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We predict that guiding center (GC) diffusion yields a linear and nonsaturating (transverse) magnetoresistance
in 3D metals. Our theory is semiclassical and applies in the regime where the transport time is much greater than
the cyclotron period and for weak disorder potentials which are slowly varying on a length scale much greater
than the cyclotron radius. Under these conditions, orbits with small momenta along magnetic field B are squeezed
and dominate the transverse conductivity. When disorder potentials are stronger than the Debye frequency, linear
magnetoresistance is predicted to survive up to room temperature and beyond. We argue that magnetoresistance
from GC diffusion explains the recently observed giant linear magnetoresistance in 3D Dirac materials.

DOI: 10.1103/PhysRevB.92.180204 PACS number(s): 75.47.−m, 72.15.Gd

Magnetoresistance provides a powerful means with which
to probe the scattering history of particles in a magnetic
field. Departure from the conventional paradigm—quadratic
magnetoresistance at low fields, saturating at high fields
[1]—signals anomalous particle scattering behavior. One
particularly appealing regime is nonsaturating and linear
magnetoresistance (LMR), which has a long standing history
[2–5] given its potentially disruptive technological impact [6].

Very few theories predict LMR in a closed single compo-
nent Fermi surface. A well known example is Ref. [7], which
showed that Dirac metals in the extreme quantum limit (when
only the n = 0 Landau level is occupied) exhibit LMR in the
presence of screened Coulomb impurities. Another mechanism
yielding quasilinear MR arises from inhomogeneity [8–10].
However, significant LMR in these requires strong inhomo-
geneity [10]. Contemporary proposals that extend the above
treatments have also found LMR under similar requirements
[11,12].

Recently, giant LMR that lie outside the above two
paradigms [see (i) and (ii) below] were reported in the newly
discovered class of three-dimensional Dirac materials (3DDM)
[13–17]. LMR in 3DDM exhibit puzzling features including
(i) its occurrence when multiple Landau levels are occupied
far from the extreme quantum limit, and (ii) arising in weakly
disordered, high mobility samples. Further, LMR manifests
consistently over a variety of 3DDM experiments, including
in TiBiSSe [13], Cd3As2 [14,15], Na3Bi [16], and TaAs [17],
where chemical potential μ typically lies 0.1 eV above the
Dirac point, hinting at a single underlying explanation.

Here we propose a semiclassical mechanism for LMR in
metals, wherein charge transport is dominated by guiding
center (GC) motion. Importantly, this mechanism naturally
gives giant LMR under (i) and (ii) above, explaining the
puzzling behavior [13–17]. The main requirement is that the
disorder potential is smoothly varying on a scale ξ which is
large as compared to the cyclotron radius rc. The main features
of GC magnetoresistance are exposed by writing the transverse
resistivity as

ρxx = σxx

σ 2
xx + σ 2

xy

= G
σxy

, G = tanθH

1 + [tanθH ]2
, (1)

where σxx and σxy are the transverse (x-y plane) conductivity
and Hall conductivities, respectively, and tanθH = σxy/σxx is
the Hall angle. Using the familiar σxy = ne/B with n the
density and e the carrier charge, we have

ρxx = BG
ne

. (2)

As we argue below, in the regime of ωcτtr � 1 and ξ � rc,
GC diffusion gives a Hall angle, and therefore G, that is
independent of magnetic field magnitude, leading to LMR in
Eq. (2). Here ωc is the cyclotron frequency, τtr is the transport
time, and the magnetic field B = B ẑ.

Guiding center magnetoresistance can be understood as
follows. In semiclassically large B fields (ωcτtr � 1), electrons
exhibit in-plane trajectories r⊥(t) characterized by slow guid-
ing center motion R(t) accompanied by fast cyclotron orbits
rcycl(t). The latter, characterized by rc, depends on intrinsic
material properties and B; whereas the former depends on the
potential profile sampled by the electron over one cycle which
can yield unusual trajectories [18]. A unique situation arises for
slowly varying disorder potentials V (r). In this regime ξ � rc

[see Fig. 1(a)], electron trajectories are dominated by guiding
center motion which follows the local disorder landscape at R,
with velocity vgc = [∇RV (R)] × ẑ/B.

