
MIT Open Access Articles

A Sub-nW 2.4 GHz Transmitter for 
Low Data-Rate Sensing Applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mercier, Patrick P., Saurav Bandyopadhyay, Andrew C. Lysaght, Konstantina M. 
Stankovic, and Anantha P. Chandrakasan. “A Sub-nW 2.4 GHz Transmitter for Low Data-Rate 
Sensing Applications.” IEEE Journal of Solid-State Circuits 49, no. 7 (July 2014): 1463–1474.

As Published: http://dx.doi.org/10.1109/jssc.2014.2316237

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/99900

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/99900
http://creativecommons.org/licenses/by-nc-sa/4.0/


A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing 
Applications

Patrick P. Mercier [Member, IEEE],
Department of Electrical and Computer Engineering, University of California at San Diego, 9500 
Gilman Dr., 0407, La Jolla, CA (pmercier@ucsd.edu, phone: 858-534-6026)

Saurav Bandyopadhyay [Member, IEEE],
Texas Instruments, Dallas, TX

Andrew C. Lysaght,
Massachusetts Eye and Ear Infirmary, Boston, MA, and the Harvard/MIT Joint Division of Health 
Sciences and Technology, Cambridge, MA

Konstantina M. Stankovic, and
Massachusetts Eye and Ear Infirmary, Boston, MA, and the Harvard/MIT Joint Division of Health 
Sciences and Technology, Cambridge, MA

The Department of Otology and Laryngology, Harvard Medical School, Boston, MA

Anantha P. Chandrakasan [Fellow, IEEE]
Department of Electrical Engineering and Computer Science, Massachusetts Institute of 
Technology (MIT), Cambridge, MA

Abstract

This paper presents the design of a narrowband transmitter and antenna system that achieves an 

average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. 

Fabricated in a 0.18 µm CMOS process, the transmitter employs a direct-RF power oscillator 

topology where a loop antenna acts as a both a radiative and resonant element. The low-

complexity single-stage architecture, in combination with aggressive power gating techniques and 

sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. 

Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 

pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also 

used as part of a wireless power transfer receiver in order to kick-start the system power supply 

during energy harvesting operation.

Index Terms

Body-sensor networks; energy harvesting; low power electronics; power amplifiers; radio 
frequency integrated circuits; voltage-controlled oscillators; zero-power electronics
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I. Introduction

The ongoing miniaturization of electronics, as modeled by Bell’s law [1], has taken solid-

state computing platforms from stationary room-sized mainframes to portable platforms 

such as laptops, smartphones, and smart watches. Although the power consumption and 

computational performance of such electronic devices have also scaled with Moore’s law, 

the battery technology necessary to power portable devices has not scaled nearly as rapidly. 

Thus, as Bell’s law continues to march on and device sizes continue to scale, it will become 

necessary to create advances in energy harvesting and near-zero-power electronics in order 

to overcome limited battery capacities to push into the next generation of ubiquitous sensors 

and “internet of everything” devices.

Many emerging sensing applications have underlying physical properties that do not vary 

rapidly with time. For example, sensing of temperature, metabolites, and air quality are but a 

few examples of applications where sensing front-ends do not require rapid sampling, and 

therefore can be aggressively duty-cycled into ultra-low-power sleep states. If the majority 

of the active elements in such a sensing system can follow this duty-cycling paradigm, then 

the average power consumption of the system is not set primarily by the active-mode power, 

but rather from a combination of active-mode and standby-mode power, with a large 

percentage coming from standby-mode during deeply duty-cycled operation. Thus, 

minimizing the standby-mode power is the key to enabling near-zero-power sensing nodes 

at ultra-low data rates.

In general, miniaturized sensing systems communicate their measured information 

wirelessly over a short distance (e.g., often only a few meters) in order to minimize the 

active-mode power of the constituent Radio Frequency (RF) Power Amplifier (PA). Thus, 

local base stations are typically employed in locations where energy is more abundant - a 

smartphone within a Body-Area Network (BAN), for example. However, even under low 

path-loss constraints, RF circuits still often dominate the power consumption of sensor 

nodes [2], [3]. Thus, there is considerable interest in minimizing the power consumption of 

RF circuits in such sensing nodes. Many recent publications in the area of energy-efficient 

RF circuits have described receivers, transmitters, and transceivers with excellent RF 

performance at efficiencies down to tens-to-hundreds of picojoules per bit [4]-[6]. However, 

such architectures are typically demonstrated and optimized for efficient performance at data 

rates exceeding 100 kbps. At such average data rates, leakage and standby power are not 

critical, and therefore not aggressively optimized. As a result, the average power of such 

radios do not necessarily scale well down to ultra-low data rates.

In order to enable next generation sensor nodes with near-zero-power for energy-

autonomous operation in combination with energy harvesting, this paper presents a 2.4 GHz 

transmitter that is specifically optimized for standby power in the picowatt regime [7]. To 

achieve this, a low-complexity, single-stage direct-RF architecture is employed, featuring 

significant power gating and sizing optimizations for minimized leakage power.

