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Abstract

Given an ordered set of points and an ordered set of geometric objects in the
plane, we are interested in finding a non-crossing matching between point-
object pairs. In this paper, we address the algorithmic problem of deter-
mining whether a non-crossing matching exists between a given point-object
pair. We show that when the objects we match the points to are finite point
sets, the problem is NP-complete in general, and polynomial when the ob-
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jects are on a line or when their size is at most 2. When the objects are line
segments, we show that the problem is NP-complete in general, and polyno-
mial when the segments form a convex polygon or are all on a line. Finally,
for objects that are straight lines, we show that the problem of finding a
min-max non-crossing matching is NP-complete.

1. Introduction

Finding a matching between pairs of plane objects that connects these
objects by a set of non-crossing line segments is a natural problem that has
been frequently studied in computational geometry. It is well known, for
instance, that given two sets of n points in the plane, say n red points and n
blue points, there always exists a non-crossing perfect matching between red
and blue points. In particular, it is not difficult to show that the minimum
Euclidean length matching, if it exists, is non-crossing. Kaneko and Kano [26]
survey a number of related results. Algorithms for finding minimum sum and
minimum bottleneck distance red-blue matchings are given in [18, 32].

In this paper, we investigate related questions for general plane objects
instead of points. Again, matchings are represented by line segments, but
here the endpoints can be placed anywhere inside the corresponding matched
objects. Note that as a consequence of the aforementioned result on points,
there always exists a non-crossing matching between two sets of objects. Here
we consider the problem where we are given object pairs (i.e. a point and
the geometric object it must be matched to) and need to find a set of non-
crossing matching edges, if one exists. This can be seen as a 1-regular graph
drawing problem with constraints on the location of vertices.

Related work. Problems on matchings have an important role in combina-
torial graph theory, both for theoretical and applied aspects; hence a lot of
research is devoted to the study of these problems (for example, see [29]).
Suppose we are given an embedding of a graph in the Euclidean plane, where
the vertices are points in the plane, edges are rectilinear line segments, and
weights on these edges represent the Euclidean distance between the vertices
they connect. Elementary geometry tells us that the sum of any pair of op-
posite sides of a convex quadrilateral is strictly smaller than the sum of the
diagonals. Remarkably, this implies that the minimum weight matching in
any straight line embedding of the complete graphs K2n and Kn,n consists
of pairwise non-crossing segments. These geometric graph problems can be
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Figure 1: An example of non-crossing matching for a set P={p1, p2, p3} of points and a
set T={t1, t2, t3} of plane objects.

solved using generic algorithms for weighted graphs. However, in the planar
case just mentioned, Vaidya [32] proved that it is possible to obtain special-
ized algorithms with better running times (the title of his paper is especially
suggestive: Geometry helps in matching). In particular, in [32] the run-
ning time of the generic algorithm for the bipartite case was reduced from
O(n3) to O(n2.5 log n). This was later improved to O(n2+ε) by Agarwal et
al. [2]. Similar results have been obtained for other matching variations, such
as bottleneck matching or uniform matching, in the work of Efrat, Itai and
Katz [18]. The authors consider matchings as an approach for the problem of
matching a point set A with a point set B, where A must be moved in some
way to coincide as much as possible with B or one of its subsets. This is a
fundamental problem in pattern recognition [7, 10, 11, 13, 14, 15, 23, 24, 25].
Another matching variation is C-matching as described by Ábrego et al. [1].
Here the authors consider the problem of matching a given set of points with
a set of geometric objects such that every geometric object contains exactly
two points. The objects they consider are circles and isothetic squares, and
show the existence and properties of such matchings. Bereg et al. [9] consider
C-matchings for axis-aligned squares and rectangles.

The non-crossing requirement in our problems is quite natural in geo-
metric scenarios (see for example [3, 4, 31]), and the family of geometric
problems that we consider has several applications; these applications in-
clude geometric shape matching [6, 16, 21, 22] (see also the references we
give for geometric pattern recognition), colour-based image retrieval [16],
and computational biology [17, 20].
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Our results. Throughout the paper, we let P := {p1, p2, . . . , pn} be a set of
points in the plane and T := {t1, t2, . . . , tn} be a set of plane objects. A
matching for a pair (P, T ) consists of a set of line segments, called edges, of
the form {p1m1, p2m2, . . . , pnmn}, where mi ∈ ti. A matching is said to be
non-crossing if no pair of matching edges properly cross. This is illustrated
in Figure 1.

We consider the problem of deciding whether a non-crossing matching
exists for a given pair (P, T ). In cases where a non-crossing matching always
exists, we consider the problem of finding the matching that minimizes either
the length of the longest edge, or the sum of the lengths of all the edges.

In Section 2, we study the case where the objects ti are finite point sets.
We prove that the decision problem is NP-complete in general, but becomes
polynomial when every ti has size at most two, or when all the ti are on a
line. In Section 3 we consider T to be a set of line segments and prove that
the (P, T ) matching problem is NP-complete. We also consider special cases,
such as the case when the line segments form a convex polygon surrounding
all points in P (Section 4), or the case when segments belong to a single
line (Section 5). We show that these special cases have polynomial solutions.
Finally, in Section 6, we consider the problem of matching points with lines.
In this variation, a non-crossing matching always exists; but we show that
the optimization problems are NP-hard.