Guiding center diffusion is characterized by diffusion
constant D

gc
xx ∼ v2

gcτ . The central question is: what is τ? First,
it is important to note this picture is not valid in strictly 2D,
because GCs form closed orbits along equipotential lines.
Hence it is crucial to include motion in the z direction
which restores diffusive motion. There are two classes of
electron motion depending on their kz value with respect to
k∗
z [Fig. 1(b)]. For kz > k∗

z , electrons possess kinetic energy
in the z direction exceeding the typical potential fluctuation.
As a result, the electron moves freely across many potential
fluctuations shown in Fig. 1(d). Within time τ> ≈ ξ/vz,
the GC senses a different local electric field and changes
direction. As a result, D

gc
xx(kz > k∗

z ) ∼ v2
gcτ> ∝ 1/B2. Using

σxy = ne/B and Eq. (1), we recover the standard saturated
magnetoresistance.

On the other hand, electrons with kz < k∗
z are typically

squeezed by a local potential barrier. As shown in Fig. 1(c),
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(a) (b)

(c) (d)

FIG. 1. (Color online) (a) Magnetoresistance can be dominated
by guiding center (GC) motion when disorder correlation lengths ξ �
rc. Here rc is the cyclotron radius. This regime is characterized by slow
GC motion, vgc = ∇rV (r) × ẑ/B, accompanied by fast cyclotron
orbits, vcycl. GC diffusion in this environment givers rise to LMR.
(b) Electrons perform closed orbits of the Fermi surface, with GC
motion classified into two types, kz < k∗

z (red) and kz > k∗
z (blue);

critical k∗
z (green). (c) For kz < k∗

z , electrons are squeezed in z

yielding mean free paths � ≈ ξ and in-plane Dxx ∼ vgcξ ∝ 1/B. (d)
In contrast, kz > k∗

z electrons exhibit unconstrained z motion yielding
in-plane Dxx ∼ v2

gcξ/vz ∝ 1/B2 (see text).

they must travel sideways by a distance ξ to get around the
barrier. In this case, τ< ≈ ξ/vgc and D

gc
xx ∼ vgcξ ∼ 1/B; LMR

follows immediately from Eqs. (1) and (2). Paradoxically for
large B, it is the electrons squeezed in the z direction which
dominate transport in the x-y plane, leading to LMR. The
importance of squeezed electrons was pointed out by Refs. [19]
and [20] in the context of magnetotransport of Boltzmann
gases. We adapt their reasoning to the case of a degenerate
Fermi sea and present a more quantitative treatment below.

We emphasize that our mechanism for LMR does not have
anything to do with the Dirac spectrum per se. Nevertheless,
3D Dirac semimetals provide an ideal venue that satisfy
the conditions required for LMR. First, the high mobility
of 3DDM (η � few × 104 cm2/Vs) allows the regime where
electrons undergo many cyclotron orbits before scattering,
ωcτtr = Bη � 1, to be achieved at relatively low magnetic
fields. Second, the relatively small chemical potential μ ∼
100 meV but large Fermi velocity vF ∼ 1 − 10 × 108 cm/s
[15] give small cyclotron radius rc ∼ μ/evF B = 10–100 nm
even at 1 T. Third, large dielectric constants of κ ∼ 40 [21,22]
effectively screen Coulomb impurities to yield weak and
slowly varying disorder potentials, with large correlation
lengths ξ ∼ 20–60 nm [22]. As a result, ξ � rc at relatively
low B � 1 T, allowing GC motion to dominate the x-y plane
(transverse) magnetoresistance.

We note parenthetically that our regime of interest is distinct
from multicomponent systems, e.g., charge compensated
systems which can be ultrasensitive to magnetic field [23,24].
Instead we are interested in LMR in 3DDM [13–17] which

were observed in the metallic regime with carriers of a single
type [14].

We begin by considering the diffusive motion of charged
particles in a magnetic field B = B ẑ and a slowly varying
and weak disorder potential V (r). While formally interested
in 3DDM, our analysis below is general; we will only specify
3DDM as needed to compare to recent experiments. Disorder is
characterized by 〈V (r)V (r′)〉 = V 2

0 F(|r − r′|/ξ ), where 〈O〉
denotes disorder averaging and ξ the correlation length. F is a
dimensionless function that vanishes for |r − r′| � ξ . Lastly,
we will be interested in weak disorder strength eV0 < μ seen
in 3DDM experiments [13–17] and recent estimates [22].