To validate the design, the transmitter is integrated into a system that harvests energy from 

the Endocochlear Potential (EP) - an electrochemical gradient found naturally in the inner-

Mercier et al. Page 2

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2015 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ear of mammals - which can only sustain energy extraction of approximately 1 nW [8], [9]. 

A figure of the EP harvesting system is shown in Fig. 1. Since the EP voltage is low 

(typically between 70–100 mV), a boost converter is used to process the energy up to a 

higher voltage (typically between 0.8–1.0 V), which is directly dumped onto capacitor CDD. 

As more energy is extracted from the cochlea, it is continually buffered onto CDD, forcing 

its voltage, VDD, and as a result its stored energy, to rise. When sufficient energy has been 

stored on CDD, the 2.4 GHz radio is enabled to quickly transmit a packet, then return to an 

ultra-low-power standby mode.

In this system, the boost converter requires 544 pW of quiescent power [10]; leaving 

approximately 250 pW of transmitter power budget after taking into account the overhead of 

other peripheral circuits and adding some power budget safety margin. Given the extreme 

power budget limit, the transmitter is designed and optimized to operate over short 

transmission distances (1 m) in order to limit the requisite output power. In addition, the 

transmitter is deeply duty-cycled, for example down to a duty-ratio of 0.00002% by 

transmitting 64-bit packets once every 80 seconds, with an instantaneous data rate of 5 

Mbps, for an average data rate of ≈1 bps in this example (though this can be 

programmable).

Since the EP in this case is too low to directly start-up CMOS electronics (in particular, the 

boost converter control circuitry), the transmitter’s antenna is shared with a kick-start 

rectifier [11], used to initialize the charge on CDD at system start-up with little overhead. As 

an implanted system, kick-starting is performed by placing an external antenna, driven by an 

RF source, near the surface of the skin just above the implant for transcutaneous wireless 

energy delivery, similar to traditional inductively-coupled or mid-field powered systems 

[12], [13].

This paper describe the details of the transmitter, antenna, and kick-start rectifier, while 

details of the biology and overall system operation can be found in [8], and details of the 

boost converter can be found in [10].

II. Transmitter Architecture

A. Motivation and Prior Work

The application use-case for this design is to use the endocochlear potential as an energy 

source to autonomously power a wireless implant. In this case it is not desired (or required) 

to have a semi-permanent external wireless source powering and interrogating the implant, 

as is typically done for implantable systems such as cochlear implants. Instead, information 

can be transmitted directly from the implant to an external device approximately one meter 

away (e.g., a cell phone or smart watch). This setup permits the design of a functionally 

autonomous system, with zero patient involvement required (other than a wireless kick-start 

for system initialization). In addition, it exploits the benefits of a body-area network, where 

communication complexity is pushed away from the energy-starved implant and towards the 

energy-rich base station platform.
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Since the transmitter will be deeply duty-cycled, its average power consumption is not 

determined solely by its active or leakage performance, but by a combination of both [14]. 

More precisely, the average power consumption can be predicted by Equation 1.

(1)

Here, PTX,leak is the transmitter leakage power, Eb is the energy required to transmit a single 

bit, N is the number of bits per packet (programmable from 8–128 bits based on a binary 

counter), and Tpkt,int is the time interval between packets (programmable from 40–360 s 

based on a counter that is driven by the 12.8 Hz on-chip oscillator found in the boost 

converter control circuitry [10]). Based on this equation, the transmitter must not only have 

extremely low leakage power, it also must be very energy efficient during active-mode in 

order to achieve the necessary overall power goal, otherwise the effective bit rate (i.e. N/

Tpkt,int) will be forced to be extremely low.

There are many examples of very energy efficient transmitter designs in the literature. 

Previous narrowband transmitters have attained energy efficiencies on the order of 140–

2900 pJ/bit for output power ranging from −16 dBm to 0 dBm at instantaneous data rates 

under 5 Mbps [4], [15]-[20]. However, none of these systems are optimized for ultra-low 

standby power. On the other hand, narrowband work in references [21], [22] were indeed 

optimized for low leakage power, consuming 675 pW and 3.3 nW in standby power modes, 

respectively. However, neither of these results meet the 250 pW power budget required in 

this work, particularly when their actives transmission modes are taken into account. For 

example, the two separate chips require 29 nJ/bit and 4.7 nJ/bit, resulting in an average 

powers of 46 nW and 11 nW, respectively.1

Pulse-based Ultra-Wideband (UWB) radios, which communicate using very short duration 

impulses at RF, also offer promising results in terms of energy efficiency. In particular, the 

energy efficiency of UWB transmitters using non-coherent signaling can be much lower 

than their narrowband counterparts, due in part to relaxed frequency tolerances and 

internationally regulated output power limits [23]-[28]. Although potentially appealing, such 

efficiency is generally achieved not through active-mode power reduction, but instead 

through increased instantaneous data rates. In fact, many UWB transmitter implementations 

require multiple RF stages (even “all-digital” implementations, which often use many 

cascaded RF inverters as a PA), all of which generally require low-Vt transistors in order to 

switch sufficiently fast to generate power in the 3.1–10.6 GHz UWB bands. Thus, the high 

active-mode power, distributed low-Vt blocks can be difficult to effectively power gate 

down to the requisite levels in this particular application, especially if the Ion/Ioff ratio of 

power gating switches is limited. Additionally, the high frequencies employed in standard 

