaluation of S-NUCA, R-NUCA, Jigsaw, and CDCS across 50 mixes of

64 SPEC CPU2006 apps on a 64-core CMP.

mixes. CDCS and Jigsaw widely outperform R-NUCA, as R-NUCA does not manage

capacity efficiently in heterogeneous workload mixes.

Fig. 6-1 gives more insight into these differences. Fig. 6-1c shows the average

network latency incurred by LLC accesses across all mixes (Eq. 4.2), normalized to

CDCS, while Fig. 6-1d compares off-chip latency (Eq. 4.1). S-NUCA incurs iix

more on-chip network latency than CDCS on L2-LLC accesses, and 23% more off-chip

latency. R-NUCA classifies most pages as private and maps them to the nearest bank,

so its network latency for LLC accesses is negligible. However, the lack of capacity

management degrades off-chip latency by 46% over CDCS. Jigsaw+C, Jigsaw+R and

CDCS achieve similar off-chip latency, but Jigsaw+C and Jigsaw+R have 2x and

51% higher on-chip network latency for LLC accesses than CDCS.
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Fig. 6-1b compares the network traffic of different schemes, measured in flits, and

split in L2-to-LLC and LLC-to-memory traffic. S-NUCA incurs 3x more traffic than

CDCS, most of it due to LLC accesses. For other schemes, traffic due to LLC misses

dominates, because requests are interleaved across memory controllers and take several

hops. We could combine these schemes with NUMA-aware techniques [15,16,38,56,

58,59] to further reduce this traffic. Though not explicitly optimizing for it, CDCS

achieves the lowest traffic.

Because CDCS improves performance and reduces network and memory traffic,

it reduces energy as well. Fig. 6-le shows the average energy per instruction of

different organizations. Static energy (including chip and DRAM) decreases with

higher performance, as each instruction takes fewer cycles. S-NUCA spends significant

energy on network traversals, but other schemes make it a minor overhead; and

R-NUCA is penalized by its more frequent memory accesses. Overall, Jigsaw+C,

Jigsaw+R and CDCS reduce energy by 33%, 34% and 36% over S-NUCA, respectively.

CDCS benefits apps with large cache-fitting footprints, such as ornnet, xalanc,

and sphinx3, the most. They require multi-bank VCs to work well, and benefit from

lower access latencies. Apps with smaller footprints benefit from the lower contention,

but their speedups are moderate.

Fig. 6-2a shows how each of the proposed techniques in CDCS improves performance

when applied to Jigsaw+R individually. We show results for latency-aware allocation

(+L), thread placement (+T), and refined data placement (+D); +LTD is CDCS.

Since cache capacity is scarce, latency-aware allocation helps little, whereas thread

and data placement achieve significant, compounding benefits.

Under-committed systems Fig. 6-3 shows the weighted speedups achieved by

S-NUCA, R-NUCA, Jigsaw+R, Jigsaw+C, and CDCS when the 64-core CMP is

under-committed: each set of bars shows the gmean weighted speedup when running

50 mixes with an increasing number of single-threaded applications per mix, from 1

to 64. Besides characterizing these schemes on CMPs running at low utilization (e.g.,

due to limited power or parallelism), this scenario is similar to introducing a varying

number of non-intensive benchmarks, for which LLC performance is a second-order

effect.
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SPEC CPU2006 applications on a 64-core CMP.

Fig. 6-3 shows that CDCS maintains high weighted speedups throughout the whole

range, while Jigsaw+R and Jigsaw+C work poorly on 1-8 app mixes. To see why,

Fig. 6-4 shows the weighted speedup distribution and network traffic breakdown for

the 4-app case. On-chip latency (L2-LLC) dominates Jigsaw's latency. In these mixes,

cache capacity is plentiful, so large VC allocations hurt on-chip latency more than

they help off-chip latency. CDCS's latency-aware allocation avoids using banks when

detrimental, and yields most of the speedup in the 4-app mixes, as shown in Fig. 6-2b.

At 4 apps, CDCS achieves 28% gmean weighted speedup, while Jigsaw+R sees 17%

and Jigsaw+C sees 6%. Overall, latency-aware allocation becomes more important as

capacity becomes plentiful.
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6.2 Multithreaded mixes

ght

Fig. 6-5a shows the distribution of weighted speedups for 50 mixes of eight 8-thread

SPEC OMP2012 applications (64 threads total) running on the 64-core CMP. CDCS

achieves gmean weighted speedup of 21%. Jigsaw+R achieves 14%, Jigsaw+C achieves

19%, and R-NUCA achieves 9%. Trends are reversed: on multi-threaded benchmarks,

Jigsaw works better with clustered thread placement than with random (S-NUCA and

R-NUCA are still insensitive). CDCS sees smaller benefits over Jigsaw+C. Fig. 6-5b

shows that they get about the same network traffic, while others are noticeably worse.

Fig. 6-6a shows the distribution of weighted speedups with under-committed
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Figure 6-6: Weighted speedups for 50 mixes of four 8-thread SPEC OMP2012 apps (32

threads total) on a 64-core CMP, and case study with private-heavy and shared-heavy

apps.

system running mixes of four 8-thread applications. CDCS increases its advantage

over Jigsaw -C, as it has more freedom to place threads. CDCS dynamically clusters

or spreads each process as the context demands: shared-heavy processes are clustered,

and private-heavy processes are spread out. Fig. 6-6b illustrates this behavior by

showing the thread and data placement of a specific mix, where one of the apps,

mgrid (process PO), is private and intensive, and the others, md (P1), ilbdc (P2), and

nab (P3) access mostly shared data. CDCS gives most capacity to mgrid, spreads its

threads over the CMP, and tightly clusters P1-3 around their shared data.

