Necklaces, Convolutions, and \(X + Y \)

David Bremner\(^1\) Timothy M. Chan\(^2\) Erik D. Demaine\(^3\)
Jeff Erickson\(^4\) Ferran Hurtado\(^5\) John Iacono\(^6\)
Stefan Langerman\(^7\) Mihai Pătrașcu\(^8\) Perouz Taslakian\(^9\)

In memory of our colleague Mihai Pătrașcu.

Abstract

We give subquadratic algorithms that, given two necklaces each with \(n \) beads at arbitrary positions, compute the optimal rotation of the necklaces to best align the beads. Here alignment is measured according to the \(\ell_p \) norm of the vector of distances between pairs of beads from opposite necklaces in the best perfect matching. We show surprisingly different results for \(p = 1 \), \(p \) even, and \(p = \infty \). For \(p \) even, we reduce the problem to standard convolution, while for \(p = \infty \) and \(p = 1 \), we reduce the problem to \((\text{min}, +)\) convolution and \((\text{median}, +)\) convolution. Then we solve the latter two convolution problems in subquadratic time, which are interesting results in their own right. These results shed some light on the classic sorting \(X + Y \) problem, because the convolutions can be viewed as computing order statistics on the antidiagonals of the \(X + Y \) matrix. All of our algorithms run in \(o(n^2) \) time, whereas the obvious algorithms for these problems run in \(\Theta(n^2) \) time.

\(^1\)Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, Canada, bremer@unb.ca. Supported by NSERC.
\(^2\)School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, tmchan@uwaterloo.ca. Supported by NSERC.
\(^3\)Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, edemaine@mit.edu. Supported in part by NSF grants CCF-0430849 and OISE-0334653 and by an Alfred P. Sloan Fellowship.
\(^4\)Computer Science Department, University of Illinois, Urbana-Champaign, IL, USA, jeffe@cs.uiuc.edu.
\(^6\)Department of Computer and Information Science, Polytechnic University, Brooklyn, NY, USA, http://john.poly.edu. Supported in part by NSF grants CCF-0430849 and OISE-0334653 and by an Alfred P. Sloan Fellowship.
\(^7\)Directeur de Recherches du FRS–FNRS, Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium, stefan.langerman@ulb.ac.be.
\(^8\)Chercheur qualifié du FNRS, Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium, stefan.langerman@ulb.ac.be.
\(^9\)College of Science and Engineering, American University of Armenia, Yerevan, Armenia, ptaslakian@aua.am.
1 Introduction

How should we rotate two necklaces, each with \(n \) beads at different locations, to best align the beads? More precisely, each necklace is represented by a set of \(n \) points on the unit-circumference circle, and the goal is to find rotations of the necklaces, and a perfect matching between the beads of the two necklaces, that minimizes some norm of the circular distances between matched beads. In particular, the \(\ell_1 \) norm minimizes the average absolute circular distance between matched beads, the \(\ell_2 \) norm minimizes the average squared circular distance between matched beads, and the \(\ell_\infty \) norm minimizes the maximum circular distance between matched beads. The \(\ell_1 \) version of this necklace alignment problem was introduced by Toussaint [39] in the context of comparing rhythms in computational music theory, with possible applications to rhythm phylogeny [22, 40].

Toussaint [39] gave a simple \(O(n^2) \)-time algorithm for \(\ell_1 \) necklace alignment, and highlighted as an interesting open question whether the problem could be solved in \(o(n^2) \) time. In this paper, we solve this open problem by giving \(o(n^2) \)-time algorithms for \(\ell_1 \), \(\ell_2 \), and \(\ell_\infty \) necklace alignment, in both the standard real RAM model of computation and the less realistic nonuniform linear decision tree model of computation. Our results for the case of the \(\ell_1 \) and \(\ell_\infty \) distance measures in the real RAM model also answer the questions posed by Clifford et al. in [13] (see the shift matching problem in Problem 5 of the tech report).

Necklace alignment problem. More formally, in the necklace alignment problem, the input is a number \(p \) representing the \(\ell_p \) norm, and two sorted vectors of \(n \) real numbers, \(\vec{x} = \langle x_0, x_1, \ldots, x_{n-1} \rangle \) and \(\vec{y} = \langle y_0, y_1, \ldots, y_{n-1} \rangle \), representing the two necklaces. See Figure 1. Canonically, we assume that each number \(x_i \) and \(y_i \) is in the range \([0, 1)\), representing a point on the unit-circumference circle (parameterized clockwise from some fixed point). The distance between two beads \(x_i \) and \(y_j \) is the minimum between the clockwise and counterclockwise distances along the circumference of the unit-perimeter circular necklaces. We define this distance as:

\[
d^p(x_i, y_j) = \min\{|x_i - y_j|, (1 - |x_i - y_j|)\}.
\]

The optimization problem involves two parameters. The first parameter, the offset \(c \in [0, 1) \), is the clockwise rotation angle of the first necklace relative to the second necklace. The second parameter, the shift \(s \in \{0, 1, \ldots, n\} \), defines the perfect matching between beads: bead \(i \) of the first necklace matches with bead \((i + s) \mod n \) of the second necklace. (Here we use the property that an optimal perfect matching between the beads does not cross itself.)
The goal of the \(\ell_p \) necklace alignment problem is to find the offset \(c \in [0, 1) \) and the shift \(s \in \{0, 1, \ldots, n\} \) that minimize

\[
\sum_{i=0}^{n-1} (d^p((x_i + c) \mod 1, y_{(i+s) \mod n}))^p \tag{1}
\]

or, in the case \(p = \infty \), that minimize

\[
\max_{i=0}^{n-1} d^p((x_i + c) \mod 1, y_{(i+s) \mod n}).
\]

The \(\ell_1, \ell_2, \) and \(\ell_\infty \) necklace alignment problems all have trivial \(O(n^2) \) solutions, although this might not be obvious from the definition. In each case, as we show, the optimal offset \(c \) can be computed in linear time for a given shift value \(s \) (sometimes even independent of \(s \)). The optimization problem is thus effectively over just \(s \in \{0, 1, \ldots, n\} \), and the objective costs \(O(n) \) time to compute for each \(s \), giving an \(O(n^2) \)-time algorithm.

Although necklaces are studied throughout mathematics, mainly in combinatorial settings, we are not aware of any work on the necklace alignment problem before Toussaint [39]. He introduced \(\ell_1 \) necklace alignment, calling it the cyclic swap-distance or necklace swap-distance problem, with a restriction that the beads lie at integer coordinates. Ardila et al. [2] give a \(O(k^2) \)-time algorithm for computing the necklace swap-distance between two binary strings, with \(k \) being the number of 1-bits (beads at integer coordinates). Colaninno et al. [16] consider some different distance measures between two sets of points on the real line in which the matching does not have to match every point. They do not, however, consider alignment under such distance measures.

Aloupis et al. [1], consider the problem of computing the similarity of two melodies represented as closed orthogonal chains on a cylinder. Their goal is to find the proper (rigid) translation of one of the chains in the vertical (representing pitch) and tangential (representing time) direction so that the area between the chains is minimized. The authors present an \(O(mn \lg(n + m)) \) algorithm that solves the problem. When the melodic chains each have a note at every time unit, the melodic similarity problem is equivalent to the necklace alignment problem, and as our results are subquadratic, we improve on the results of Aloupis et al. [1] for this special case.