UWB bands suffer from increased losses when transmitting through biological tissue, due 

primarily to larger conductivity at higher frequencies [29], which would reduce the overall 

1This is calculated using each radio’s nominal instantaneous data rate scaled to 1 bps.
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system radiation efficiency compared to lower-frequency ISM bands, and would thereby 

require increased active-mode power, increasing the difficulty of effective power gating.

B. Architecture Overview

For the reasons outlined in the preceding section, it is necessary to reduce the overall 

transmitter complexity by limiting the number of RF blocks while pushing all possible 

communication complexity to the energy-abundant external base station receiver. Taking the 

simplified architecture concept to a logical extreme, the transmitter presented in this work 

radiates information through the use of a direct-RF Power Oscillator (PO) design, inspired 

by the early days of single-transistor radios and more recent work presented in [15]. A 

simplified block diagram of the transmitter is shown in Fig. 2.

The transmitter generates RF at a frequency of 2.4 GHz as a compromise between tissue 

losses, antenna efficiency, and circuit power consumption. A more thorough discussion of 

this trade-off is found in Section III. A loop antenna is chosen as the radiative element, as it 

offers sufficient radiation conversion efficiency, has a high quality factor, and is naturally 

well suited to receive wireless power for system initialization. Due to anatomical size 

constraints, the physical size of the antenna will be much smaller than its radiating 

wavelength, resulting in an electrically small design. An electrically small magnetic loop 

antenna can be modeled as an inductor in series with a resistor, which is well suited to serve 

as part of the resonant network of the power oscillator. The oscillator itself performs 

automatic impedance matching, resulting in a very low-complexity, low-area, and energy 

efficient design. Data modulation can be achieved by turning on or off the entire oscillator 

for On-Off Keying (OOK) modulation, or the resonant capacitors can be dynamically 

switched for Frequency-Shift Keying (FSK) modulation.

III. Antenna Design

The design of antennas for implantable applications usually involves a trade-off between 

radiation efficiency (which increases with antenna size and/or carrier frequency as the 

wavelength approaches the physical antenna size) and tissue losses (which increase with 

frequency as the conductivity of tissue increases). In this application, the antenna size is 

limited to a few millimeters in diameter due to anatomical constraints. At 5 GHz and below, 

a loop antenna of this size would be considered electrically small, and can thus be modeling 

as an inductor, LANT, in series with a resistor, RANT. Equations predicting the performance of 

the antenna can be found the in Appendix.

Table I shows simulated results for radiation efficiency, quality factor, and inductance of a 

representative 3×4 mm2 antenna in free-space, using 0.2 mm, 2-oz copper traces on a 1.6 

mm FR-4 Printed Circuit Board (PCB) substrate in air at various Industrial, Scientific, and 

Medical (ISM) band frequencies. For completeness, the same antenna is additionally 

simulated in a realistic implanted environment using both FR-4 and Rogers substrates, while 

coated with 0.1 mm of bio-compatible parylene and being surrounded on the underside by 

bone and brain, and on the top side by 3 mm of fat tissue and 2 mm of skin. Antenna 

electromagnetic simulations were performed in IE3D, a fully 3D method-of-moments 

simulator [30].
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Although the Medical Implant Communication Service (MICS) specification at 402–405 

MHz is specifically designated for medical implant communications, the radiation 

efficiencies are simply too low to be useful for implants with limited antenna sizes. To put 

this in perspective, a transmitter consuming 1 mW of power could, at its theoretically 

optimal point, only radiate −44 dBm in air or −64 dBm in an implanted environment at 400 

MHz. In contrast, the same antenna operating at 2.4 GHz would ideally radiate −21 dBm in 

air or −33 dBm in an implanted environment. While operating at an even higher frequencies 

may be beneficial for many applications with small implanted antennas, the non-inductive 

antenna reactance may require large (or small and lossy) inductive-based tuning circuits. 

Additionally, because the loss resistances of the antenna are higher, such an approach may 

preclude the design of a single-stage power oscillator architecture, as the oscillator load 

would be substantial, thereby requiring either a separate driver or significantly more static 

power consumption. On the other hand, Table I indicates that Q peaks at 900 MHz, not 2.4 

GHz. However, extremely high Q is not necessarily desirable in this case: a very high Q 

implies that radiation efficiency is low. What we desire here is finite, positive Q, with 

maximum radiation efficiency, and a positive reactance for ease of on-chip matching. As a 

result of these considerations, a frequency of 2.4 GHz was chosen to comply with the 

simplified architecture philosophy and extreme power gating possibilities. Additionally, this 

provides an opportunity to communicate in the uncrowded Medical Body-Area Network 

(MBAN) band at 2360–2395 MHz recently allocated by the United States Federal 

Communications Commission (FCC) and supported by the recently-passed IEEE 802.15.6 

standard [31].