Equations of motion. The motion of particles on the Fermi
surface with chemical potential μ can be described by the
semiclassical equations of motion

mv̇⊥ = −e∇rV (r) + ev⊥ × B, (3a)

mv̇z = −e∂zV (r), (3b)

where m is the cyclotron mass, v⊥(kz,μ) = (vx,vy), and
vz(kz,μ) are velocities transverse to the magnetic field and
along the magnetic field, respectively. We note that throughout
our analysis below, these quantities depend on momentum
along the field, kz, and μ. For, e.g., velocity is captured via
group velocity vk = �

−1∂εk/∂k so that the x-y plane speed for
Dirac particles is |v⊥| = v0 = vF

√
1 − k2

z /k2
F , and m = μ/v2

F

[25], where vF is Fermi velocity and kF the Fermi wave vector;
εk is the particle dispersion. For brevity, we will drop explicit
mention of kz dependence, bringing it up when necessary. We
do not expect Berry phase related terms to contribute to the
transverse magnetoresistance behavior that we are interested
in here [26].

The trajectories of charged particles r(t) in crossed B and
V (r) can be complex, since they involve transport processes
spanning multiple time scales (e.g., cyclotron period, guiding
center scattering time, and transport time). However, in
semiclassically strong fields (ωcτtr � 1), and for a slowly
varying potential so that correlation length is larger than
cyclotron radius (ξ � rc), its motion is conveniently captured
via r(t) = R(t) + rcycl(t). Here R(t) is the slow moving 3D
guiding center coordinate, whereas rcycl(t) describes fast
cyclotron motion lying in the x-y plane.

This reasoning yields the following ansatz for velocity in
the r⊥ = (rx,ry) plane v⊥ as [18]

ṽ⊥(t) = v0e
iωct + ṽgc(t), ṽgc = iẼ(r̃⊥)

B
, (4)

where ωc = eB/m, and we used complex notation
Ox + iOy = Õ for vectors in the x-y plane. The latter
part of Eq. (4) was obtained by substituting the ansatz into
Eq. (3a) and setting mv̇gc = 0 for slowly varying V (r̃).
Equation (4) is valid for |mv̇gc| � |eE(r̃⊥)|. Estimating
E ≈ V0/ξ , we obtain the condition

ξ 2 � eV0

ω2
cm

= r2
c

eV0

μ
, where rc = v0

ωc

. (5)

Since we are interested in weak disorder eV0 < μ, the above
condition is satisfied within our regime of validity, ξ � rc.
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Motion in z can be understood in the following way. First,
we note that for ξ � rc and ωcτtr � 1, the potential the
electron feels is determined by 〈r(t)〉1 cycle = R(t). Next, for
vgc � vz electrons, the GC moves slowly in the x-y plane as
compared with z. As a result, integrating Eq. (3b) yields energy
conservation

m

2

{
v2

z [R(t)] − v2
z [R(0)]

} = −e
{
V [R(t)] − V [R(0)]

}
, (6)

where we have set ∇r⊥V (r) · ∂tr⊥ = 0. This is valid when
|∇r⊥V (r) · ∂tr⊥| � |vz∂zV (r)|. Estimating |∂tr⊥| ≈ vgc and
using disorder that is isotropic yields the original condition
vgc � vz.

Guiding Center Transport. The separation of time scales
between slow GC motion and fast cyclotron motion enables
us to write the velocity correlator as

〈v⊥(t)v⊥(0)〉 ≈ 〈vgc(t)vgc(0)〉 + v2
0e

iωct−t/τtr , (7)

where we have used a relaxation-time approximation in the last
term to capture the Drude contribution to magnetotransport
[18]. Replacing r(t) with its average over one cycle as
above, and using Eq. (4), we find GC diffusion, D

gc
xx =

(1/2)
∫ ∞

0 〈vgc(t)vgc(0)〉dt , as

Dgc
xx =

∫ ∞

0
〈E[R(t)]E[R(0)]〉dt/(2B2) = E2

0τ/(2B2),

τ =
∫ ∞

0
dtF(
R/ξ ), (8)

where 
R = |R(t) − R(0)|, E0 is the characteristic electric
field strength of the disorder potential, and τ is the scattering
time that is sensitive to the GC trajectory.