Convolution. Our approach in solving the necklace alignment problem is based on reducing it to another important problem, convolution, for which we also obtain improved algorithms. The \((+, \cdot)\) convolution of two vectors \(\vec{x} = (x_0, x_1, \ldots, x_{n-1}) \) and \(\vec{y} = (y_0, y_1, \ldots, y_{n-1}) \), is the vector \(\vec{x} \ast \vec{y} = (z_0, z_1, \ldots, z_{n-1}) \) where \(z_k = \sum_{i=0}^{n} x_i \cdot y_{k-i} \). One can generalize convolution to any \((\oplus, \odot)\) operators. Algorithmically, a convolution with specified addition and multiplication operators (here denoted \(\vec{x} \ast_\oplus \vec{y} \)) can be easily computed in \(O(n^2) \) time. However, the \((+, \cdot)\) convolution can be computed in \(O(n \lg n) \) time using the Fast Fourier Transform [18,29,30], because the Fourier transform converts convolution into elementwise multiplication. Indeed, fast \((+, \cdot)\) convolution was one of the early breakthroughs in algorithms, with applications to polynomial and integer multiplication [5], batch polynomial evaluation [19, Problem 30-5], 3SUM [3,23], string matching [12,17,25,31,32], matrix multiplication [15], and even juggling [8].

In this paper we use three types of convolutions: \((\text{min}, +)\) convolution, whose \(k \)th entry \(z_k = \min_{i=0}^{n} \{x_i + y_{k-i}\} \); \((\text{median}, +)\) convolution, whose \(k \)th entry \(z_k = \text{median}_{i=0}^{n} \{x_i + y_{k-i}\} \); and \((+, \cdot)\) convolution, whose \(k \)th entry \(z_k = \sum_{i=0}^{n} x_i \cdot y_{k-i} \). As we show in Theorems [8,6] and [17] respectively, \(\ell_2 \) necklace alignment reduces to standard \((+, \cdot)\) convolution, \(\ell_\infty \) necklace alignment...
reduces to \((\min, +)\) [and \((\max, +)\)] convolution, and \(\ell_1\) necklace alignment reduces to \((\text{median}, +)\) convolution. The \((\min, +)\) convolution problem has appeared frequently in the literature, already appearing in Bellman’s early work on dynamic programming in the early 1960s \cite{24, 33–35, 38}. Its name varies among “minimum convolution”, “min-sum convolution”, “inf-convolution”, “infimal convolution”, and “epigraphical sum”. \footnote{“Tropical convolution” would also make sense, by direct analogy with tropical geometry, but we have never seen this terminology used in print.} To date, however, no worst-case \(o(n^2)\)-time algorithms for this convolution, or the more complex \((\text{median}, +)\) convolution, has been obtained (it should be noted here that the quadratic worst-case running time for \((\text{median}, +)\) convolution follows from linear-time median finding \cite{6, 36}). In this paper, we develop worst-case \(o(n^2)\)-time algorithms for \((\min, +)\) and \((\text{median}, +)\) convolution, in the real RAM and the nonuniform linear decision tree models of computation.

The only subquadratic results for \((\min, +)\) convolution concern two special cases. First, the \((\min, +)\) convolution of two convex sequences or functions can be trivially computed in \(O(n)\) time by a simple merge, which is the same as computing the Minkowski sum of two convex polygons \cite{35}. This special case is already used in image processing and computer vision \cite{24, 33}. Second, Bussieck et al. \cite{7} proved that the \((\min, +)\) convolution of two randomly permuted sequences can be computed in \(O(n \lg n)\) expected time. Our results are the first to improve the worst-case running time for \((\min, +)\) convolution.

Connections to \(X + Y\). The necklace alignment problems, and their corresponding convolution problems, are also intrinsically connected to problems on \(X + Y\) matrices. Given two lists of \(n\) numbers, \(X = (x_0, x_1, \ldots, x_{n-1})\) and \(Y = (y_0, y_1, \ldots, y_{n-1})\), \(X + Y\) is the matrix of all pairwise sums, whose \((i, j)\)th entry is \(x_i + y_j\). A classic unsolved problem \cite{20} is whether the entries of \(X + Y\) can be sorted in \(o(n^2 \lg n)\) time. Fredman \cite{27} showed that \(O(n^2)\) comparisons suffice in the nonuniform linear decision tree model, but it remains open whether this can be converted into an \(O(n^2)\)-time algorithm in the real RAM model. Steiger and Streinu \cite{37} gave a simple algorithm that takes \(O(n^2 \lg n)\) time while using only \(O(n^2)\) comparisons.

The \((\min, +)\) convolution is equivalent to finding the minimum element in each antidiagonal of the \(X + Y\) matrix, and similarly the \((\max, +)\) convolution finds the maximum element in each antidiagonal. We show that \(\ell_\infty\) necklace alignment is equivalent to finding the antidiagonal of \(X + Y\) with the smallest range (the maximum element minus the minimum element). The \((\text{median}, +)\) convolution is equivalent to finding the median element in each antidiagonal of the \(X + Y\) matrix. We show that \(\ell_1\) necklace alignment is equivalent to finding the antidiagonal of \(X + Y\) with the smallest median cost (the total distance between each element and the median of the elements). Given the apparent difficulty in sorting \(X + Y\), it seems natural to believe that the minimum, maximum, and median elements of every antidiagonal cannot be found, and that the corresponding objectives cannot be minimized, any faster than \(O(n^2)\) total time. Figure \ref{fig:example} shows a sample \(X + Y\) matrix with the maximum element in each antidiagonal marked, with no apparent structure. Nonetheless, we show that \(o(n^2)\) algorithms are possible.

Our results. In the standard real RAM model, we give subquadratic algorithms for the \(\ell_1\), \(\ell_2\), and \(\ell_\infty\) necklace alignment problems, and for the \((\min, +)\) and \((\text{median}, +)\) convolution problems. We present:

1. an \(O(n \lg n)\)-time algorithm on the real RAM for \(\ell_2\) necklace alignment (Section \ref{sec:ell2}).
Figure 2: An $X + Y$ matrix. Each polygonal line denotes an antidiagonal of the matrix, with a point at coordinates (x, y) denoting the value $x + y$ for $x \in X$ and $y \in Y$. An \times denotes the maximum element in each antidiagonal.

2. an $O(n^2/\lg n)$-time algorithm on the real RAM for ℓ_∞ necklace alignment and $(\min, +)$ convolution (Section 4). This algorithm uses a technique of Chan originally developed for the all-pairs shortest paths problem [9]. Despite the roughly logarithmic factor improvements for ℓ_1 and ℓ_∞, this result does not use word-level bit tricks of word-RAM fame.

3. a further improved $O(n^2(\lg \lg n)^3/\lg^2 n)$-time algorithm for ℓ_∞ necklace alignment and $(\min, +)$ convolution (Section 4). We actually give a direct black-box reduction of $(\min, +)$ convolution to all-pairs shortest paths; the result then follows from the current best upper bound for all-pairs shortest paths [10]. The all-pairs shortest paths works in the real RAM with respect to the inputs, i.e. it does not use bit tricks on the inputs. The algorithm, however, requires bit tricks on other numbers, but works in a standard model that assumes $(\lg n)$-bit words.