In terms of sizing optimization, the antenna has restrictions not only from anatomy, but also 

from a resonant frequency perspective. It is known that the radiation resistance of an 

electrically-small loop antenna increases with the square of the area of the antenna (see 

Equation 4 in the Appendix), while the loss resistance only increases linearly with area. It 

would then be beneficial to size the antenna as large as possible given anatomical constraints 

for maximum radiation efficiency. However, increasing the antenna size also increases its 

inductance (Equation 2). Since the antenna-chip interface contains fixed parasitic 

capacitance (bond pads, Electrostatic Discharge (ESD) protection diodes, etc.), the 

maximum resonant frequency will in fact decrease with increasing antenna size. Figure 3 

presents electromagnetic simulation of a rectangular antenna where the antenna height is 

swept from 2 mm to 7 mm, for a fixed width of 3 mm at 2.45 GHz in air with an FR-4 

substrate. The maximum center frequency was calculated based on the simulated inductance, 

and a layout-extracted parasitic capacitance of 300 fF. As predicted, radiation efficiency 

does indeed increase with antenna size. However, the maximum parasitic-limited resonant 

frequency decreases; 2.4GHz resonance is not achievable beyond an antenna height of 4.5 

mm. This places a functional upper bound on the antenna size given the requirement to 

radiate in the 2.4 GHz ISM band. Based on the preceding analysis, an antenna size of 3 × 4 

mm2 with an inductance of 9.5 nH in air is chosen for this design in order to maximize 

radiation efficiency given both the anatomical and resonant frequency size constraints.

In the above analysis, the loop antenna was optimized for maximum radiation efficiency. 

However, it still must also act as a receiver of wireless power for system initialization, 
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though since kick-starting only happens once, its efficiency is not extremely important. 

Interestingly, the simulated wireless power transfer gain through 13 mm of tissue was found 

to be −15.5 dB at an optimal frequency of 1.45 GHz, which is in line with previous work in 

this area [13]. At 2.4 GHz, the gain falls to −17.5 dB, an acceptable trade-off for not 

requiring re-tuning.

IV. Circuit Design

A transistor-level schematic of the transmitter and wireless energy receiver architecture is 

shown in Fig. 4. The following subsections describe the system operation, including details 

of each individual block.

A. Power Management

The transmitter receives its supply voltage, VDD, from an on-chip boost converter whose 

details are discussed in [10]. The value of VDD is set by a balance between the amount of 

energy extracted from the EP and the power of the load circuits. Though no explicit 

regulation is performed in this initial prototype, the load circuit power consumption 

increases with VDD, thereby producing a quasi-regulation effect. Future revisions could 

explicitly introduce feedback regulation by sensing VDD and dynamically modulating the 

activation frequency, output power, or other load circuit characteristics. During clinical 

measurements of this prototype, VDD has been shown to vary between 0.8–1.0V [8], which 

is where the transmitter was optimized to operate. Diode-clamp circuits are employed to 

ensure VDD does not exceed process safety standards. The boost converter also supplies a 

boosted power supply voltage, VPUMP, generated by an on-chip charge-pump. Ideally, 

VPUMP = 2VDD, though in practice VPUMP is slightly lower than this as current is drawn 

from this supply. The dynamics of VPUMP start-up enable a simple Power-On-Reset (POR) 

scheme, which is discussed, along with the wireless kick-start paradigm, in Section IV-D.

B. Power Oscillator

The core of the transmitter is the power-oscillator, comprising the cross-coupled pair of 

transistors (M1 and M2), footer power-gating/biasing transistors Mf[5:0], a capacitive 

tuning DAC (comprising eight parallel instances of transistors Ms 1–3), and the loop 

antenna. OOK modulation is achieved by dynamically activating footer transistors Mf[5:0], 

thereby turning on or off the oscillator at the OOK modulation frequency. Similarly, FSK 

modulation is achieved by dynamically re-configuring the 8-bit capacitive DAC between 

different center frequency settings. The power-oscillator is biased via a center-tap in the 

loop antenna that is directly connected to the system power supply, VDD, through an on-

board via that connects to a VDD plane below (as shown in Fig. 1).