2. Matching points with finite point sets

We first prove that if the objects ti are pairs of points, then we can
decide whether there exists a non-crossing matching in polynomial time. On
the other hand, if the sets ti may contain three points or more, the problem
becomes NP-complete. This situation is similar to that of the k-satisfiability
problem (k-SAT). In k-SAT we are given a boolean formula f of the form
C1∧C2∧· · ·∧Cm (where each Ci is an OR clause of k variables), and we are
required to find a truth assignment of its variables that satisfy the formula.
It is well-known that 2-SAT has a polynomial-time solution whereas k-SAT
is NP-complete for k ≥ 3. The 2-SAT problem can be solved in polynomial
time by exploiting the fact that, if in a clause a variable is set to false, it
forces the other variable to be set to true.
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Theorem 1. Given an ordered set4 P of points and an ordered set T of pairs
of points, there is an algorithm that decides in O(n2) time whether (P, T ) has
a non-crossing matching.

Proof. We will prove the theorem by showing that the given matching prob-
lem reduces to 2-SAT, which is known to have an O(n2) running time. As-
sume that the elements of each ti are labeled arbitrarily “Ti” and “Fi” (thus
ti = {Ti,Fi}). We think of each pi as a boolean variable, so that if we match
pi with Ti then pi is set to “true”, and if pi is matched with Fi, it is set to
“false”. Let Xi equal to Ti or Fi, and Yj equal to Tj or Fj. In O(n2) time,
we construct a 2-SAT instance having variables x0, x1, . . . , xn−1 as follows:
Consider the segments pi, Xi for all i = 0, 1, . . . , n − 1. For each pair of
intersecting segments pi, Xi and pj, Yj, we construct the 2-SAT clause

• (xi, xj) if Xi = Fi and Yj = Fj,

• (xi,¬xj) if Xi = Fi and Yj = Tj,
• (¬xi, xj) if Xi = Ti and Yj = Fj, or

• (¬xi,¬xj) if Xi = Ti and Yj = Tj.
With this construction is it easy to see that if there is a solution for (P, T )
where the two vertices pi and pj have a valid non-crossing perfect matching
pi, Xi and pj, Yj, then the corresponding 2-SAT clause has a valid truth
assignment if we set xi to Xi and xj to Xj. Conversely, if there exists a truth
assignment that sets a 2-SAT clause (xi, xj) to “true” then there exists a
matching for pi and pj. Therefore, the matching instance (P, T ) has a non-
crossing perfect matching if and only if the corresponding 2-SAT instance has
a valid truth assignment. Since the 2-SAT instance is constructed in O(n2)
time and solving 2-SAT is known to be possible in O(n2) time, the overall
complexity of the matching algorithm is O(n2).

2.1. Matching points with triples

Theorem 2. Given an ordered set P of points and an ordered set T of triples
of points, it is NP-complete to decide whether (P, T ) has a non-crossing
matching. The problem remains NP-complete even if each triple of points
is horizontally collinear.

4Here, and throughout the rest of the paper, by an ordered set we mean a totally
ordered set.
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Proof. First we argue that the problem is in NP. Our input is a set of point-
triple pairs. A matching can be specified combinatorially by listing which
point in each triple ti gets matched with the corresponding point pi. In time
polynomial in the length of the input, we can check whether such a matching
is non-crossing. Hence the problem is in NP.

It remains to show that the problem is NP-hard. We reduce from the
planar 3-SAT problem, which is a version of 3-SAT whose implication graph
(the bipartite graph having the variables on one side, the clauses on the other,
and an edge between a variable x and a clause C if and only if x appears in
C) is planar. Planar 3-SAT is known to be NP-hard [28]. Given an instance
SAT of the planar 3-SAT, we will construct an instance (P, T ) of the problem
of matching a set of points P to a set of triples T such that SAT has a valid
truth assignment if and only if (P, T ) has a non-crossing matching between
point-triple pairs. Every boolean variable in SAT is represented in (P, T ) by
points (or a triple in which two points are identical). Thus every point vi can
be matched in exactly two ways (see Figure 2). To each variable, we associate
a wire gadget that is composed of a set of pairs (vi, qi) (see Figure 3). These
pairs are chosen so that once the edge for one of the points is selected, all
the others are determined (given that we require a non-crossing matching).
Hence in a non-crossing matching, the wire can only be in one of two distinct
states, corresponding to the value of the variable. Such a wire can be split
using the gadget shown in Figure 4.

True False

vi vi

Figure 2: Variable gadget.

Finally, we associate a pair (pj, tj), pj ∈ P, tj ∈ T to the j-th clause of
the given 3-SAT formula, where tj is a triple of points. The three possible
edges connecting pj to tj correspond to the choice of the literal that will
satisfy the clause. The three line segments between pj and the three points
of tj interfere with the wires corresponding to the three variables used in the
clause. Using the layout of Figure 5, a matching edge for the clause crosses
an edge of the wire if and only if the value of the literal encoded in the edge
is not compatible with the value of the variable encoded in the wire. In other
words, pj connects to point a of tj (representing some variable vi of the j-th
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(a) Wire gadget (b) True signal (c) False signal
vi vi vi

Figure 3: Wire gadget.

Figure 4: Splitter gadget.
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clause of the 3-SAT formula) if and only if matching the variable gadget vi
as either true or false sets the literal representing a to true.

a b c

a ∨ b ∨ c

a b c

a ∨ b ∨ c

Figure 5: Clause gadget.

Using standard layout techniques for planar graphs (see [28]), we can
represent the variable-clause incidence graph of the given 3-SAT formula
using the wire and clause constructions above. This layout guarantees that
there exists a satisfying assignment for the 3-SAT instance if and only if there
exists a non-crossing matching for (P, T ). If the 3-SAT instance has a valid
truth assignment, then every clause has at least one literal set to “true”. In
the constructed matching instance, this is equivalent to connecting every pi
to at least one of the points in ti by a segment that does not cross any other.
On the other hand, assume that (P, T ) has a valid non-crossing matching.
Then every variable gadget has a non-crossing matching that connects a point
vi in either of two ways, “true” or “false”; moreover, this matching ensures
that in every clause gadget, a vertex pj has a non-crossing matching to at
least one of the three points of tj. If we now assign the values of the variable
gadgets in (P, T ) to the variables of the 3-SAT instance SAT , then every
clause in SAT will have at least one literal set to “true”. To conclude the
proof, we note that the number of points created in (P, T ) for every variable
and clause in SAT is a polynomial function of the input to the problem;
hence, our reduction is polynomial in the size of the input to the 3-SAT
instance.