4. an $O(n^2(\lg \lg n)^2/\lg n)$-time algorithm on the real RAM for ℓ_1 necklace alignment and (median, $+$) convolution (Section 5). This algorithm uses an extension of the technique of Chan [9].

In the nonuniform linear decision tree model, we give particularly fast algorithms for the ℓ_1 and ℓ_∞ necklace alignment problems, using techniques of Fredman [27, 28]:

5. $O(n\sqrt{n})$-time algorithm in the nonuniform linear decision tree model for ℓ_∞ necklace alignment and $(\min, +)$ convolution (Section 4).
6. \(O(n\sqrt{n \ln n})\)-time algorithm in the nonuniform linear decision tree model for \(\ell_1\) necklace alignment and (median, +) convolution (Section 5).

(Although we state our results here in terms of (min, +) and (median, +) convolution, the results below use \(-\) instead of + because of the synergy with necklace alignment.) We also mention connections to the venerable \(X+Y\) and 3SUM problems in Section 6.

2 Linear Versus Circular Alignment

Before we proceed with proving our results, we first show that any optimal solution to the necklace alignment problem can be transformed into an optimal solution to the problem of linear alignment—aligning and matching beads that are on a line. We then can use the simpler optimization function of the “linear alignment problem” to show our results. Let \(d^- (x_i, y_j) = |x_i - y_j|\) be the linear distance between two beads \(x_i\) and \(y_j\). In the linear alignment problem we are given two sorted vectors of real numbers \(\vec{x} = \langle x_0, x_1, \ldots, x_{n-1} \rangle\) and \(\vec{y} = \langle y_0, y_1, \ldots, y_{m-1} \rangle\) with \(m \geq n\), and we want to find \(s (s < m-n)\) and \(c\) that minimize

\[
\sum_{i=0}^{n-1} (d^- (x_i + c, y_{i+s}))^p \quad (2)
\]

or, in the case \(p = \infty\), that minimize

\[
\max_{i=0}^{n-1} \{d^- (x_i + c, y_{i+s})\}.
\]

The main difference between (1) and (2) is that instead of taking the minimum between the clockwise and counterclockwise distances between pairs of matched beads in (1), we are simply summing the forward distances between beads in (2). We will now show that whether the beads are on a line (repeating \(\vec{y}\) infinitely many times on the line) or a circle, the optimal alignment of the beads \(\vec{x}\) and \(\vec{y}\) in these two cases are equal.

Let \(M^o\) and \(M^-\) be an alignment/matching of the beads of \(\vec{x}\) and \(\vec{y}\) along the unit circumference circle \(C\) and the infinite line segment \(L\) respectively. An edge \((x_i, y_j)\) of \(M^o (M^-)\) is the shortest segment that connects two matched beads \(x_i\) and \(y_j\) in \(M^o (M^-)\); thus, the length of \((x_i, y_j)\) is equal to \(d^o (x_i, y_j) (d^- (x_i, y_j))\). We will show that the sum of the lengths of the edges of each of the optimal matchings \(M^{o*}\) and \(M^{-*}\) are equal. Note that by the quadrangle inequality, we have that the edges of both \(M^{o*}\) and \(M^{-*}\) are non-crossing.

Observation 1. Consider any edge \((x_i, y_j)\) along the circular necklace. If this edge crosses point 0, then the distance

\[
d^o (x_i, y_j) = (1 - |x_i - y_j|);
\]

otherwise,

\[
d^- (x_i, y_j) = |x_i - y_j|.
\]

Let \(\vec{yy}\) be the doubling of the vector \(\vec{y}\) such that

\[
\vec{yy} = \langle y_0, \ldots, y_{m-1}, y_0, \ldots, y_{m-1} \rangle = \langle yy_0, \ldots, yy_{m-1}, yy_m, \ldots, yy_{2m-1} \rangle.
\]

Theorem 2. If \(M^{o*}\) is the optimal matching of two given vectors \(\vec{x}\) and \(\vec{y}\) (both of length \(n\)) along the unit-circumference circle \(C\) and \(M^{-*}\) is the optimal matching of \(\vec{x}\) and \(\vec{yy}\) along line \(L\), then \(|M^{o*}| = |M^{-*}|\).
Proof. First we show that the value of any optimal matching of a set of beads along \(L \) is at least as large as the value of the optimal solution of the beads along \(C \). Given an optimal matching \(M^{*} = \{s, c\} \) beads along \(L \), we will “wrap” the line \(L \) around a unit circle \(C \) by mapping each of the \(n \) \textit{matched} beads \(x_{i} (y_{i+s}) \) along \(L \) to \(x_{i}^{o} (y_{i+s}) \mod n \) along \(C \). (Thus we have exactly \(n \) pairs of beads along \(C \).) Now, for every \(i = 0, 1, \ldots, n - 1 \), the length of an edge of \(M^{*} \) is equal to

\[
d^{-}(x_{i} + c, y_{i+s}) = d^{-}(x_{i} + c, y_{i+s}) \mod n = |x_{i} + c - y_{i+s} \mod n| \geq \min\{|(x_{i} + c) \mod 1 - y_{i+s} \mod n|, (1 - |(x_{i} + c) \mod 1 - y_{i+s} \mod n|)\} = d^{c}((x_{i} + c) \mod 1, y_{i+s} \mod n).
\]

Thus, as every edge length of the matching \(M^{*} \) is at least as large as its corresponding edge along the circle \(C \), we have \(|M^{*}| \geq |M^{o*}|\).

Next we show that the value of any optimal matching of a set of beads along \(C \) is at least as large as the value of the optimal solution of the beads along \(L \). Suppose we have an optimal matching \(M^{o*} = \{s, c\} \). We map every point \(x_{i} + c \) and \(y_{i} \) to the infinite line segment so that the edges of \(M^{o*} \) are preserved in \(M^{-} \). Thus, for all \(i = 0, 1, \ldots, n - 1 \) and \(k \in \mathbb{Z} \), we map

\[
(x_{i} + c) \mod 1 \mapsto x_{i}^{-} = x_{i} + c, \quad y_{i} \mapsto y_{i+kn} = y_{i} + k.
\]

With this transformation, in any valid matching \(M^{-} \), the matched beads span at most two consecutive intervals \([k, k+1]\) and \([k+1, k+2]\) for any \(k \in \mathbb{Z} \). In particular, the beads \(x_{i} + c \) span the intervals \([0, 1]\) and \([1, 2]\).

Now we construct \(M^{-} \) given \(M^{o*} \) by matching every \(x_{i}^{-} \) to \(y_{i+s+k} \) such that, whenever \(x_{i} + c < 1 \) (see Figure 3),

- \(k = -1 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) crosses point 0 and \(x_{i} + c \mod 1 < y_{i+s} \mod n \);
- \(k = 1 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) crosses point 0 and \(x_{i} + c \mod 1 > y_{i+s} \mod n \);
- \(k = 0 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) does not cross point 0;

and, whenever \(x_{i} + c \geq 1 \), we increment \(k \) by 1 in each of the cases. Thus, when \(x_{i} + c \geq 1 \),

- \(k = 0 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) crosses point 0 and \(x_{i} + c \mod 1 < y_{i+s} \mod n \);
- \(k = 2 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) crosses point 0 and \(x_{i} + c \mod 1 > y_{i+s} \mod n \);
- \(k = 1 \)
 - if \((x_{i} + c) \mod 1, y_{i+s} \mod n \) does not cross point 0.
If an edge in this claim by comparing the length of each edge \((x = 0 \text{ and } k \in \{ r, \text{ purple edge (beads) of the given matching edge are within the same interval } M \} \)

Edges that do not cross point 0:
- If an edge of \(M \) crosses point 0, then its corresponding edge in \(M^* \) in the matching \(M^- \). In this example, \(0 \leq x_0 + c < 1 \).