Since the transmitter draws significant amounts of active-mode power, it is not suited to 

operate from the on-chip decoupled charge pump supply, VPUMP. As a result, the cross-

coupled devices M1 and M2 are implemented using low-Vt devices in order to reduce 

parasitic drain capacitance by 10X compared to high-Vt devices sized for equivalent on-

conduction (from 2.8 pF to 280 fF) at VDD. The reduced capacitance permits a significantly 

larger antenna as discussed in Section III than if high-Vt devices were instead used. During 
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OOK modulation, the capacitance at the source terminals of the cross-coupled M1 and M2 

devices only switches at the data rate frequency and not at RF. Consequently, the power 

oscillator can be biased using high-Vt NMOS transistors without any recourse to operational 

speed. This permits standby-mode leakage currents that are 33X lower for equivalent on-

conduction. To further reduce active energy consumed per transmitted bit, the high-Vt 

NMOS devices are enabled by full-swing signals operating at VPUMP, which decreases the 

associated gate capacitance (and therefore active OOK switching energy) by 28X for 

equivalent on-conduction. The biasing circuit specifically consists of six binary weighted 

devices (Mf[5:0]) with W/L ratios ranging from 16µm/0.35µm to 0.5µm/0.35µm in order to 

control the amount of on-current for output amplitude swing control, or dynamic pulse 

shaping in a future implementation. To reiterate, the biasing transistor gates are not driven 

by an intermediate voltage as set by a current reference, but rather they are driven by full-

swing digital signals at VPUMP in order to maximize Ion to Ioff ratios.

Resonant tuning of the antenna inductance within the power oscillator is implemented 

primarily using a 5-bit binary-weighted Metal-Insulator-Metal (MIM) capacitive DAC, 

totaling approximately 300 fF. The DAC is dynamically activated using differential 

switches, which according to the simulation result shown in Fig. 5, reduces the parasitic 

switch capacitance by 2X for a capacitor quality factor of approximately 50 (or up to 3X for 

lower quality factors). A separate 3-bit sub-ranging DAC is implemented using custom-

designed Metal-Oxide-Metal (MOM) capacitors, where a 3 fF unit-sized MOM cap is placed 

in series between the main DAC and sub-DAC. Although parasitics can be larger than the 

sub-DAC unit capacitors, the sub-DAC can still be employed to provide fine frequency 

control, with 0.25 fF switchable at the least significant bit (LSB) using differential smaller-

than unit 0.6 fF MOM capacitors in series with the 3 fF splitting capacitors [32]. The sub-

DAC is specifically used to achieve minimal bandwidth FSK modulation. For example, 

Minimum-Shift Keying (MSK), which uses the theoretically smallest amount of FSK 

bandwidth for a given data rate, requires approximately 0.5 fF of switchable capacitance at 

2.4 GHz when communicating at an instantaneous data rate of 5 Mbps. Although non-linear, 

the sub-DAC is monotonic, which is sufficient for FSK/MSK purposes. Including the DAC, 

the resonant circuit achieves a tuning range from 2.1–2.6 GHz, simulated in Cadence using 

extracted antenna s-parameters from IE3D and extracted circuit models from layout.

C. Ring Oscillator, Modulator, and Control

For this particular prototype, transmitted data comes from off-chip (for example, from a 

digital sensor interface) or on-chip memory. The modulating frequency that clocks-in this 

data is generated by an on-chip ring oscillator, shown in Fig. 6. The oscillator is a five-stage 

current-starved inverter-based design. To minimize active CV2 switching power, the inverter 

devices use low-Vt transistors. However, overall current is dictated by 6-bits of NMOS and 

PMOS degeneration devices, separated into two groups of control: coarse and fine. Since 

generating an on-chip current reference would consume excessive static power, current 

starving devices are instead sized to operate as resistive elements (i.e. in the triode regime) 

when driven by full-swing input signals (i.e. at VDD). For manufacturing and operational 

reliability, the ring oscillator is designed to operate from 100 kHz to 10 MHz across process 

corners and VDD variation. To achieve the high-end frequencies in slow process corners, 
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low-Vt devices are used for the coarse[2] control signal. To achieve low-end frequencies at 

fast process corners, two-bits of capacitive tuning are included in each inverter delay 

element. To minimize active CV2 energy consumption, these extra capacitors should not be 

activated unless it is necessary to achieve the desired operational frequency. During standby 

mode, the oscillator is put into a low-leakage state by gating the output and gating all current 

starving elements.

The data modulator consists of digital logic that is manually designed primarily using low-Vt 

-based standard cells in order to minimize CV2 f switching power losses that occur at the 

data modulation frequency. A schematic of the main data path is shown in Fig. 7. It accepts 

a digital clock from the ring oscillator (labeled as osc in Fig. 7) for simple fully-integrated 

testing, or can accept externally driven serial data (labeled as data in Fig. 7) for benchtop 

testing or eventual system integration with a separate sensor. Depending on if OOK or FSK 

modulation modes are enabled (via enOOK and enFSK signals, respectively), either the 

power-oscillator biasing transistors (Mf[5:0] in Fig. 4), or the capacitive DAC transistors 

(Ms 1–3) are activated, respectively. FSK is achieved by switching between two different 

programming codes (i.e., frequencies), set by FSK0[7 : 0] and FSK1[7 : 0]. A inverter-

transmission gate circuit [6] is used to create phase-matched differential signals to drive a 

multiplexor selecting one of FSK0 or FSK1 at a time.