We adopt a mean-field approach in estimating τ . Since F
rapidly decays for 
R > ξ , τ is most sensitive to the way the
GC moves in 
R(t) < ξ . As a result, we write d
R = vavdt ,
with speed vav = [〈vgc〉2

ξ + 〈vz〉2
ξ ]1/2 averaged over a single

domain; here 〈O〉ξ denotes averaging across a single domain.
Changing variables t → 
R yields

τ ≈ ξA[〈vgc〉2
ξ + 〈vz〉2

ξ

]1/2 , A =
∫ ∞

0
dxF(x), (9)

where A is a number of order unity. Using gaussian corre-
lations, 〈V (x)V (0)〉 = V 2

0 F(x) = V 2
0 e−x2/ξ 2

, we obtain A =√
π/2 and E2

0ξ
2 = 6V 2

0 .
Two distinct classes of GC trajectories can be discerned:

(a) squeezed z motion [Fig. 1(c)] and (b) unrestricted z

motion [Fig. 1(d)]. Squeezing in class (a) arises from energy
conservation in Eq. (6): For particles with mv2

z /2 < V (r), z

motion is constrained within a V (r) puddle. It escapes when
GC diffuses out of the V (r) puddle [Fig. 1(c)]. Squeezing
yields 〈vz〉ξ that vanishes and vav ≈ 〈vgc〉ξ ≈ E0/B. As a
result, Eq. (9) yields τ< ≈ ξA/〈vgc〉ξ and

Dgc
xx = E0ξA

2B
, for vz � (e2V0/m)1/2 = v∗, (10)

corresponding to electrons in Fig. 1(b) with kz < k∗
z ; k∗

z

depends on the dispersion relation and v∗. For 3DDM, �k∗
z =

(e2V0μ/v2
F )1/2. We note that Eq. (6) can only be used for

electrons with vz � vgc, Eq. (6). However, in the opposite
limit vz � vgc, 〈vz〉2

ξ is obviously smaller than 〈vgc〉2
ξ in

Eq. (9), allowing us to neglect the former’s contribution,
yielding D

gc
xx as in Eq. (10). As a consistency check, we note

that v∗ � vgc for our regime of validity ξ � rc, eV0 < μ.1

Therefore v∗ determines the range of electrons that obey
Eq. (10).

In contrast to Eq. (10), electrons with vz � v∗ do not have
z motion squeezed [case (b), see Fig. 1(d)]. As a result,
GC samples many V (r) domains, with its x-y plane velocity
scrambled over times τ> ∼ ξ/vz, yielding an x-y plane mean
free path � ∼ vgcξ/vz. This is captured in Eq. (9) whence
〈vgc〉ξ � 〈vz〉ξ , giving vav ≈ 〈vz〉ξ ≈ vz. As a result, Eq. (9)
yields D

gc
xx ∝ 1/B2. Importantly, for sufficiently large B,

vz > v∗
z electrons, while mobile in the z direction, exhibit

suppressed x-y plane mobility as compared with vz < v∗
z . As

a result, class (a) trajectories dominate x-y plane transport.
Linear magnetoresistance in 3DDM. To illustrate the

striking effects of GC diffusion we specialize to 3DDM. Using
the Einstein relation, and Eqs. (8)–(10), we obtain

σ gc
xx = e2

∑
k

Dgc
xx(kz)δ(εk − μ) = α

[
1

B
+ B̃

B2

]
, (11)

where εk is the electron energy, α/(e2ν2D) ≈ E0ξAk∗
z /(4π ),

and B̃ ≈ (E0/v∗) × ln(kF /k∗
z ). Here we have used the 2D den-

sity of states for a kz slice in 3DDM as ν2D(μ) = ∑
kx ,ky

δ(εk −
μ) = μ/2π�

2v2
F , and D

gc
xx(kz) obtained from the two trajectory

classes (a) and (b). We note that the first term dominates over
the second when B > B̃. It is useful to rewrite this condi-
tion as rc < ξK, where K = √

2(μ/eV0)1/2(ln[kF /k∗
z ])−1 �

1, since we are interested in μ > eV0. Hence, the
first term always dominates in our regime of validity,
ξ � rc.