Finally, observe that our wire and clause layout may be constructed such

8



that the points in a triple are collinear. Thus the problem remains NP-
complete even in this restricted version.

2.2. Matching points with k-tuples

Theorem 3. Given an ordered set P of points and an ordered set T of k-
tuples (where each ti is a set {ti1, ti2, . . . , tik} of k points), if every edge [pitij]
crosses at most c < 0.183k other edges of the form [pi′ti′j′ ], then there exists
a non-crossing matching between P and T .

Proof. We apply the probabilistic method [5], and match every point pi with
tij, where j is chosen randomly in {1, . . . , k}. We need to show that there
is a positive probability that the resulting matching is non-crossing. Let M
denote the random matching.

We define a bad event as two edges of M of the form [pitij] and [pi′ti′j′ ]
that cross. A bad event has probability either equal to 0 (if the edges are not
crossing) or to exactly q := 1/k2. Two bad events are dependent whenever
the two pairs of points of P involved intersect. Hence every bad event depends
on at most d := 2ck other bad events (since there are k possible edges for
each of two points, and every such edge intersects at most c others). By
Lovász’ Local Lemma [19], if

eq(d+ 1) ≤ 1

(where e is Euler’s number), then there is a nonzero probability that no bad
event occurs. This means that a non-crossing matching exists. This yields

e
1

k2
(2ck + 1) ≤ 1 (1)

c ≤ k

2e
− 1

2k
' 0.183k (2)

Note that our proof does not use geometry, so it is likely that the constant
0.183 can be improved. The proof can also be made constructive using a
recent result from Moser [30].

2.3. Matching points with k-tuples on a line

Theorem 4. Given an ordered set P of points and an ordered set T of k-
tuples of points on a line, we can decide in O(k3n2 + k2n3) time whether
(P, T ) has a non-crossing matching.
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Proof. Without loss of generality, assume all the tuples are on a horizontal
line L. Assume also that all points are on one side of L; otherwise we may
consider each problem separately as the matching edges on each side of L do
not interact. We now show how to build a dynamic programming table that
solves the problem.

A
p

L

Figure 6: Definition of a sub-problem.

In any solution to the problem, if a matching edge e is part of the solu-
tion, then there is no matching edge that intersects e. Therefore, we can con-
sider the regions on each side of e (sub-problems) separately and determine
whether they in turn have a valid solution. To achieve this, we will consider
the points of P top-to-bottom – the points with largest y-coordinate first,
– and based on possible matching edges, split the problem into independent
sub-problems. A sub-problem (P ′, T ′) is defined as follows (see Figure 6):
given a trapezoid A with one edge adjacent to L and an edge parallel to L,
we want to decide if it is possible to find a non-crossing matching completely
contained in the region A for all the points contained in A, i.e., we want
to solve the problem with P ′ = P ∩ A and T ′ containing the subsets of the
tuples of T contained in A. If A does not contain at least one point of P
(sub-problem of size 0), it is trivially true that there is a non-crossing match-
ing. Otherwise, to solve the sub-problem we consider the topmost point p in
A. It has at most k possible matching edges. If it has no possible matching
edge, i.e., if all points that p could be matched to in T are out of A, then
there is no valid matching.

Each of the possible matching edges for p defines two new independent
sub-problems (see Figure 7) in the trapezoids A1 and A2, whose sizes are
strictly smaller than that of the original problem, as there is one less point
to match. Each of the trapezoids A1 and A2 is defined by a possible matching
edge of p, an edge bounding A, the line L, and a line through p parallel to
L. Note that as p is the topmost point of A, then the region A \ (A1 ∪ A2)
contains no points of P ; this implies that the union of the regions of the

10



A1

p

A2A1

p

A2A1

p

A2

Figure 7: The three pairs of sub-problems to consider to decide if p can be matched.

sub-problems of A will contain all the points in A, and hence no point of P
will be ignored in the process.

To decide whether a matching exists for the original sets P and T , we solve
the sub-problem defined by the bounding box of both P and T . Notice that
all the sub-problems correspond to trapezoids defined by a pair of possible
matching edges or by the edges of the bounding box.

The dynamic programming table has kn + 2 rows and kn + 2 columns,
each of which corresponds to a possible matching edge or one of the left and
right edges of the bounding box; the cells correspond to sub-problems (a pair
of non-adjacent edges defines a trapezoid), and we fill them with true or false
values depending on whether or not a matching exists for the considered sub-
problem. Filling a cell of the table corresponds to first finding the topmost
point within the sub-problem in linear time, and then solving at most k pairs
of sub-problems, which implies at most 2k lookups in the table for each of
the O(k2n2) cells. Therefore, the total time and space required to solve the
problem is O(k2n2(k + n)) = O(k3n2 + k2n3).

Corollary 1. Given an ordered set P of points and an ordered set T of
triples of points on a line, we can decide in O(n3) time whether (P, T ) has a
non-crossing matching.

This corollary shows that the additional restriction of having points on
a line greatly simplifies the problem, because the problem is NP-hard in the
general case, but is polynomial for points on a line.

3. Matching points with line segments: general case

In this section we show that deciding the existence of a non-crossing
matching between a set of points and a set of line segments is NP-complete,
even if the segments are all horizontal.
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Theorem 5. Given an ordered set P of points and an ordered set T of
line segments, it is NP-complete to decide whether (P, T ) has a non-crossing
matching. The problem remains NP-complete even if all line segments in T
are horizontal.