To decrease the standby current of the power oscillator biasing devices (Mf[5:0]) for a given 

on-current, the modulator output signals are driven from the VPUMP supply. A similar effect 

is arranged for the capacitive DAC to increase its quality factor. Level-conversion to the 

higher voltage is achieved using a standard cross-coupled level shifter circuit. Since the 

output is single-ended, a dummy driver load is installed for edge transition matching 

purposes. The entire modulator is power gated by PMOS devices MP1 and MP2 whose 

inputs are driven by enPGATE - a signal driven from the VPUMP supply. Power gating saves 

upwards of 4,000X in leakage power from the VDD supply (MP1), and 20X from the VPUMP 

supply (MP2). The savings are larger from MP1 since the device enters the super cut-off 

regime upon application of VPUMP to its gate. The size of power gating devices are 

annotated in Fig. 7, with MP1 and MP2 having on-resistances of approximately 1.8kΩ and 

600Ω at 15µA and 35µA respectively. The area overhead of power gating here is minimal, 

occupying the area of approximately six NAND gates in this design.

The output of the ring oscillator also clocks a counter and comparator that are used to set the 

number of bits transmitted in a single packet. The counter, whose schematic is shown in Fig. 

8, uses a ripple-carry frequency divider for the first two registers. The final two counter 

stages use a synchronous design that is pre-scaled to reduce the critical path, enabling 

sufficiently fast operation at low voltages using low-leakage devices [33], [34]. Although 

the counter itself is a 7-bit design, only the final 5-bits are applied to the comparator, as the 

utility of transmitting 1–4-bit packets is limited. Furthermore, rather than designing a full 5-

bit adder to count to arbitrary 5-bit packet lengths, a simple 5-bit power-of-two comparator 

is used, enabling counting intervals ranging between 8 and 128 in powers of two only. This 

reduces the gate count by 3.6X, resulting in a low-complexity, low-leakage design. The 

counter is power gated by a single PMOS device (size: 6µm/0.18µm, or an approximate 

overhead of 3%), nominally saving 18X in standby power. Since the circuit operates using 
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the VDD supply, it is possible to gate the PMOS device with the VPUMP supply, forcing the 

transistor into super cut-off, and saving an additional 2.6X in leakage, or 48X in total. The 

on-resistance of the PMOS is approximately l.2kΩ at 10µA.

A start-up logic block is designed to receive an activation signal, nominally generated by the 

boost converter, which disables the appropriate power gating devices and initializes the ring 

oscillator and modulator. Since the start-up block itself cannot be power gated, it is designed 

using almost exclusively high-Vt devices for minimal leakage power consumption.

D. Wireless Energy Receiver and Power-on Reset

The wireless energy receiver circuit design is already included in Fig. 4. In fact, since the 

antenna can be modeled as an inductor that has a center tap, creating a full bridge rectifier is 

as simple as placing two diodes between the two ends of the inductor, connected to ground 

(diodes D1 and D2 in Fig. 4). Interestingly, these diodes are in fact already required for ESD 

protection. Thus, adding wireless power transfer functionality does not add any additional 

complexity and, more importantly, does not add any additional parasitic capacitance on the 

sensitive antenna interface nodes. As described in Section III, reduced parasitics on these 

nodes permit the design of a larger, more efficient antenna given a resonant frequency 

requirement of 2.4 GHz. Naturally, diodes D1 and D2 only protect the ground supply; 

additional diodes are required to protect the positive (i.e. VDD) supply. However, since the 

antenna is center-tapped and biased at VDD, the power oscillator output RF signals naturally 

swing symmetrically above and below VDD. If only a single set of diodes were placed to 

protect VDD, these RF voltage swings would be limited to a single diode drop. The solution 

here is to instead stack three diodes in series.

Following wireless energy delivery for the purpose of initializing VDD, it is of critical 

importance to ensure the chip is reset to a known-good state. If, for example, the power 

oscillator gating switches were somehow enabled after the external wireless energy source 

was removed, the on-current would be large enough to catastrophically collapse the VDD 

supply. To avoid such an event, a reliable POR is required. Fortunately, creating a POR 

signal can be achieved in a very low-complexity, low-leakage manner. Since the charge 

pump supply, VPUMP, requires 600 ms to initialize following VDD initialization [9], [10], a 

simple inverter structure can be used to generate the requisite POR signal, as illustrated in 

Fig. 4. Specifically, an inverter powered from the VDD supply with VPUMP at the input will 

nominally output a logic high value until VPUMP crosses the inverter threshold (nominally 

several hundred milliseconds after VDD initialization). The inverter is designed with high-Vt 

transistors, since there is no opportunity to power-gate the initialization logic. The leakage 

impact of this inverter is negligible, however, since after the reset signal has been 

deactivated, the leakage of the inverter is set by the PMOS device which in this case is 

biased in super cut-off due to the presence of VPUMP as its input.

While the circuit is implanted it is not possible to directly measure kick-start and POR 

success with immediate feedback. Instead, successful start-up can be confirmed when the 

radio transmits its first packet.
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V. Measurement Results

The transmitter was fabricated in a 0.18 µm process and occupies a core area of 0.035 mm2. 