Here, the variable \(k \) basically decides the interval \([-1, 0), [0, 1), \text{ or } [1, 2) \) in which the bead \(y_{i+s} \mod n \) is located, based on the type of the edge \(((x + c) \mod 1, y_{i+s} \mod n) \). Observe that, if an edge in \(M^* \) crosses point 0, then its corresponding edge in \(M^- \) crosses \((r, r)\) for some \(r \in \{0, 1, 2\} \).

Now, the sum of the distances of the matched beads of \(M^- \) is equal to
\[
d^-(x_0 + c, y_{i+s} \mod n + k) + d^-(x_1 + c, y_{i+s} \mod n + k) + \cdots +
\]
\[
d^-(x_{n-s-1} + c, y_{i+s} \mod n) + d^-(x_{n-s} + c, y_0 + k + 1) + \cdots +
\]
\[
d^-(x_{n-s} + c, y_{n-1} + k + 1).
\]

We claim that the value of \(M^* \) is equal to at least the value of this matching \(M^- \). We show this claim by comparing the length of each edge \(((x + c) \mod 1, y_{i+s}) \) of \(M^* \) with its corresponding edge in \(M^- \).

Edges that do not cross point 0:
- If an edge of \(M^* \) does not cross point 0, then the corresponding edge in \(M^- \) does not cross any of the edges \((0, 0), (1, 1) \text{ or } (2, 2)\); hence both endpoints (beads) of the given matching edge are within the same interval \([r, r + 1)\) for some \(r \in \{0, 1\} \) (the purple edge \((x_q + c, y_q+s)\) in Figure 3). This means that, when \(x_i + c = (x_i + c) \mod 1 \), we have \(k = 0 \) and
\[
d^-(x_i + c, y_{i+s} \mod n + k) = |(x_i + c) - (y_{i+s} \mod n + k)| = |(x_i + c) \mod 1 - (y_{i+s} \mod n)| = |x_i - y_{i+s} \mod n| = d^-(x_i, y_{i+s} \mod n) \quad \text{(by Observation 1)}.
\]

We can similarly show that, when \(x_i + c = (x_i + c) \mod 1 + 1 \), we have \(k = 1 \) and the edges of \(M^* \) that do not cross point 0 have the same length as their corresponding edge in \(M^- \).

Edges that cross point 0:
- If an edge of \(M^* \) crosses point 0, then the corresponding edge in \(M^- \) crosses edge \((r, r)\) and hence the two endpoints (beads) of the given edge of \(M^- \) must be in different and consecutive intervals: \([r - 1, r) \text{ and } [r, r + 1)\) for some \(r \in \{0, 1, 2\} \) (the green and blue edges \((x_i + c, y_i + s), (x_j + c, y_j + s)\) in Figure 3). Then, assuming \(x_i + c = (x_i + c) \mod 1 \), we have

\[
0 \quad (x_i + c) \mod 1
\]
\[
1 \quad y_{i+s}
\]
\[
2 \quad (x_j + c) \mod 1
\]

Figure 3: Unrolling a circular necklace to a line.
• When \((x_i + c) \mod 1 < y_{(i+s) \mod n}\), \(k = -1\) and

\[
d^- (x_i + c, y_{(i+s) \mod n + k}) = |(x_i + c) - (y_{(i+s) \mod n + 1})| = |(x_i + c) \mod 1 - y_{(i+s) \mod n + 1}|
\]

We can similarly show that, when \((x_i + c) \mod 1 > y_{(i+s) \mod n}\), \(k = 1\) and

\[
d^+ (x_i + c, y_{(i+s) \mod n + k}) = |(x_i + c) - (y_{(i+s) \mod n + 1})| = |(x_i + c) \mod 1 - y_{(i+s) \mod n + 1}|
\]

Therefore, the length of every edge of \(M^{\circ*}\) along the circle is equal to the length of its corresponding edge in \(M^-\). Thus, the value of the matching \(M^{\circ*}\) is at least as large as that of \(M^{-*}\), completing the proof of the theorem.

We now proceed to prove our results by using the objective function \((2)\).

3 \(\ell_2\) Necklace Alignment and \((+, \cdot)\) Convolution

In this section, we first show how \(\ell_2\) necklace alignment reduces to standard convolution, leading to an \(O(n \lg n)\)-time algorithm that uses the Fast Fourier Transform. We then show how this result generalizes to \(\ell_p\) for any even \(p\). It should be noted here that the \(\ell_2\) necklace alignment problem was solved independently by Clifford et al. [13] (see Problem 5) using Fast Fourier Transforms. Our proof uses essentially the same technique of expanding the squared term and then optimizing terms separately, but goes through the steps in more detail; we include our proof for completeness. More results that use the FFT to solve different flavors of matching problems may also be found in [14] and [11].

Theorem 3. The \(\ell_2\) necklace alignment problem can be solved in \(O(n \lg n)\) time on a real RAM.

Proof. The objective \((2)\) expands algebraically to

\[
\sum_{i=0}^{n-1} (x_i - y_{(i+s) \mod n + c})^2
\]

\[
= \sum_{i=0}^{n-1} (x_i^2 + y_{(i+s) \mod n}^2 + 2cx_i - 2cy_{(i+s) \mod n}^2 + c^2) - 2 \sum_{i=0}^{n-1} x_i y_{(i+s) \mod n}
\]

\[
= \sum_{i=0}^{n-1} (x_i^2 + y_{(i+s) \mod n}^2 + 2cx_i - 2cy_i + c^2) - 2 \sum_{i=0}^{n-1} x_i y_{(i+s) \mod n}
\]

\[
= \left[\sum_{i=0}^{n-1} (x_i^2 + y_{(i+s) \mod n}^2) + 2c \sum_{i=0}^{n-1} (x_i - y_i) + nc^2 \right] - 2 \sum_{i=0}^{n-1} x_i y_{(i+s) \mod n}.
\]
The first term depends solely on the inputs and the variable \(c \), while the second term depends solely on the inputs and the variable \(s \). Thus the two terms can be optimized separately. The first term can be optimized in \(O(n) \) time by solving for when the derivative, which is linear in \(c \), is zero.