Proof. First we argue that the problem is in NP. It suffices to show that only
a polynomial number of points along segments of T need to be considered
for a non-crossing matching. We construct the arrangement of lines between
all pairs of points among the union of P and the endpoints of all segments
in T . This arrangement divides each segment of T into subsegments, with the
property that all points in the relative interior of a subsegment are equivalent
matching solutions. Thus we can choose the midpoint and the endpoints of
each subsegment as the canonical points representing possible choices for a
non-crossing matching of (P, T ). Any matching can be rounded to use only
points in P and canonical points of subsegments in T , without adding any
additional crossings. Therefore a matching can be represented as a combina-
torial object on a polynomial number of points. Given such a representation,
we can test in polynomial time whether the matching is non-crossing. Hence
the problem is in NP.

It remains to show that the problem is NP-hard. We reduce from the non-
crossing matching problem for an ordered set P ′ of points and an ordered set
T ′ of horizontally collinear triples of points, which is NP-hard by Theorem 2.
For each point p ∈ P ′ and corresponding triple t ∈ T ′, we place three points
p1, p2, p3 in P and three corresponding triples of segments t1, t2, t3 in T ; refer
to Figure 8.

p2

p3

t2

t3

a b c

p1

t1

Figure 8: Matching points with segments is at least as hard as matching points with
triples.

Suppose t = (a, b, c) with a, b, and c appearing left to right along a
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horizontal line. Let p1 = p and t1 be the segment from a to c. Next, we
choose a small subsegment of t1 containing a, and similarly we choose small
subsegments containing b and c (“small” means that the subsegments do
not cross any lines of the arrangement described above). Connecting the
endpoints of these subsegments to p gives us three narrow triangles. We
place p2 on the right edge of the triangle containing a; we place two short
horizontal segments t2 and t3 both having their left endpoint on the left edge
of the triangle containing b and right endpoint on the right edge of the triangle
containing b; and we place p3 on the left edge of the triangle containing c.
Any matching edges connecting p2 to t2 and p3 to t3 block the ranges between
the narrow triangles. This forces the matching edge connecting p1 to t1 to
lie in one of the three narrow triangles, effectively matching p with either a,
b, or c. Thus (P, T ) has a non-crossing matching if and only if (P ′, T ′) has a
non-crossing matching. Note that the proof holds when the segments ti are
horizontal.

4. Matching points with an enclosing convex polygon

In this special case of matching points with line segments, we assume the
segments are the edges of a convex polygon and the points to be matched
are inside the polygon.

We first describe some geometric properties of the input of this problem.
We then describe an algorithm that finds a non-crossing matching (if one ex-
ists) between a given set of point-segment pairs where the line segments form
a convex polygon enclosing the points. Our algorithm runs in O(n log2 n)
time and allows a minimum-length and minimum max-edge-length matching
to be extracted easily.

4.1. Structural properties

Let Do = {∆o
1,∆

o
2, . . . ,∆

o
n} be a set of triangles where each ∆o

i is the
triangle with apex pi and base ti. Any valid matching edge ei must lie inside
∆o

i . Depending on the positions of other triangles in Do, some candidate
positions for ei can be identified as invalid because they would always cross
other matching edges. By identifying such cases, triangle ∆o

i can be reduced
to a smaller triangle ∆i. At any time, the reduced triangle ∆i has apex pi
but its opposite base is a subsegment of ti. Initially, ∆i = ∆o

i .

13



There are four ways in which two triangles ∆i and ∆j interact. The
second case leads to a reduction rule. We describe the four cases below (see
Figure 9):

1. ∆i,∆j are disjoint. In this case there will never be a direct interaction
between the two.

2. pj is in ∆i, but pi is not in ∆j. In this case ∆i should be reduced so
that the two triangles become tangent (so that pj is no longer in ∆i).

3. pi is in ∆j and pj is in ∆i. We call ∆i and ∆j inverted triangles, and
cannot immediately make a reduction.

4. Both edges incident to each of pi and pj pairwise intersect. Then no
non-crossing matching exists.

Note that in case (2) there is no choice but to reduce. The matching edge
ej that is finally chosen will block any candidate ei that is outside the newly
reduced ∆i. In case (3) there are two combinatorially valid placements for
ei, ej, with respect to the positions of pi, pj. There is no reason to choose
arbitrarily before verifying that neither triangle will be reduced further.

∆i

∆o
i

pi pipi pi

Figure 9: Left: ∆o
i is reduced to ∆i (case 2). Middle: inverted triangles – no immediate

reduction is possible (case 3). Right: no solution exists (case 4).

4.2. Properties of a reduced set of triangles

Here we describe certain properties that must hold after we exhaustively
apply our reduction rule to a set of triangles.

Let two (three) pairwise inverted triangles be called an inverted pair
(triple). An inverted triple is shown in Figure 10. Consider an inverted
triple ∆0,∆1,∆2. The clockwise radial ordering of the triangles ∆0,∆1,∆2

with respect to a point p is the circular ordering by angle around p of the

14



bases of these triangles that are visible to p. Note that since the bases of
∆0,∆1,∆2 do not cross (input segments are non-intersecting), then every
triangle base appears exactly once in this ordering.

p1p3

p2

Figure 10: An inverted triple (∆1,∆2,∆3).

Lemma 1. Let (∆1,∆2,∆3) be an inverted triple, and let pi be the apex of ∆i

for i = 1, 2, 3. Then the clockwise order of p1, p2 and p3 along their convex
hull is identical to the clockwise radial order of ∆1,∆2,∆3 from any of the
points p1, p2, or p3.