The overall die size is 2.4 × 2.4mm2 including the DC/DC converter, as shown in Fig. 9; the 

design is thus severely pad-limited (future revisions can reduce the pad count substantially 

by providing programming, testing, and calibration functionality through a scan-chain). To 

minimize packaging parasitics and size, the chip was directly wire-bonded to a PCB using 

chip-on-board packaging technology. Exposed copper pads on the PCB were finished with 2 

µm of soft gold over 6.4 µm of nickel for wirebonding compatibility. The chip was directly 

bonded to an on-board 3×4 mm2 antenna. A photograph of the board is shown in Fig. 10. 

Table II summarizes the transmitter results.

A. RF Performance

Since the antenna is part of the resonant network of the power oscillator, it was not possible 

to directly test or probe the output power of the transmitter. Instead, wireless testing was 

performed, unless otherwise specified, by placing the center conductor of a 2.4 GHz, λ/4 

whip antenna approximately 5 mm from the loop antenna. Testing the radio transmitter with 

this setup revealed that the maximum wirelessly received power was −21.9 dBm when 

operating with VDD = 1.0 V and the maximum current setting in the power oscillator. Figure 

11 reveals measurements for additional supply voltages across all power oscillator tuning 

bits. When placing the whip antenna at a distance of 1 m from the loop antenna, the 

maximum wirelessly received power was measured to be approximately −60 dBm. These 

measurements suggest that the maximum output power of the transmitter is approximately 

−20 dBm. Figure 12 shows the consumed power of the transmitter when in active mode 

under the same conditions. The power oscillator achieved a phase noise of −105 dBc/Hz at 1 

MHz offset.

Figure 13a shows measured OOK spectral results modulated by random externally-derived 

bits at data rates of 1 Mbps and 10 Mbps. Achieved −3 dB bandwidths and energy per bits 

for 1 Mbps and 10 Mbps data rates are 620 kHz and 2 MHz, and 191 pJ/bit and 19 pJ/bit, 

respectively. No explicit filtering is performed here; the attenuated side-lobes may be 

attributed to antenna filtering and oscillator start-up transient effects. Interestingly, there is 

no apparent feed-through component found in the spectrum, which is typical for non-phase 

scrambled OOK transmitters. This implies that the PO start-up is not coherent, and has a 

certain amount of randomness in its phase. Fortunately, this results in a more desirable 

spectrum, as OOK is normally use in non-coherent communication systems anyways. Figure 

13b shows measured spectra using FSK and near-MSK modulation. The power oscillator 

achieves a frequency tuning range from 2.1 GHz to 2.54 GHz across the 8-bit capacitive 

DAC when resonating with the on-board 3×4 mm2 inductive loop antenna, matching 

simulated results well.

The transmitter is capable of starting-up in 180 ns, as shown in Fig. 14, enabling rapid and 

aggressive duty-cycling into low-power sleep states. The start-up time is dictated primarily 

by the slow, high-Vt logic in the start-up block, which in simulations requires approximately 

120 ns to propagate the initialization signal through a D flip-flop and a small number of 
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logic gates. Note that during this period the PO is not activated, and the overall transmitter 

power consumption is still dominated by leakage.

B. Ring Oscillator

By tuning the current starving and capacitive loading bits, the ring oscillator was measured 

to generate clock frequencies from below 100 kHz to at least 100 MHz while consuming 

between 14 nW and 19 µW across supply voltages ranging from 0.7 V to 1.0 V. This large 

amount of configurability was required to be able to generate the requisite frequencies 

across severe PVT variation. To show the effects of current starving versus capacitive 

tuning, the measured energy required per output cycle, plotted versus achievable 

frequencies, is illustrated Fig. 15. Here, it is clear to see four distinct zones of energy 

consumption - a result of the four capacitive loading options, enC[1 : 0]. Although the ring 

oscillator consumes a small fraction of the total transmitter active energy budget, its energy 

efficiency is clearly maximized at the lowest capacitive loading setting.

C. Power Consumption

By implementing a low-complexity architecture together with leakage-aware design 

considerations, the transmitter standby power consumption was measured to be 39.7 pW at a 

supply voltage of 0.8 V. Table III summarizes the measured transmitter standby power at 

several different voltages and compares the results to simulated results at 0.8 V. The 

simulated results matched the measured results with a reasonable amount of accuracy, 

landing somewhere in between the simulated results in the TT and FF corners (with the 

exception of the digital supply, which resulted in higher power than the FF corner, though 

this was a minor component overall). The leakage power from the VPUMP and ring oscillator 

supplies are the largest since they were not power gated by a transistor in super cut-off (it 

was simply not possible for VPUMP, while the ring oscillator was designed before the charge 

pump and not later modified during the design cycle). Total transmitter standby power 

measured at various supply voltages are shown in Fig. 16. Low-current measurements were 

performed using a Keithley 6430 sourcemeter together with low-leakage tri-axial cables.