The second term can be computed, for each \(s \in \{0, 1, \ldots, n-1\} \), in \(O(n \log n) \) time using \((+,-)\) convolution (and therefore optimized in the same time). Specifically, define the vectors

\[
\vec{x}' = \langle x_0, x_1, \ldots, x_{n-1}; 0, 0, \ldots, 0 \rangle_n,
\]

\[
\vec{y}' = \langle y_{n-1}; y_{n-2}, \ldots, y_0; y_{n-1}, y_{n-2}, \ldots, y_0 \rangle.
\]

Then, for \(s' \in \{0, 1, \ldots, n-1\} \), the \((n + s')\)th entry of the convolution \(\vec{x}' \ast \vec{y}' \) is

\[
\sum_{i=0}^{n+s'} x'_i y'_{n+s'-i} = \sum_{i=0}^{n-1} x_i y_{(i-s'-1) \mod n},
\]

which is the desired entry if we let \(s' = n - 1 - s \). We can compute the entire convolution in \(O(n \log n) \) time using the Fast Fourier Transform. \(\square \)

The above result can be generalized to \(\ell_p \) for any fixed even integer \(p \). When \(p \geq 4 \), expanding the objective and rearranging the terms results in

\[
\sum_{i=0}^{n-1} (x_i - y_{(i+s) \mod n} + c)^p = \sum_{i=0}^{n-1} \sum_{j=0}^{p} \binom{p}{j} (x_i - y_{(i+s) \mod n})^{p-j} c^j
\]

\[
= \sum_{j=0}^{p} \left(\binom{p}{j} \sum_{i=0}^{n-1} (x_i - y_{(i+s) \mod n})^{p-j} \right) c^j,
\]

which is a degree-\(p \) polynomial in \(c \), all of whose coefficients can be computed for all values of \(s \) by computing \(O(p^2) \) convolutions.

Theorem 4. The \(\ell_p \) necklace alignment problem with \(p \) even can be solved in \(O(p^2 n \log n) \) time on a real RAM.

4 \(\ell_\infty \) Necklace Alignment and (min, +) Convolution

4.1 Reducing \(\ell_\infty \) Necklace Alignment to (min, +) Convolution

First we show the relation between \(\ell_\infty \) necklace alignment and \((\min, +)\) convolution. We need the following basic fact:

Fact 5. For any vector \(\vec{z} = \langle z_0, z_1, \ldots, z_{n-1} \rangle \) and \(c = -\frac{1}{2} \left(\min_{i=0}^{n-1} z_i + \max_{i=0}^{n-1} z_i \right) \), the minimum value of \(\max_{i=0}^{n-1} |z_i + c| \) is

\[
\frac{1}{2} \left(\max_{i=0}^{n-1} z_i - \min_{i=0}^{n-1} z_i \right).
\]

Instead of using \((\min, +)\) convolution directly, we use two equivalent forms, \((\min, -)\) and \((\max, -)\) convolution:
Theorem 6. The ℓ_∞ necklace alignment problem can be reduced in $O(n)$ time to one $(\min, -)$ convolution and one $(\max, -)$ convolution.

Proof. For two necklaces \vec{x} and \vec{y}, we apply the $(\min, -)$ convolution to the following vectors:

\[
\vec{x}' = \langle x_0, x_1, \ldots, x_{n-1}; \infty, \infty, \ldots, \infty \rangle_n,
\]

\[
\vec{y}' = \langle y_{n-1}, y_{n-2}, \ldots, y_0; y_{n-1}, y_{n-2}, \ldots, y_0 \rangle.
\]

Then, for $s' \in \{0, 1, \ldots, n - 1\}$, the $(n + s')$th entry of $\vec{x}' \ast \vec{y}'$ is

\[
\min_{i=0}^{n+s'}(x'_i - y'_{n+s'-i}) = \min_{i=0}^{n-1}(x_i - y(i+s') \mod n),
\]

which is $\min_{i=0}^{n-1}(x_i - y(i+s) \mod n)$ if we let $s' = n-1-s$. By symmetry, we can compute the $(\max, -)$ convolution $\vec{x}'' \ast \vec{y}'$, where \vec{x}'' has $-\infty$’s in place of ∞’s, and use it to compute $\max_{i=0}^{n-1}(x_i - y(i+s) \mod n)$ for each $s \in \{0, 1, \ldots, n-1\}$. Applying Fact 5 we can therefore minimize $\max_{i=0}^{n-1}|x_i - y(i+s) \mod n + c|$ over c, for each $s \in \{0, 1, \ldots, n-1\}$. By brute force, we can minimize over s as well using $O(n)$ additional comparisons and time.

\[\blacksquare\]

4.2 $(\min, -)$ Convolution in Nonuniform Linear Decision Tree

For our nonuniform linear decision tree results, we use the main theorem of Fredman’s work on sorting $X + Y$:

Theorem 7. For any fixed set Γ of permutations of N elements, there is a comparison tree of depth $O(N + \lg |\Gamma|)$ that sorts any sequence whose rank permutation belongs to Γ.

Theorem 8. The $(\min, -)$ convolution of two vectors of length n can be computed in $O(n\sqrt{n})$ time in the nonuniform linear decision tree model.

Proof. Let \vec{x} and \vec{y} denote the two vectors of length n, and let $\vec{x}' \ast \vec{y}'$ denote their $(\min, -)$ convolution, whose kth entry is $\min_{i=0}^{k}(x_i - y_{k-i})$.

First we sort the set $D = \{x_i - x_j, y_i - y_j : |i - j| \leq d\}$ of pairwise differences between nearby x_i’s and nearby y_i’s, where $d \leq n$ is a value to be determined later. This set D has $N = O(nd)$ elements. The possible sorted orders of D correspond to cells in the arrangement of hyperplanes in \mathbb{R}^{2n} induced by all $\binom{N}{2}$ possible comparisons between elements in the set, and this hyperplane arrangement has $O(N^{4n})$ cells. By Theorem 7 there is a comparison tree sorting D of depth $O(N + n \lg N) = O(nd + n \lg n)$.

The comparisons we make to sort D enable us to compare $x_i - y_{k-i}$ versus $x_j - y_{k-j}$ for free, provided $|i - j| \leq d$, because $x_i - y_{k-i} < x_j - y_{k-j}$ precisely if $x_i - x_j < y_{k-i} - y_{k-j}$. Thus, in particular, we can compute

\[
M_k(\lambda) = \min \left\{ x_i - y_{k-i} \mid i = \lambda, \lambda + 1, \ldots, \min\{\lambda + d, n\} - 1 \right\}
\]

for free (using the outcomes of the comparisons we have already made).

We can rewrite the kth entry $\min_{i=0}^{k}(x_i - y_{k-i})$ of $\vec{x}' \ast \vec{y}'$ as $\min\{M_k(0), M_k(d), M_k(2d), \ldots, M_k([k/d]d)\}$, and thus we can compute it in $O(k/d) = O(n/d)$ comparisons between differences. Therefore all n entries can be computed in $O(nd + n \lg n + n^2/d)$ total time.
This asymptotic running time is minimized when \(nd = \Theta(n^2/d) \), i.e., when \(d^2 = \Theta(n) \). Substituting \(d = \sqrt{n} \), we obtain a running time of \(O(n\sqrt{n}) \) in the nonuniform linear decision tree model.

Combining Theorems \ref{thm:main} and \ref{thm:corollary1} we obtain the following result:

Corollary 9. The \(\ell_\infty \) necklace alignment problem can be solved in \(O(n\sqrt{n}) \) time in the nonuniform linear decision tree model.

4.3 \((\min, -)\) Convolution in Real RAM via Geometric Dominance

Our algorithm on the real RAM uses the following geometric lemma from Chan’s work on all-pairs shortest paths:

Lemma 10. \([9] \) Lemma 2.1] Given \(n \) points \(p_1, p_2, \ldots, p_n \) in \(d \) dimensions, each colored either red or blue, we can find the \(\mathcal{P} \) pairs \(\{p_i, p_j\} \) for which \(p_i \) is red, \(p_j \) is blue, and \(p_i \) dominates \(p_j \) (i.e., for all \(k \), the \(k \)-th coordinate of \(p_i \) is at least the \(k \)-th coordinate of \(p_j \)), in \(2^{O(d)}n^{1+\varepsilon} + O(P) \) time for arbitrarily small \(\varepsilon > 0 \).