Proof. Let c be the barycenter of p1, p2 and p3, and consider the oriented line
` through c rotating clockwise. Note that c is in the intersection of ∆1, ∆2

and ∆3. When ` is incident to pi with pic in the positive orientation of `, the
positive halfline of ` from pi intersects the base of ∆i (because c ∈ ∆i). Thus,
this halfline visits the points pi in the same clockwise order as the bases of
the triangles ∆i.

Lemma 2. Let (∆1,∆2) and (∆1,∆3) be two inverted pairs. If a solution
exists, then applying the reduction rules to ∆1,∆2,∆3 will result in either
(∆1,∆2,∆3) forming an inverted triple or becoming disjoint.

Proof. If ∆3 is also inverted with ∆2, then we have an inverted triple. Oth-
erwise, note that ∆2 and ∆3 cannot be disjoint, since they both contain the
apex of ∆1. Assuming case (4) does not apply to ∆2 and ∆3 (in which case
no solution would exist), we are left with case (2). Assume without loss of
generality that ∆2 contains p3 and ∆3 does not contain p2 (see Figure 11).
Then ∆2 is reduced by ∆3, which implies that it is no longer inverted with ∆1.
Thus ∆1 gets reduced, and then so does ∆3. All triangles end up disjoint.

Lemma 3. Let (∆1,∆2,∆3) be an inverted triple. If ∆1 also has the in-
verted property with some triangle ∆4, then if we apply the reduction rule to
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p1 p3

p2

∆1

∆2

∆3

Figure 11: Interaction of a new triangle with an inverted pair. The grey triangles are the
three disjoint triangles after applying reductions.

∆1,∆2,∆3,∆4, either all four triangles become disjoint or no non-crossing
matching exists.

Proof. Assuming a non-crossing matching exists, then for all i, j ∈ {1, 2, 3}
and by Lemma 2, either (∆i,∆j,∆4) becomes an inverted triple, or ∆i, ∆j,
and ∆4 become disjoint after applying the reduction rule. The latter case
implies, again by the same lemma, that all four triangles would be disjoint.

Otherwise, in the former case, every triple from ∆1,∆2,∆3,∆4 is inverted,
and so by Lemma 1, every triple in p1, p2, p3, p4 has the same clockwise ori-
entation as the corresponding bases. This implies that p1, p2, p3, p4 form a
convex quadrilateral Q. The angle of ∆i at pi is larger than the interior angle
of Q at pi since ∆i contains the 3 other points. Therefore, the sum of the
angles of ∆i at pi is at least 2π. Let c be the barycenter of p1, p2, p3, p4. The
angle from c to the base of ∆i is strictly larger than the angle of ∆i at pi.
The sum of the angles from c to the bases of ∆i is at most 2π because these
wedges from c do not overlap. Therefore, the sum of the angles of ∆i at pi
is strictly less than 2π, a contradiction.

Let a unit be a (possibly reduced) triangle, an inverted pair, or an inverted
triple. Any time a triangle intersects a unit, the unit will be unaffected, or
reduced according to Lemmas 3 and 2, or be “upgraded” to an inverted pair
or triple (if it was a triangle or inverted pair, respectively). Two units are
said to be disjoint if their interiors do not overlap. This establishes that units
are the only possible structures that can remain after applying all possible
deterministic reductions, if the decision problem has a positive answer. There
can be an arbitrary number of any types of units in the final configuration.
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Lemma 4. When a triangle ∆p is added to a set of n disjoint units not
already containing ∆p,

after possibly applying reductions we obtain a new set of disjoint units.
This new set is either disjoint to ∆p, or ∆p joins exactly one member of the
set and becomes disjoint to all others. Furthermore, adding ∆p to the existing
disjoint units and applying (possible) reductions takes O(n) time in the worst
case.

Proof. Any triangle in a unit will be unaffected or reduced by interacting
with ∆p, so the new set will end up disjoint. Since units are disjoint, p can
be inside at most one unit u. This means that for all triangles not belonging
to u, the interaction of ∆p will lead to case (4), or cause no change, or cause
a reduction of ∆p. Furthermore, ∆p will become disjoint to all such triangles.

Now consider the interaction between ∆p and u. If u is a triangle, we
either get a reduction of u or we obtain a new inverted pair. If u is an
inverted pair, by Lemma 2 we either obtain case (4), or an inverted triple,
or three disjoint triangles, or ∆p reduces u (case (2)) without destroying the
inverted pair of u. If u is an inverted triple, by Lemma 3 we either obtain
case (4), or we get four disjoint triangles, or ∆p reduces u (case (2)) without
destroying the inverted triple of u.

In all cases, ∆p either becomes part of an inverted unit or is left disjoint
to all triangles. Since we only compare ∆p to every triangle in the set, this
procedure takes linear time.

4.3. Algorithm

Theorem 6. Given an ordered set P of points inside a convex polygon having
an ordered set T of line segments as edges, deciding whether (P, T ) admits a
non-crossing matching can be done in O(n log2 n) time.

Proof. We provide an algorithm where we employ a divide-and-conquer tech-
nique. Suppose that we have solved the problem separately on two consec-
utive convex chains (we can transform a chain into a polygon by adding 3
fake edges and points; thus, solving the problem on a chain is equivalent to
solving the polygonal version).

We claim that we can merge the two solutions in O(n log n) time. Each
solution is a set of disjoint triangles and inverted pairs or triples. Refer to
Figure 12.
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Figure 12: Merging two solved sub-problems. In the left diagram, the grey regions in the
left (black) sub-problem cannot contain points from the right (blue) sub-problem if there
is a valid solution. In the right diagram, we see the type of event that we must check for
after some initial reductions.