From the results of Sec. 6.1 and Sec. 6.2, we can see that Jigsaw+R and Jigsaw+C

help different types of programs, but no option is best in general. Yet by jointly

placing threads and data, CDCS always provides the highest performance across all

mixes. Thus, beyond improving performance, CDCS provides an important advantage

in guarding against pathological behavior incurred by fixed policies.

6.3 CDCS analysis

Reconfiguration overheads Table 6.1 shows the CPU cycles spent, on average,

in each of the steps of the reconfiguration procedure. Overheads are negligible: each

reconfiguration consumes a mere 0.2% of system cycles. Sparse GMON curves improve
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Threads / Cores 16 / 16 16 / 64 64 / 64

Capacity allocation (Mcycles) 0.30 0.30 1.20
Thread placement (Mcycles) 0.29 0.80 3.44
Data placement (Mcycles) 0.13 0.36 1.85

Total runtime (Mcycles) 0.72 1.46 6.49
Overhead 25ms (%) 0.09 0.05 0.20

Table 6.1: CDCS runtime analysis. Avg Mcycles per invocation of each reconfiguration
step, total runtime, and relative overhead.

Peekahead's runtime, taking 1.2 Mcycles at 64 cores instead of the 7.6 Mcycles it would

require with 512-way UMONs [4]. Although thread and data placement have quadratic

runtime, they are practical even at thousands of cores (1.2% projected overhead at

1024 cores).

Alternative thread and data placement schemes We have considered more

computationally expensive alternatives for thread and data placement. First, we

explored using integer linear programming (ILP) to produce the best achievable data

placement. We formulate the ILP problem by minimizing Eq. 4.2 subject to the

bank capacity and VC allocation constraints, and solve it in Gurobi [19]. ILP data

placement improves weighted speedup by 0.5% over CDCS on 64-app mixes. However,

Gurobi takes about 219 Mcycles to solve 64-cores, far too long to be practical. We

also formulated the joint thread and data placement ILP problem, but Gurobi takes

at best tens of minutes to find the solution and frequently does not converge.

Since using ILP for thread placement is infeasible, we have implemented a simulated

annealing [60] thread placer, which tries 5000 rounds of thread swaps to find a high-

quality solution. This thread placer is only 0.6% better than CDCS on 64-app runs,

and is too costly (6.3 billion cycles per run).

We also explored using METIS [30], a graph partitioning tool, to jointly place

threads and data. We were unable to outperform CDCS. We observe that graph

partitioning methods recursively divide threads and data into equal-sized partitions of

the chip, splitting around the center of the chip first. CDCS, by contrast, often clusters

one application around the center of the chip to minimize latency. In trace-driven

runs:, graph partitioning increases network latency by 2.5% over CDCS.
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GMONs match the performance of 256-way

UMONs. UMONs lose performance below 256 ways because of their poor resolu-

tion: 64-way UMONs degrade performance by 3% on 64-app mixes. In contrast,

unrealistically large 16K-line, 1K-way UMONs are only 1.1% better than 64-way

GMONs.

Reconfiguration schemes We evaluate several LLC reconfiguration schemes: de-

mand moves plus background invalidations (as in CDCS), bulk invalidations (as in

Jigsaw), and idealized, instant moves. The main benefit of demand moves is avoiding

global pauses, which take 114 Kcycles on average, and up to 230 Kcycles. While this

is a 0.23% overhead if reconfigurations are performed every 50 Mcycles (25 ms), many

applications cannot tolerate such pauses [17,45]. Fig. 6-7 shows a trace of aggregate

IPC across all 64 cores during one representative reconfiguration. This trace focuses

on a small time interval to show how performance changes right after a reconfiguration,

which happens at 200 Kcycles. By serving lines with demand moves, CDCS prevents

pauses and achieves smooth reconfigurations, while bulk invalidations pause the chip

for 100 Kcycles in this case. Besides pauses, bulk invalidations add misses and hurt

performance. With 64 apps (Fig. 6-1), misses are already frequent and per-thread

capacity is scarce, so the average slowdown is 0.5%. With 4 apps (Fig. 6-4), VC

allocations are larger and threads take longer to warm up the LLC, so the slowdown
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is 1.4%. Note that since SPEC CPU2006 is stable for long phases, these results may

underestimate overheads for apps with more time-varying behavior. Fig. 6-8 compares

the weighted speedups of different schemes when reconfiguration intervals increase from

10 Mcycles to 100 Mcycles. CDCS outperforms bulk invalidations, though differences

diminish as reconfiguration interval increases.

Bank-partitioned NUCA CDCS can be used without fine-grained partitioning

(Sec. 4.10). With the parameters in Table 5.1 but 4 smaller banks per tile, CDCS

achieves 36% gmean weighted speedup (up to 49%) over S-NUCA in 64-app mixes,

vs. 46% gmean with partitioned banks. This difference is mainly due to coarser-grain

capacity allocations, as CDCS allocates full banks in this case.
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Chapter 7

Conclusion

Data movement limits the performance and energy efficiency of multicore chips. This

thesis has presented computation and data co-scheduling (CDCS), a joint hardware

and software technique to reduce data movement. CDCS hardware provides efficient

monitoring and reconfiguration techniques, and CDCS software optimizes the full

system with simple performance model. Results shown that the proposed technique

successfully reduces data movement and thus improves performance and energy

efficiency. In ongoing and future work, we plan to extend CDCS to manage the whole

memory hierarchy and handle heterogeneous memory resources.
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