Theorem 11. The \((\min, -)\) convolution of two vectors of length \(n \) can be computed in \(O(n^2/\lg n) \) time on a real RAM.

Proof. Let \(\vec{x} \) and \(\vec{y} \) denote the two vectors of length \(n \), and let \(\vec{x} \sim \vec{y} \) denote their \((\max, -)\) convolution. (Symmetrically, we can compute the \((\min, -)\) convolution.) For each \(i \in \{0, d, 2d, \ldots, \lfloor n/d \rfloor \} \), and for each \(j \in \{0, 1, \ldots, n-1\} \), we define the \(d \)-dimensional points

\[
\begin{align*}
p_{\delta,i} &= (x_{i+\delta} - x_i, x_{i+\delta} - x_{i+1}, \ldots, x_{i+\delta} - x_{i+d-1}), \\
q_{\delta,j} &= (y_{j-\delta} - y_i, y_{j-\delta} - y_{i+1}, \ldots, y_{j-\delta} - y_{j-1}).
\end{align*}
\]

(To handle boundary cases, define \(x_i = \infty \) and \(y_j = -\infty \) for indices \(i, j \) outside \([0, n-1]\).) For each \(\delta \in \{0, 1, \ldots, d-1\} \), we apply Lemma 10 to the set of red points \(\{p_{\delta,i} : i = 0, d, 2d, \ldots, \lfloor n/d \rfloor\} \) and the set of blue points \(\{q_{\delta,j} : j = 0, 1, \ldots, n-1\} \), to obtain all dominating pairs \(\langle p_{\delta,i}, q_{\delta,j} \rangle \).

Point \(p_{\delta,i} \) dominates \(q_{\delta,j} \) precisely if \(x_{i+\delta} - x_{i+\delta'} \geq y_{j-\delta} - y_{j-\delta'} \) for all \(\delta' \in \{0, 1, \ldots, d-1\} \). If we substitute \(j = k - i \), we obtain that \(\langle p_{\delta,i}, q_{\delta,k-i} \rangle \) is a dominating pair precisely if \(x_{i+\delta} - y_{k-\delta-i} \geq \max_{\delta'=1}^{d-1}(x_{i+\delta'} - y_{k-\delta'-i}) \). Thus, the set of dominating pairs gives us the maximum \(M_k(i) = \max\{x_i - y_{k-\delta_i}, x_{i+1} - y_{k-\delta_{i+1}}, \ldots, x_{\min\{i+d,n\}-1} - y_{\min\{k-i+d,n\}-1}\} \) for each \(i \) divisible by \(d \) and for each \(k \). Also, there can be at most \(O(n^2/d) \) such pairs for all \(i, j, \delta \), because there are \(O(n/d) \) choices for \(i \) and \(O(n) \) choices for \(j \), and if \(\langle p_{\delta,i}, q_{\delta,j} \rangle \) is a dominating pair, then \(\langle p_{\delta',i}, q_{\delta',j} \rangle \) cannot be a dominating pair for any \(\delta' \neq \delta \). (Here we assume that the max is achieved uniquely, which can be arranged by standard perturbation techniques or by breaking ties consistently \([9]\).)

Hence, the running time of the \(d \) executions of Lemma 10 is \(d2^{O(d)}n^{1+\varepsilon} + O(n^2/d) \) time, which is \(O(n^2/\lg n) \) if we choose \(d = \alpha \lg n \) for a sufficiently small constant \(\alpha > 0 \). We can rewrite the \(k \)-th entry \(\max_{\delta=0}^d(x_i - y_{k-\delta}) \) of \(\vec{x} \sim \vec{y} \) as \(\max\{M_k(0), M_k(d), M_k(2d), \ldots, M_k(\lfloor k/d \rfloor d)\} \), and thus we can compute it in \(O(k/d) = O(n/d) \) time. Therefore all \(n \) entries can be computed in \(O(n^2/d) = O(n^2/\lg n) \) time on a real RAM.

Combining Theorems \ref{thm:main} and \ref{thm:corollary1} we obtain the following result:

Corollary 12. The \(\ell_\infty \) necklace alignment problem can be solved in \(O(n^2/\lg n) \) time on a real RAM.
Although we will present a slightly faster algorithm for \((\min, -)\) convolution in the next subsection, the approach described above will be useful later when we discuss the (median, \(-\)) convolution problem.

4.4 \((\min, -)\) Convolution via Matrix Multiplication

Our next algorithm uses Chan’s \(O(n^3(\log \log n)^3 / \log^2 n)\) algorithm for computing the \((\min, +)\) matrix multiplication of two \(n \times n\) matrices \cite{10} (to which all-pairs shortest paths also reduces). We establish a reduction from convolution to matrix multiplication.

Theorem 13. If we can compute the \((\min, -)\) matrix multiplication of two \(n \times n\) matrices in \(T(n)\) time, then we can compute the \((\min, -)\) convolution of two vectors of length \(n\) in \(O((n+T(\sqrt{n}))/\sqrt{n})\) time.

Proof. We claim that computing the \((\min, -)\) convolution \(\vec{z} = \vec{x} \ast \vec{y}\) reduces to the following \((\min, -)\) matrix multiplication:

\[
P = \sqrt{n} \begin{pmatrix}
x_0 & x_1 & \cdots & x_{\sqrt{n}-1} \\
x_{\sqrt{n}} & x_{\sqrt{n}+1} & \cdots & x_{2\sqrt{n}-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-\sqrt{n}} & x_{n-\sqrt{n}+1} & \cdots & x_{n-1}
\end{pmatrix} - \min_{\min} \begin{pmatrix}
y_{\sqrt{n}-1} & y_{\sqrt{n}} & \cdots & y_{n-2} & y_{n-1} \\
y_{\sqrt{n}-2} & y_{\sqrt{n}-1} & \cdots & y_{n-3} & y_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
y_1 & y_2 & \cdots & y_{n-\sqrt{n}-2} & y_{n-\sqrt{n}-1} \\
y_0 & y_1 & \cdots & y_{n-\sqrt{n}-1} & y_{n-\sqrt{n}}
\end{pmatrix}
\]

The \((i,j)\)th entry \(p_{i,j}\) of this product \(P\) is

\[
p_{i,j} = \min_{m=0}^{\sqrt{n}-1} \left(x_{i+m} - y_{j+m}\right).
\]

Let \(\bar{k} = \lfloor k/\sqrt{n} \rfloor \sqrt{n}\) denote the next smaller multiple of \(\sqrt{n}\) from \(k\). Now, given the product \(P\) above, we can compute each element \(z_k\) of the convolution \(\vec{z}\) as follows:

\[
z_k = \min \left\{ P_{0,k+1-\sqrt{n}}P_{1,k+1-2\sqrt{n}}P_{2,k+1-3\sqrt{n}} \cdots P_{\lfloor k/\sqrt{n} \rfloor -1,k-\lfloor k/\sqrt{n} \rfloor} \right\}.
\]

This \(\min\) has \(O(\sqrt{n})\) terms, and thus \(z_k\) can be computed in \(O(\sqrt{n})\) time. The entire vector \(\vec{z}\) can therefore be computed in \(O(n\sqrt{n})\) time, given the matrix product \(P\).