Let A and B be two solved sub-problems of size k. We construct a
standard point-location data structure5 on each in O(k) time [27]. Now, for
every point pi in B, we locate pi in A to determine if it is inside a unit in A.
Note that pi can be in at most one unit. If it is, we determine if ∆i reduces
this unit by case (2). Likewise, for every point pj in A, we locate pj in B
to determine if it is inside a unit in B and apply the appropriate reductions.
Note that if at some moment ∆i (belonging to B) gets reduced, this will not
affect its corresponding unit in A; the same holds for all ∆j in A that get
reduced.

Of course, it is possible that ∆i will be inverted with a triangle in A.
In this case we simply determine if there are reductions and, if applicable,
we merge the two units. Therefore a constant number of reductions are
applied per point, which means we spend O(log k) time per point for the
point-location step.

The only unresolved issue is to detect if case (4) will occur between tri-
angles of A and B (see the right diagram in Figure 12). For this we can use
the Bentley-Ottmann line segment intersection algorithm and stop as soon
as a bad intersection is found [8]. Given that all triangles have been reduced

5To construct their point-location data structure, Kirkpatrick et al. [27] triangulate
each subdivision in O(k log k) time, and hence their algorithm requires O(k log k) time in
the worst case. Using Chazelle’s linear-time triangulation algorithm [12], we can reduce
this running time to O(n).
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and merged into units, essentially we are verifying that no segments inter-
sect. For k segments, such queries take O(k log k + h log k) time, where h is
the number of intersections reported. As we stop as soon as we report an
intersection, h = 1 and hence the total time is O(log k) per point. Therefore,
our merge procedure takes O(k log k) time. By a simple recurrence analysis,
we determine that the entire algorithm takes O(n log2 n) time.

The algorithm described in the proof of Theorem 6 either decides that
no solution exists, or otherwise produces a final set of reduced triangles that
represents all valid solutions to the problem. In the latter case, every resulting
unit is disjoint and thus independent of all others. So in each triangle we
can easily pick the shortest joining segment, and in each inverted pair/triple,
we try out the two possible choices and take the best matching. Therefore,
after the algorithm finds a solution, the min-max and min-sum optimization
problems can be solved in linear time.

5. Matching points with segments on a line

As another special case of matching points to line segments, we now
consider the case when the input line segments belong to one single line L.
Throughout this section we will assume, without loss of generality, that L is
horizontal. As no matching edge will cross over L, our problem is split into
two disjoint sub-problems, and we focus on points above L.

We consider two cases, depending on whether the segments are disjoint
or not.

5.1. Matching points with disjoint segments on a line

Theorem 7. Given an ordered set P of points above a horizontal line L
and an ordered set T of disjoint line segments belonging to L sorted in or-
der of smallest x-coordinate, deciding whether (P, T ) admits a non-crossing
matching can be done in linear time. In the affirmative, the matching that
minimizes either the sum of the lengths of the edges or the maximum edge
length can be found within the same time bound.

Proof. We denote by [ai, bi] the interval corresponding to segment ti, for
i = 1, ..., n. Since the intervals are given in sorted order, we have a1 ≤ b1 <
a2 ≤ b2 < · · · < an ≤ bn.
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If (P, T ) admits some non-crossing matching {p1m1, p2m2, . . . , pnmn},
where ai ≤ mi ≤ bi for all i = 1, 2, . . . , n, we can always slide the point mi in-
side ti to a position mL

i as far to the left as possible (see Figure 13). This gives
the unique leftmost non-crossing matching for (P, T ), {p1mL

1 , p2m
L
2 , . . . , pnm

L
n}.

Notice that either mL
i = ai, or pi and mL

i are collinear with some pj with
j < i.

aa

p


bb b b baa a aa

p


p


p


p


p


bb b b baa a

p


p


p


p


Figure 13: Leftmost non-crossing matching (right) obtained from an initial non-crossing
matching (left).

Next we describe an algorithm for finding the leftmost non-crossing match-
ing, if it exists. The algorithm considers points in a sequential greedy fashion,
in the left-to-right order of the corresponding segments.

For p1, the leftmost matching is simply given by the segment p1a1. We
then consider the rays from the endpoints of this segment in the direction of
the negative semiaxis of abscissae; their points at infinity can be symbolically
described as q0 = (−∞, 0) and q1 = (−∞, y(p1)).

The forbidden region is the (unbounded) region enclosed by an alternating
sequence of horizontal line segments and subsegments of matched edges (see
Figure 14). This region is updated at every step of the algorithm. Initially,
it is described clockwise by its vertices, namely q1p1a1q0. Observe that if p2
is inside the forbidden region, then a non-crossing matching (P, T ) would be
impossible. If p2 is outside the forbidden region, a matching is possible if
and only if there is some point m2 in the interval a2b2 such that the segment
p2m2 does not cross the forbidden region. In the affirmative, we slide m2

to its leftmost possible position, and shoot a ray from p2 in the direction
of the negative semiaxis of abscissae, which may go to infinity, or stop by
hitting the segment p1a1. The forbidden region is updated in each case, and
is always defined by alternating horizontal edges with portions of segments
from the matching. See Figure 14.

Assume that, in a generic step, we have obtained the leftmost matching
{p1mL

1 , p2m
L
2 , . . . , pj−1m

L
j−1} and we are processing pj. Let qi1pi1qi2pi2 ...qikpik

mL
ik
q0 be the current forbidden region (refer to Figure 14). Observe that if
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Figure 14: Forbidden region and incremental step.

there is some mj ∈ [aj, bj] such that the segment pjmj can be added to the
edges found so far, getting a non-crossing matching, the segment pjbj is also
valid. We show next how to check the validity of pjbj.