To minimize the energy required to transmit a bit of information during active mode, it is 

worthwhile to operate the PO at an intermediate back-off point. For example, at VDD = 0.8 

V, a data rate of 5 Mbps, and a measured output power of at least −26 dBm or −29 dBm, the 

transmitter consumed 374 µW or 191 µW for FSK and OOK modulations, respectively. This 

results in a energy efficiency of 75 pJ/bit or 38 pJ/bit for FSK and OOK, respectively. A 

power breakdown of these two operating points is shown in Table IV.

Combining this active-mode data point in OOK mode together with leakage power as 

suggested by Equation 1, results in the total average transmitter power consumption of 

PTX,avg = 78 pW at an average data rate of 1 bps. In fact, the transmitter can achieve average 

data rates up to 5X higher while maintaining an average power consumption below the 250 

pW power budget specified by the endocochlear potential harvesting applications. Table V 

summarizes the chip results compared to existing state-of-the-art.
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VI. Conclusions

This paper has presented the design of a radio transmitter that was optimized for aggressive 

duty-cycling between an energy-efficient active mode and an ultra-low-power standby mode 

for low data rate applications. By employing aggressive power gating, sizing, and 

architectural strategies, the transmitter consumed 39.7 pW in standby mode. Integrated with 

an on-board antenna, and employing a direct-RF power oscillator architecture with 

automatic impedance matching, the transmitter required 38 pJ to transmit a single bit of 

information. Operating at a duty ratio of 0.00002% and transmitting an average of 1 bps, the 

transmitter achieved an average power consumption of 78 pW. The transmitter was then 

used within an energy harvesting platform that extracted energy from the endocochlear 

potential within the inner-ear, demonstrated the feasibility of sub-nW radio transmitter 

designs.
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Appendix - Antenna Calculations

A circular loop antenna’s inductance can be approximated by Equation 2.

(2)

Here, µ is the permeability of the surrounding environment, D is the diameter of the loop, 

and d is the diameter of the constituent wire [35].

The antenna’s series resistance, RANT, is made up of a radiation resistance, RRAD, and a loss 

resistance, RLOSS-The radiation efficiency, ηRAD, can be calculated using:

(3)

The radiation resistance can be approximated by:

(4)

Here, ε is permittivity, A is the antenna’s area in units of m2, and λ is the operational 

wavelength. The loss resistor, RLOSS can be calculated in the usual way from metallic 

conduction properties, taking into account the skin effect. The skin depth, δs, is given by 

Equation 5, and the associated loss resistance, RLOSS, is given by Equation 6.

(5)
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(6)

Here, σ is the metallic conductance, while dL and dW are the length and width of the PCB 

trace (an appropriate approximation for flat PCB traces).
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Fig. 1. 
Architecture of the endocochlear potential harvesting, sensing, and communicating system.
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Fig. 2. 
Simplified block diagram of the direct-RF power oscillator transmitter.
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Fig. 3. 
Electromagnetic simulation results for varying the antenna height for a fixed, 3 mm antenna 

width.
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Fig. 4. 
Detailed circuit schematic of the 2.4 GHz radio transmitter with integrated wireless energy 

receiver. High-Vt switches are shown in green, and signals operating from the charge pump 

supply are shown in red with dash-dot lines.
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Fig. 5. 
Simulated capacitor quality factor versus parasitic switch capacitance for single-ended and 

differential switches.
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Fig. 6. 
Current-starved ring oscillator schematic. High-Vt devices are shown in green.
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Fig. 7. 
Main data path of the modulator.
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Fig. 8. 
Circuit schematic of the 7-bit (5-bit output) counter, with the 5-bit comparator used to set 

the transmitted packet length.
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Fig. 9. 
Die photograph.
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Fig. 10. 
Photograph of the chip-on-board package (the protective epoxy covering the chip is not 

shown for clarity).
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Fig. 11. 
Active-mode output power of the radio transmitter measured from approximately 5 mm 

from the on-board loop antenna, plotted versus power oscillator current configuration 

settings.
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Fig. 12. 
Measured active-mode power consumption of the transmitter plotted versus power oscillator 

current configuration settings.
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Fig. 13. 
Measured spectra taken using a λ/4 whip antenna a few centimeters from the on-board loop 

antenna.
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Fig. 14. 
Measured transient response, showing a 180 ns startup time between an enable signal and 

RF output.
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Fig. 15. 
Measured energy required for every cycle of the ring oscillator at VDD = 0.8 V.
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Fig. 16. 
Measured standby power of the radio transmitter plotted versus various system supply 

voltages.
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TABLE II

Summary of chip results

Technology 0.18 µm Standby power (0.8 V) 39.7 pW

Core area 0.035 mm2 Active power (0.8 V) 191 µW

Supply 0.8–1.0 V Active E/bit (5 Mb/s) 38 pJ/bit

Inst. data rate 1–10 Mb/s Average power (1 b/s) 78 pW

PN @ 1MHz −105 dBc/Hz Max output power (IV) −20 dBm
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