It remains to show how to compute the rectangular product \(P\) efficiently, given an efficient square-matrix \((\min, -)\) multiplication algorithm. We simply break the product \(P\) into at most \(\sqrt{n}\) products of \(\sqrt{n} \times \sqrt{n}\) matrices: the left term is the entire left matrix, and the right term is a block submatrix. The number of blocks is \(\lfloor (n - \sqrt{n} + 1) / \sqrt{n} \rfloor \leq \sqrt{n}\). Thus the running time for the product \(O(T(\sqrt{n})/\sqrt{n})\).

Summing the reduction cost and the product cost, we obtain a total cost of \(O((n+T(\sqrt{n}))/\sqrt{n})\).

\[\square\]

Plugging in \(T(n) = O(n^3/\log n)\) from \cite{9} allows us to obtain an alternative proof of Theorem \cite{11}

Plugging in \(T(n) = O(n^3(\log \log n)^3 / \log^2 n)\) from \cite{10} immediately gives us the following improved result:

Corollary 14. The \((\min, -)\) convolution of two vectors of length \(n\) can be computed in \(O(n^2(\log \log n)^3 / \log^2 n)\) time on a real RAM.
Combining Theorem 6 and Corollary 14, we obtain the following result:

Corollary 15. The ℓ_∞ necklace alignment problem can be solved in $O(n^2(\lg \lg n)^3/\lg^2 n)$ time on a real RAM.

We remark that by the reduction in Theorem 13, any nontrivial lower bound for $(\min, -)$ convolution would imply a lower bound for $(\min, -)$ matrix multiplication and the all-pairs shortest path problem.

5 \(\ell_1 \) Necklace Alignment and \((\text{median, } +)\) Convolution

5.1 Reducing \(\ell_1 \) Necklace Alignment to \((\text{median, } +)\) Convolution

First we show the relation between \(\ell_1 \) necklace alignment and \((\text{median, } +)\) convolution. We need the following basic fact [2]:

Fact 16. For any vector \(\vec{z} = (z_0, z_1, \ldots, z_{n-1}) \), \(\sum_{i=0}^{n-1} |z_i + c| \) is minimized when \(c = -\text{median}_{i=0}^{n-1} z_i \).

Instead of using \((\text{median, } +)\) convolution directly, we use the equivalent form, \((\text{median, } -)\) convolution:

Theorem 17. The \(\ell_1 \) necklace alignment problem can be reduced in \(O(n) \) time to one \((\text{median, } -)\) convolution.

Proof. For two necklaces \(\vec{x} \) and \(\vec{y} \), we apply the \((\text{median, } -)\) convolution to the following vectors, as in the proof of Theorem 6:

\[
\vec{x}' = (x_0, x_0, x_1, \ldots, x_{n-1}, x_{n-1}; \infty, -\infty, \infty, -\infty, \ldots, \infty, -\infty),
\]
\[
\vec{y}' = (y_{n-1}, y_{n-1}, y_{n-2}, y_{n-2}, \ldots, y_0, y_0; y_{n-1}, y_{n-1}, y_{n-2}, y_{n-2}, \ldots, y_0, y_0).
\]

\(\vec{x}' - \text{med} \vec{y}' \) is

\[
\frac{2(n+s') - 1}{2n} + \text{median}_{i=0}^{n-1} (x_i' - y_{2(n+s') + 1 - i}) \]

which is \(\text{median}_{i=0}^{n-1} (x_i - y_{(i+s) \mod n}) \) if we let \(s' = n - 1 - s \). Applying Fact 16 we can therefore minimize \(\text{median}_{i=0}^{n-1} |x_i - y_{(i+s) \mod n} + c| \) over \(c \), for each \(s \in \{0, 1, \ldots, n-1\} \). By brute force, we can minimize over \(s \) as well using \(O(n) \) additional comparisons and time.

Our results for \((\text{median, } -)\) convolution use the following result of Frederickson and Johnson:

Theorem 18. [26] The median element of the union of \(k \) sorted lists, each of length \(n \), can be computed in \(O(k \lg n) \) time and comparisons.

5.2 \((\text{median, } -)\) Convolution in Nonuniform Linear Decision Tree

We begin with our results for the nonuniform linear decision tree model:

Theorem 19. The \((\text{median, } -)\) convolution of two vectors of length \(n \) can be computed in \(O(n \sqrt{n \lg n}) \) time in the nonuniform linear decision tree model.
Proof. As in the proof of Theorem 9, we sort the set \(D = \{ x_i - x_j, y_i - y_j : |i - j| \leq d \} \) of pairwise differences between nearby \(x_i \)'s and nearby \(y_i \)'s, where \(d \leq n \) is a value to be determined later. By Theorem 7, this step requires \(O(nd + n \lg n) \) comparisons between differences. These comparisons enable us to compare \(x_i - y_{k-i} \) versus \(x_j - y_{k-j} \) for free, provided \(|i - j| \leq d \), because \(x_i - y_{k-i} < x_j - y_{k-j} \) precisely if \(x_i - x_j < y_{k-i} - y_{k-j} \). In particular, we can sort each list

\[
L_k(\lambda) = \{ x_i - y_{k-i} : i = \lambda, \lambda + 1, \ldots, \min(\lambda + d, n) - 1 \}
\]

for free. By Theorem 10 we can compute the median of \(L_k(0) \cup L_k(d) \cup L_k(2d) \cup \cdots \cup L_k(\lceil k/d \rceil d) \), i.e., \(\text{median}_{i=0}^{k}(x_i - y_{k-i}) \), in \(O((k/d) \lg d) = O((n/d) \lg d) \) comparisons. Also, in the same asymptotic number of comparisons, we can binary search to find where the median fits in each of the \(L_k(\lambda) \) lists, and therefore which differences are smaller and which differences are larger than the median.

This median is the \(k \)th entry of \(\vec{x} \ast \vec{y} \). Therefore, we can compute all \(n \) entries of \(\vec{x} \ast \vec{y} \) in \(O(nd + n \lg n + (n^2/d) \lg d) \) comparisons. This asymptotic running time is minimized when \(nd = \Theta((n^2/d) \lg d) \), i.e., when \(d^2/\lg d = \Theta(n) \). Substituting \(d = \sqrt{n \lg n} \), we obtain a running time of \(O(n \sqrt{n \lg n}) \) in the nonuniform linear decision tree model.

Combining Theorems 17 and 19 we obtain the following result:

Corollary 20. The \(\ell_1 \) necklace alignment problem can be solved in \(O(n \sqrt{n \lg n}) \) time in the nonuniform linear decision tree model.

5.3 \((\min, -)\) Convolution in Real RAM via Geometric Dominance

Now we turn to the analogous results for the real RAM:

Theorem 21. The \((\text{median, } -)\) convolution of two vectors of length \(n \) can be computed in \(O(n^2(\lg \lg n)^2/\lg n) \) time on a real RAM.