We first check the y coordinates of the points mik , pik , pik−1
..., which form

an increasing sequence, until we find that y(pit) ≥ y(pj) ≥ y(pit+1) (the
case in which y(pj) is a maximum is completely analogous). Then, we check
whether the segment pjbj crosses the segments mikpik , qik−1

pik−1
, ..., qit−1pit−1 .

In the affirmative, the algorithm is over, as no crossing-free matching is
possible. Otherwise, the segment pjbj is valid. We slide the point matched
with pj as much to the left as possible (Figure 15), which can be done by
finding the angularly closest point among pit+1 , pit+2 , ..., pik , aj.

p
j p

j

bjbj mjajaj
L

Figure 15: Moving the new edge to the leftmost position.

If we shoot a ray from pj in the direction of the negative semiaxis of
abscissae, we hit the boundary of the forbidden region in a point qj, possibly
at infinity, and the forbidden region is updated to be qi1pi1qi2pi2 ...pitqjpjm

L
j q0.

The cost of the step for pj is proportional to the size of the forbidden
polygonal region that disappears, and that will never be processed again.
Therefore, the amortized cost of one step is constant and the global cost
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of the algorithm is O(n). At the end we obtain the leftmost matching
{p1mL

1 , p2m
L
2 , . . . , pnm

L
n}, unless no matching is possible.

If (P, T ) admits a non-crossing matching, with a symmetric algorithm
we can obtain the rightmost matching {p1mR

1 , p2m
R
2 , . . . , pnm

R
n}. Then any

points mi in the intervals [mL
i ,m

R
i ] provide a non-crossing matching {p1m1,

p2m2, . . . , pnmn}. In particular, in each interval [mL
i ,m

R
i ] we can pick the

matching point mi which is closest to pi, and hence obtain the matching that
minimizes the sum of the lengths of the edges or the maximum edge length
in additional O(n) time.

Observation. If the input disjoint segments t1, ..., tn are not given in sorted
order along the line, then, we can always sort them in O(n log n) time as
a preprocessing step. An Ω(n log n) lower bound holds for this problem of
matching points with disjoint unsorted segments on a line, by reduction from
the problem of integer uniqueness, which is known to have an Ω(n log n) lower
bound in the algebraic decision tree model of computation.

Let x1, ..., xn be a set of given integers. We associate to them 2n points
and 2n segments defining pi = (xi, 2i), p

′
i = (xi, 2i+1), ti = [xi−2/5, xi−1/5],

t′i = [xi − 4/5, xi − 3/5], for i = 1, ..., n. Points pi and p′i are to be matched
with the segments ti and t′i, respectively, for i = 1, ..., n.

If a number xi is unique, then the matching is possible (Figure 16, left).
However, if two values are equal, xi = xj, then a crossing is unavoidable
(Figure 16, right). Therefore, a non-crossing matching exists if and only if
the numbers x1, ..., xn are all different, which proves the claim.

p′i = (xi, 2i+ 1)
pi = (xi, 2i)

xitit′i
xi−1

p′i = (xi, 2i+ 1)
pi = (xi, 2i)

xitit′i
xi−1

p′j = (xj , 2j + 1)
pj = (xj , 2j)

Figure 16: There is a crossing when some integer is repeated.

5.2. Matching points with arbitrary segments on a line

In this section, we show that when the given segments are confined to a
line and possibly intersect, we can determine the existence of a non-crossing
matching in polynomial time. The proof first discretizes the problem, and

22



then uses the same approach as in the proof of Theorem 4 for k-tuples with
k = O(n2).

Theorem 8. Given an ordered set P of points above a horizontal line L and
an ordered set T of line segments belonging to L, deciding whether (P, T )
admits a non-crossing matching can be done in O(n8) time.

Proof. We solve the problem by discretizing it: we transform it into matching
the set of points P with O(n2)-tuples, corresponding to all combinatorially
distinct matchings for each point.

Consider all lines through every pair of points in P . These lines intersect
the horizontal line L. Let I be the set of all these intersection points and
of all the endpoints of segments in T . I has size O(n2), as there are 2n
endpoints and at most

(
n
2

)
intersections.

I splits L into O(n2) regions. If any subset S of the points in P are
matched with an edge incident to one region r of L, we can pick an arbitrary
point x inside r and match all the points of S with an edge incident to x, still
preserving the existence of a non-crossing matching. In other words, for each
point, there are only O(n2) combinatorially different matching edges, and
we can thus apply our algorithm of Theorem 4 for matching with k-tuples.
Therefore, the complexity of finding a matching is O((n2)3n2 + (n2)2n3) =
O(n8).

6. Matching points with lines

In the case where points are matched with lines, it is easy to see that
a non-crossing matching always exists: choose an arbitrary direction, not
parallel to any line, and project each point on its corresponding line in that
direction. Here we show that the optimization problem of minimizing the
maximum length over all matching edges in NP-complete. We consider the
decision version of the min-max problem.

Theorem 9. Given an ordered set P of points, an ordered set T of lines,
and a number y, deciding whether there exists a non-crossing matching of
(P, T ) whose longest edge has length at most y is NP-complete.