In the same way, the second term in Eq. (7) yields the usual
expressions

σ cycl
xx =

∑
kz

ζ τtr, σxy =
∑
kz

ζωcτ
2
tr ≈ ne

B
, (12)

where ζ = e2ν2D(μ)v2
0/[2(1 + ω2

cτ
2
tr )]; we have taken ωcτtr �

1 limit in the last expression. Since σ
cycl
xx ∝ 1/B2, for suffi-

ciently large fields it provides a negligible contribution to σxx

as compared with Eq. (11).
An important diagnostic of magnetotransport is the Hall

angle, tanθH = ρxy/ρxx = σxy/σxx . Using Eq. (11) and writ-
ing σxx = σ

gc
xx (neglecting σ

cycl
xx since ωcτtr � 1), we obtain a

B-field magnitude independent

tanθH = 2√
27π

(
μ

eV0

)3/2

, (13)

where we have used n = μ3/6π2
�

3v3
F for a single fermion

flavor in 3DDM and gaussian correlated 〈V (r)V (r′)〉. We
note that the Hall angle changes sign when B field flips
sign. Interestingly, the Hall angle can be tuned by V0 and
μ. Estimating V0 ≈ 20 mV in 3DDM [22] and μ ∼ 0.1 eV
[13–17], we obtain tanθH ≈ 2.4.

1Using Eq. (4), Eq. (10), and E0 ≈ V0/ξ yields v∗/vgc ≈√
2(ξ/rc)(μ/eV0)1/2.
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We note that tunable Hall angle [Eq. (13)] controls G.
Indeed, G is a nonmonotonic function of Hall angle (and
hence it depends on μ/eV0), reaching a peak when Hall angle
becomes unity.

To summarize, we find that under the conditions ωcτtr � 1,
ξ � rc, μ > eV0, G is independent of B field magnitude,
yielding LMR according to Eq. (2). Of the first two con-
ditions, ξ � rc can be expressed as B > Bc = mvF /(eξ )
which is a more stringent condition than ωcτtr � 1. This is
seen by estimating τtr using the Born approximation, giving
Bc that exceeds the field marking the onset of ωcτtr > 1
by a factor ∼(μ/eV0)2. Hence, we predict LMR as long
as B > Bc.

An important figure of merit for magnetoresistance is
the ratio MR = [ρxx(B) − ρxx(0)]/ρxx(0). Using Eq. (2), and
noting the mobility η = σxx(0)/ne, we obtain

MR = ρxx(B) − ρxx(0)

ρxx(0)
≈

(
η[cm2/Vs]

104

)
B[T]G. (14)

For typical η ≈ 1 − 20 × 104 cm2/Vs in 3DDM, Eq. (14)
yields giant MR ≈ 5–100 at B = 10 T. Here we have used
maximal G = 1/2. For fixed G, Eq. (14) is consistent with
Kohler’s rule [27] since it scales with mobility. This mirrors
the experiments where MR scaled with temperature dependent
mobility over a wide range of B [15].

We note that our treatment above follows through for other
dispersions as well, yielding LMR under the same conditions
of ωcτtr � 1, ξ � rc, μ > eV0. However, features, e.g., k∗

z , α,
and Hall angle are altered appropriately.2

Inelastic scattering. Energy relaxation through inelastic
scattering (e.g., through phonon scattering) in the z direction
can drastically affect GC motion by mixing squeezed z

with unconstrained z trajectories. Absorption of phonons
with �ω � V0 − m

2 v2
z relaxes the energy constraint [Eq. (6)],

allowing vz < v∗ electrons to jump out of V (r) troughs.
If τ< ≈ ξ/vgc � τin(ε = V0 − m

2 v2
z ), these electrons exhibit

2For, e.g., using a 3D parabolic dispersion εk = �
2|k|2/2m, we have

α the same as defined below Eq. (11) but with �k∗
z = √

2meV0 and
ν2D = m/2π�

2.

Dxx(kz) ∝ 1/B2. Here τin(ε) is the time for an electron to
absorb energy ε. Suppressed at low T , phonon-assisted escape
leads to LMR degradation when kBT � V0.