Proof. Let \(\vec{x} \) and \(\vec{y} \) denote the two vectors of length \(n \), and let \(\vec{x} \ast \vec{y} \) denote their \((\text{median, } -)\) convolution. For each permutation \(\pi \) on the set \(\{ 0, 1, \ldots, d-1 \} \), for each \(i \in \{ 0, d, 2d, \ldots, \lceil n/d \rceil d \} \), and for each \(j \in \{ 0, 1, \ldots, n-1 \} \), we define the \((d-1)\)-dimensional points

\[
\begin{align*}
p_{\pi,i} &= (x_{i+\pi(0)} - x_{i+\pi(1)}, x_{i+\pi(1)} - x_{i+\pi(2)}, \ldots, x_{i+\pi(d-2)} - x_{i+\pi(d-1)}), \\
q_{\pi,j} &= (y_{j-\pi(0)} - y_{j-\pi(1)}, y_{j-\pi(1)} - y_{j-\pi(2)}, \ldots, y_{j-\pi(d-2)} - y_{j-\pi(d-1)}).
\end{align*}
\]

(To handle boundary cases, define \(x_i = \infty \) and \(y_j = -\infty \) for indices \(i, j \) outside \([0, n-1] \).) For each permutation \(\pi \), we apply Lemma 10 to the set of red points \(\{ p_{\pi,i} : i = 0, d, 2d, \ldots, \lceil n/d \rceil d \} \) and the set of blue points \(\{ q_{\pi,j} : j = 0, 1, \ldots, n-1 \} \), to obtain all dominating pairs \((p_{\pi,i}, q_{\pi,j}) \).

Point \(p_{\pi,i} \) dominates \(q_{\pi,j} \) precisely if \(x_{i+\pi(\delta)} - x_{i+\pi(\delta+1)} \geq y_{j-\pi(\delta)} - y_{j-\pi(\delta+1)} \) for all \(\delta \in \{ 0, 1, \ldots, d-2 \} \) (ignoring the indices outside \([0, n-1] \)). By re-arranging terms, this condition is equivalent to \(x_{i+\pi(\delta)} - y_{j-\pi(\delta)} \geq x_{i+\pi(\delta+1)} - y_{j-\pi(\delta+1)} \) for all \(\delta \in \{ 0, 1, \ldots, d-2 \} \), i.e., \(\pi \) is a sorting permutation of \((x_i - y_j, x_{i+1} - y_{j-1}, \ldots, x_{i+d-1} - y_{j-d+1}) \). If we substitute \(j = k - i \), we obtain that \((p_{\pi,i}, q_{\pi,k-i}) \) is a dominating pair precisely if \(\pi \) is a sorting permutation of the list \(L_k(i) = (x_i - y_{k-i}, x_{i+1} - y_{k-i+1}, \ldots, x_{\min(i+d,n)} - y_{\min(k-i+d,n) - 1}) \). Thus, the set of dominating pairs gives us the sorted order of \(L_k(i) \) for each \(i \) divisible by \(d \) and for each \(k \). Also, there can be at most \(O(n^2/d) \) total dominating pairs \((p_{\pi,i}, q_{\pi,j}) \) over all \(i, j, \pi \), because there are \(O(n/d) \) choices for \(i \) and \(O(n) \) choices for \(j \), and if \((p_{\pi,i}, q_{\pi,j}) \) is a dominating pair, then \((p_{\pi',i}, q_{\pi',j}) \) cannot be a dominating pair for any permutation \(\pi' \neq \pi \). (Here we assume that the sorted order
is unique, which can be arranged by standard perturbation techniques or by breaking ties consistently [9]. Hence, the running time of the $d!$ executions of Lemma 10 is $d!2^{O(d)}n^{1+\epsilon} + O(n^2/d)$ time, which is $O(n^2\lg n/\lg n)$ if we choose $d = \alpha \lg n/\lg \lg n$ for a sufficiently small constant $\alpha > 0$. By Theorem 18 we can compute the median of $L_k(0) \cup L_k(d) \cup L_k(2d) \cup \cdots \cup L_k([k/d]d)$, i.e., $\text{median}_{i=0}^k(x_i - y_{k-i})$, in $O((k/d)\lg d) = O((n/d)\lg d)$ comparisons. Also, in the same asymptotic number of comparisons, we can binary search to find where the median fits in each of the $L_k(\lambda)$ lists, and therefore which differences are smaller and which differences are larger than the median. This median is the kth entry of $\vec{x} \hat{*} \vec{y}$. Therefore all n entries can be computed in $O(n^2(\lg d)/d) = O(n^2(\lg \lg n)^2/\lg n)$ time on a real RAM.

Combining Theorems 17 and 21 we obtain the following result:

Corollary 22. The ℓ_1 necklace alignment problem can be solved in $O(n^2(\lg \lg n)^2/\lg n)$ time on a real RAM.

As before, this approach likely cannot be improved beyond $O(n^2/\lg n)$, because such an improvement would require an improvement to Lemma 10, which would in turn improve the fastest known algorithm for all-pairs shortest paths in dense graphs [10].

In contrast to $(\text{median}, +)$ convolution, $(\text{mean}, +)$ convolution is trivial to compute in linear time by inverting the two summations.

6 Conclusion

The convolution problems we consider here have connections to many classic problems, and it would be interesting to explore whether the structural information extracted by our algorithms could be used to devise faster algorithms for these classic problems. For example, does the antidiagonal information of the $X + Y$ matrix lead to a $o(n^2 \lg n)$-time algorithm for sorting $X + Y$? We believe that any further improvements to our convolution algorithms would require progress and/or have interesting implications on all-pairs shortest paths [9].

Our $(\min, -)$-convolution algorithms give subquadratic algorithms for polyhedral 3SUM: given three lists, $A = \{a_0, a_1, \ldots, a_{n-1}\}$, $B = \{b_0, b_1, \ldots, b_{n-1}\}$, and $C = \{c_0, c_1, \ldots, c_{2n-2}\}$, such that $a_i + b_j \leq c_{i+j}$ for all $0 \leq i, j < n$, decide whether $a_i + b_j = c_{i+j}$ for any $0 \leq i, j < n$. This problem is a special case of 3SUM, and this special case has an $\Omega(n^2)$ lower bound in the 3-linear decision tree model [23]. Our results solve polyhedral 3SUM in $O(n^2/\lg n)$ time in the 4-linear decision tree model, and in $O(n\sqrt{n})$ time in the nonuniform 4-linear decision tree model, solving an open problem of Erickson [21]. Can these algorithms be extended to solve 3SUM in subquadratic time in the (nonuniform) decision tree model?

Acknowledgments

This work was initiated at the 20th Bellairs Winter Workshop on Computational Geometry held January 28–February 4, 2005. We thank the other participants of that workshop—Greg Aloupis, Justin Colannino, Mirela Damian-Iordache, Vida Dujmović, Francisco Gomez-Martin, Danny Krizanc, Erin McLeish, Henk Meijer, Patrick Morin, Mark Overmars, Suneeta Ramaswami, David Rappaport, Diane Souvaine, Ileana Streinu, David Wood, Godfried Toussaint, Remco Veltkamp, and Sue Whitesides—for helpful discussions and contributing to a fun and creative atmosphere. We particularly thank the organizer, Godfried Toussaint, for posing the problem to us. The last author
would also like to thank Luc Devroye for pointing out the easy generalization of the ℓ_2 necklace alignment problem to ℓ_p for any fixed even integer p.

References