Proof. We argue that the problem is in NP. We will first show that only
a polynomial number of points along lines of T need to be considered for
a non-crossing matching. We then show how, given a solution based on
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these canonical points, we can determine in polynomial time whether the
length of each matched edge is at most y. We construct the arrangement
of lines between all pairs of points among the union of P and the points of
intersection of the lines in T . We then place a bounding box enclosing the
union of P and the points of intersection of the lines in T . Together with
the bounding box, this arrangement divides each line of T into subsegments,
with the property that all points in the relative interior of a subsegment are
equivalent non-crossing matching solutions. We can now choose the midpoint
and the endpoints of each subsegment, as the canonical points representing
possible choices for a non-crossing matching of (P, T ). Any matching can
be rounded to use only points in P and canonical points of subsegments
in T , without adding any additional crossings. Therefore a matching can
be represented as a combinatorial object on a polynomial number of points.
Given a solution with such a representation, we can test in polynomial time
whether the matching is non-crossing. Now, we still need to check whether
the length of every matched edge is at most y. Let mi be the point on ti
such that the distance between pi and the subsegment to which pi is matched
is the shortest. For every pi, we can check in polynomial time whether the
distance between pi and mi is at most y. Note that matching pi to mi will
not introduce any crossings: suppose two points pi and pj are matched to
the same canonical point in the given solution, and suppose matching pi to
mi and pj to mj will cause the segments pimi and pjmj to intersect. Then
this would imply that segment pimj is shorter than pimi, contradicting the
fact that pimi is the shortest segment. Therefore, in polynomial time it is
possible to check whether a given solution is non-crossing with the distance
of every matching edge equal to at most y. Hence the problem is in NP.

We reduce from the problem of deciding the existence of a non-crossing
matching between a set of points and a set of segments. In Section 3 we
proved that this problem is NP-complete. Given an instance (Q,S) of the
point-to-segment matching problem, we construct an instance (P, T ) of our
min-max problem as follows. For each pair (qi, si) in (Q,S), we include the
point qi in P and the line ti supporting the segment si in T . We then include
a number of pairs (x, `), x ∈ P , ` ∈ T , such that the edge matching qi with
ti is forced to have its endpoint within the boundaries of si in order not to
create a long edge between a pair (x, `). Thus any non-crossing matching
of (P, T ) with maximum edge length y, when restricted to the pairs (qi, ti),
will also be a non-crossing matching of (Q,S). The gadget is illustrated in
Figure 17.
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qi

Figure 17: Illustration of the reduction for the point-to-lines problem.

Let a be one endpoint of the segment si. We include a point x on the
segment qia, at an arbitrarily small distance δ from qi. The corresponding
line ` is parallel to qia, at a distance ε from x. Note that ` is positioned so
that it does not intersect si. Then, for ε sufficiently small, an edge connecting
qi to ti on the right of a will force the edge between x and ` to be long. More
precisely, let a′ be the point on ti such that the angle ∠aqia′ equals θ for some
small positive value θ. Then if qi is matched with ti at any point p ∈ aa′,
the length of the edge matching x with ` can be made arbitrarily close to
ε/ sin θ.

If we fix the value of θ, we can reproduce the gadget at regular angular
intervals around qi, covering the whole range of possible edge angles with a
constant number of pairs (x, `) (see Figure 17). The same construction is
used for the other endpoint of si.

Let y = maxi{d(qi, si) : qi ∈ Q, si ∈ S}. We choose ε and θ such that
ε/ sin θ > y > ε. If there exists a non-crossing matching for (Q,S), then qi
can be matched to ti within the boundaries of si, and every x can be matched
to the corresponding ` using an edge orthogonal to `, of length ε. Hence every
edge has length at most y. On the other hand, if no non-crossing matching
exists for (Q,S), then a point qi ∈ P needs to be matched with ti outside of
si, and one (x, `) gadget is triggered, creating an edge of length ε/ sin θ > y.

Note that we simultaneously require that ε be a constant, and ε/ sin θ > y,
hence that θ < arcsin(ε/y). So the value maxi{d(qi, si) : qi ∈ Q, si ∈ S} must
be bounded by a constant. Also, the gadget pairs (x, `) should not interfere
with other edges of the matching. Since δ can be made arbitrarily small, we
require the existence of a ball of radius strictly greater than ε, around every
point of Q, that is never intersected by any edge in a non-crossing matching.
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These two conditions (that the largest distance to a segment is bounded,
and that there exists an empty ball of constant radius around each point)
are satisfied by the hard instances constructed in the reduction of Theorem 5.
This concludes the proof.

We observe that if the lines have only a bounded number k of distinct
directions, then there is a simple approximation algorithm for the min-max
matching problem. Consider the set of directions (that is, angles with respect
to the horizontal axis) of the lines, and find the largest absolute difference
between two consecutive angles. Let α and β be the two consecutive angles
maximizing the difference γ = |α− β|. We have that γ ≥ π/k. If we project
the points pi on their respective lines at an angle (α+ β)/2, then the length
of the matching edge between pi and ti is at most 1/ sin(γ/2) times the
distance between pi and ti. Thus this directly yields an approximation factor
of 1/ sin(γ/2).

7. Concluding remarks

Non-crossing matchings of points with geometric objects is part of a more
general class of problems where non-crossing matchings between geometric
sets are considered. In this latter class, the first interesting set of problems
is that of matching points with sets of points/segments/lines, as the NP-
hardness results for these problems apply to problems of finding non-crossing
matchings between sets and sets of many different classes. One example
would be all classes of objects that include all segments, such as convex sets.

However, it is still unclear whether our results imply anything about the
general problem of finding non-crossing matchings between sets of geomet-
ric objects. It is not clear for example that our hardness result for finding
a non-crossing matching between points and segments (Theorem 5) has any
implication on the problem of finding non-crossing matchings between points
and either orthogonal polygons with a fixed number of edges or fat convex
objects. Could the algorithm for finding a non-crossing matching for seg-
ments in convex position (Theorem 6) be extended to also work for sets of
segments that have the same radial ordering about every point pi? Also,
for matching points with lines, is the problem still NP-complete when the
lines have a bounded number of directions? And is the condition of having
lines with a bounded number of directions necessary for having an approxi-
mation algorithm? These and many similar questions raise interesting open
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problems in the study of non-crossing matchings between sets of geometric
objects.
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