However, when typical V0 � �ωD, phonon-assisted escape
becomes difficult even at high temperatures since the maxi-
mum energy that can be absorbed from phonons is �ωD � V0;
ωD is the Debye frequency. As a result, in this regime LMR is
stable even at high temperatures and large fields, as recently
observed in Cd3As2 [14,15] where LMR persisted at 300 K
and high fields.

While detrimental to LMR from GC diffusion in 3D,
inelastic scattering can have the opposite effect in 2D. Con-
ventionally in 2D, GCs form closed orbits along equipotential
lines of a disorder potential yielding localization behavior [28].
However, for inelastic phonon scattering which is not so strong
to entirely disrupt the GC motion, but strong enough (ξ/vgc �
τin) to induce switching between adjacent equipotentials [29],
the GC trajectories can become open, moving through multiple
V (r) domains. In this regime, we speculate D2D

xx ∼ vgcξ ∝
1/B as above. Interestingly, 2D semiclassical regime LMR
was reported previously [30].

Semiclassical GC diffusion can conspire to produce LMR
in metals. Importantly, the requirements for GC magnetore-
sistance are modest, arising in the semiclassical regime with
multiple occupied Landau levels and for weak and smooth
disorder. Giant MR ratios, B-field magnitude independent Hall
angles, μ and V0 tunability, and stability at high temperatures
make GC diffusion and its magnetoresistance easy to identify
in experiment. Indeed, these features bear striking resemblance
to LMR measured recently in a variety of 3DDM [13–17].
Additionally, oscillatory motion of the GC trajectories along
B could have interesting, polarization-dependent, absorption
signatures in the Terahertz regime.

Acknowledgments. We thank Adam Nahum and Brian
Skinner for helpful discussions. J.C.W.S. acknowledges sup-
port from a Burke fellowship at Caltech. G.R. acknowledges
support from the Packard Foundation and the Institute for
Quantum Information and Matter (IQIM) an NSF funded
physics frontier center, supported in part by the Moore
Foundation. P.A.L. acknowledges the support of the DOE
under Grant No. DE-FG01-03-ER46076 and the hospitality
of the IQIM while this work was initiated.

[1] J. L. Olsen, Electron Transport in Metals (Interscience, New
York, 1962).

[2] P. L. Kapitza, Proc. R. Soc. London A 119, 358 (1928).
[3] R. Xu, A. Husmann, T. F. Rosenbaum, M.-L. Saboungi, J. E.

Enderby, and P. B. Littlewood, Nature (London) 390, 57 (1997);
A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F.
Rosenbaum, and M.-L. Saboungi, ibid. 417, 421 (2002); M.
Lee, T. F. Rosenbaum, M.-L. Saboungi, and H. S. Schnyders,
Phys. Rev. Lett. 88, 066602 (2002).

[4] F. Y. Yang, Kai Liu, K. Hong, D. H. Reich, P. C. Searson, and
C. L. Chien, Science 284, 1335 (1999).

[5] J. Hu and T. F. Rosenbaum, Nat. Mater. 7, 697 (2008).
[6] Y.-A. Soh and G. Aeppli, Nature (London) 417, 392 (2002).
[7] A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).
[8] C. Herring, J. Appl. Phys. 31, 1939 (1960).

[9] Y. A. Dreizin and A. M. Dykhne, Sov. Phys. JETP 36, 127
(1973).

[10] M. M. Parish and P. B. Littlewood, Nature (London) 426, 162
(2003); Phys. Rev. B 72, 094417 (2005).

[11] J. Klier, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 92, 205113
(2015).

[12] N. Ramakrishnan, M. Milletari, and S. Adam,
arXiv:1501.03815.

[13] M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 91,
041203(R) (2015).

[14] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P.
Ong, Nat. Mater. 14, 280 (2015).

[15] A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo,
Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C.
Canfield, and A. I. Coldea, Phys. Rev. Lett. 114, 117201 (2015).

180204-4

http://dx.doi.org/10.1098/rspa.1928.0103
http://dx.doi.org/10.1098/rspa.1928.0103
http://dx.doi.org/10.1098/rspa.1928.0103
http://dx.doi.org/10.1098/rspa.1928.0103
http://dx.doi.org/10.1038/36306
http://dx.doi.org/10.1038/36306
http://dx.doi.org/10.1038/36306
http://dx.doi.org/10.1038/36306
http://dx.doi.org/10.1038/417421a
http://dx.doi.org/10.1038/417421a
http://dx.doi.org/10.1038/417421a
http://dx.doi.org/10.1038/417421a
http://dx.doi.org/10.1103/PhysRevLett.88.066602
http://dx.doi.org/10.1103/PhysRevLett.88.066602
http://dx.doi.org/10.1103/PhysRevLett.88.066602
http://dx.doi.org/10.1103/PhysRevLett.88.066602
http://dx.doi.org/10.1126/science.284.5418.1335
http://dx.doi.org/10.1126/science.284.5418.1335
http://dx.doi.org/10.1126/science.284.5418.1335
http://dx.doi.org/10.1126/science.284.5418.1335
http://dx.doi.org/10.1038/nmat2259
http://dx.doi.org/10.1038/nmat2259
http://dx.doi.org/10.1038/nmat2259
http://dx.doi.org/10.1038/nmat2259
http://dx.doi.org/10.1038/417392a
http://dx.doi.org/10.1038/417392a
http://dx.doi.org/10.1038/417392a
http://dx.doi.org/10.1038/417392a
http://dx.doi.org/10.1103/PhysRevB.58.2788
http://dx.doi.org/10.1103/PhysRevB.58.2788
http://dx.doi.org/10.1103/PhysRevB.58.2788
http://dx.doi.org/10.1103/PhysRevB.58.2788
http://dx.doi.org/10.1063/1.1735477
http://dx.doi.org/10.1063/1.1735477
http://dx.doi.org/10.1063/1.1735477
http://dx.doi.org/10.1063/1.1735477
http://dx.doi.org/10.1038/nature02073
http://dx.doi.org/10.1038/nature02073
http://dx.doi.org/10.1038/nature02073
http://dx.doi.org/10.1038/nature02073
http://dx.doi.org/10.1103/PhysRevB.72.094417
http://dx.doi.org/10.1103/PhysRevB.72.094417
http://dx.doi.org/10.1103/PhysRevB.72.094417
http://dx.doi.org/10.1103/PhysRevB.72.094417
http://dx.doi.org/10.1103/PhysRevB.92.205113
http://dx.doi.org/10.1103/PhysRevB.92.205113
http://dx.doi.org/10.1103/PhysRevB.92.205113
http://dx.doi.org/10.1103/PhysRevB.92.205113
http://arxiv.org/abs/arXiv:1501.03815
http://dx.doi.org/10.1103/PhysRevB.91.041203
http://dx.doi.org/10.1103/PhysRevB.91.041203
http://dx.doi.org/10.1103/PhysRevB.91.041203
http://dx.doi.org/10.1103/PhysRevB.91.041203
http://dx.doi.org/10.1038/nmat4143
http://dx.doi.org/10.1038/nmat4143
http://dx.doi.org/10.1038/nmat4143
http://dx.doi.org/10.1038/nmat4143
http://dx.doi.org/10.1103/PhysRevLett.114.117201
http://dx.doi.org/10.1103/PhysRevLett.114.117201
http://dx.doi.org/10.1103/PhysRevLett.114.117201
http://dx.doi.org/10.1103/PhysRevLett.114.117201


RAPID COMMUNICATIONS

LINEAR MAGNETORESISTANCE IN METALS: GUIDING . . . PHYSICAL REVIEW B 92, 180204(R) (2015)

[16] J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. J. Cava, and
N. P. Ong, arXiv:1502.06266.

[17] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H.
Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys.
Rev. X 5, 031023 (2015).

[18] C. W. J. Beenaker, Phys. Rev. Lett. 62, 2020
(1989).

[19] D. G. Polyakov, Sov. Phys. JETP 63, 322 (1986).
[20] S. S. Murzin and N. I. Golovko, Sov. Phys. JETP 54, 166 (1991);

see the following for a review: S. S. Murzin, Phys. Usp. 43, 349
(2000).

[21] J.-P. Jay-Gerin, M. J. Aubin, and L. G. Caron, Solid State
Commun. 21, 771 (1977).

[22] B. Skinner, Phys. Rev. B 90, 060202(R) (2014).
[23] L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics (Pergamon,

Oxford, 1981).

[24] For, e.g., unconventional MR in charge compensated systems:
P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii,
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