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Computational complexity and an integer programming model of Shakashaka

Erik D. Demaine∗ Yoshio Okamoto† Ryuhei Uehara‡ Yushi Uno§

Abstract

Shakashaka is a pencil-and-paper puzzle proposed by
Guten and popularized by the Japanese publisher Nikoli
(like Sudoku). We determine the computational com-
plexity by proving that Shakashaka is NP-complete, and
furthermore that counting the number of solutions if
#P-complete. Next we formulate Shakashaka as an
integer programming (IP) problem, and show that an
IP solver can solve every instance from Nikoli’s website
within a second.

Keywords: integer programming, NP-completeness,
pencil-and-paper puzzle, Shakashaka

1 Introduction

The puzzle Shakashaka is one of many pencil-and-paper
puzzles (such as the famous Sudoku) popularized by
Japanese publisher Nikoli. Shakashaka was proposed
by Guten in 2008, and since then, has become one of
the main Nikoli puzzles.

An instance of Shakashaka consists of an m× n rect-
angular board of unit squares. Each square is either
white or black, and some black squares contain a num-
ber. A candidate solution to the puzzle consists of filling
in some of the white squares with a black half-square
(isosceles right triangle filling half the area) in one of
the four ways: , , , . We call such squares b/w
squares; white squares may also be left entirely white.
Each number in a black square specifies the number
of b/w squares that should be among four (vertically
or horizontally adjacent) neighbors of the black square.
(A black square without a number allows any number
of b/w neighbors.) The objective of the puzzle is to fill
the white squares in the given board while satisfying
the above constraints and so that the remaining white
area consists only of (empty) squares and rectangles.
An example of the puzzle Shakashaka in [1] is shown in
Figure 1(a), and its (unique) solution is given in Fig-
ure 1(b).
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Figure 1: An instance of the puzzle Shakashaka and its
solution ([1])

As mentioned in the literature [2], a lot of pencil-and-
paper puzzles have been shown NP-complete. However,
the computational complexity of Shakashaka has not yet
been studied. In this paper, we prove that Shakashaka
is NP-complete, by a reduction from planar 3SAT. Be-
cause our reduction preserves the number of solutions,
we also prove that counting the number of solutions to
a Shakashaka puzzle is #P-complete.

Next we show how to formulate Shakashaka as a 0-
1 integer programming problem (a linear programming
problem in which all variables are restricted to be 0 or
1). Although integer programming is one of Karp’s 21
NP-complete problems, there are many efficient solvers
from a practical point of view. For example, recent
solvers run around one billion times faster than those
from 1991 [3]. Therefore, once we can formulate a puzzle
as a 0-1 integer linear programming problem, we can
hope to use these solvers to solve the puzzle efficiently
in practice.

Some authors have proposed integer-programming
formulations of several puzzles before, mainly for the
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didactic purposes [4, 5, 6, 7, 8]. The formulation of
Shakashaka is not so straightforward because we have
to avoid forming nonrectangular orthogonal shapes or
nested rectangles. We show that our formulation char-
acterizes the constraints of Shakashaka. We also per-
form computational experiments, and observe that each
instance from Nikoli’s website can be solved within one
second.

2 Preliminaries

Let us begin with a formal definition of the puzzle
Shakashaka. An instance I of Shakashaka is a rectan-
gular board of size m × n. Each unit square is colored
either white or black. A black square may contain a
number i ∈ {0, . . . , 4}. A solution of the instance I is
a mapping from the set of white squares in I to the set
{ , , , , } satisfying the following conditions:

1. Each white square mapped to is left uncolored
(white), while each square mapped to , , ,
or is colored black and white as indicated (and
called a b/w square).

2. Each black square that contains the number i has
exactly i b/w squares among its four neighbors.

3. Each connected white area forms a white rectangle
(or square).

Computationally, Shakashaka is a decision problem:
for a given instance, does it have a solution? The count-
ing version of Shakashaka asks to compute the number
of distinct solutions to the given instance.

3 NP-completeness of Shakashaka

In this section, we prove the following theorem:

Theorem 1 Shakashaka is NP-complete.

The proof is by a reduction from planar 3SAT, one
of the well-known NP-complete problems [9]. Let F be
an instance of planar 3SAT. That is, F consists of a
set C = {C1, C2, . . . , Cm} of m clauses over n variables
V = {x1, x2, . . . , xn}, where each clause Ci consists of
three literals, and the graph G = (C ∪ V, E) is planar,
where E contains an edge {Ci, xj} if and only if literal
xj or x̄j is in the clause Ci.

Now we show a reduction from F to an instance I of
Shakashaka. The key idea is to use the pattern shown
in Figure 2. For the pattern in Figure 2(a), we have two
choices for filling the 2 × 2 white squares as shown in
Figure 2(b). Essentially, this works as a “wire” to prop-
agate a signal. We regard the 2 × 2 square containing
the four white unit squares in Figure 2(b) as represent-
ing “0,” and the big diamond containing four (different)
b/w squares in 2(b) as representing “1.” That is, the
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Figure 2: Basic pattern
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Figure 3: Variable gadget

“wire” pattern propagates a signal using the parity in
two different ways. Using the terminology of [2], we
need the gadgets of “variable,” “split,” “corner,” and
“clause.” We describe these gadgets one by one.

Variable gadget: Figure 3(a)1 shows the variable gad-
get. It is easy to see that we have two ways to fill the
pattern as in Figure 3(b–c). It can propagate its value
by the wire gadget as in the figure. It is also easy to
obtain the negation of the variable by taking the value
at the appropriate position of the wire.

Split gadget/corner gadget: Figure 4 shows the split
and corner gadgets. Using the split gadget, we can in-
crease the degree of the output of a variable gadget.

1Hereafter, each pattern is assumed to be surrounded by black
squares.
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Figure 6: Feasible cases and infeasible case of a clause gadget
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Figure 4: Split and corner gadgets
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Figure 5: Clause gadget

Clause gadget: Figure 5 shows the clause gadget for a
clause C = {x, y, z}. According to the values of x, y, z,
we have eight possible cases. Among them, only the
case x = y = z = 0 violates the condition of Shakashaka
(Figure 6).

The gadgets for wire, variable, split, and corner are
aligned properly because they are designed to fit into
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Figure 7: Parity gadget

a 3 × 3 square tiling. However, at a clause gadget, we
have to change the positions of wires to fit the gad-
get. To shift the position, we use a “parity” gadget
shown in Figure 7(a). Joining copies of the gadget in
a straightforward way, we can change the position of a
wire arbitrarily (Figure 7(b)). An example of a con-
struction of Shakashaka for the instance f = C1 ∨ C2,
where C1 = {x, ȳ, w} and C2 = {y, z̄, w̄} is depicted in
Figure 8.

It is easy to see that the resulting Shakashaka has
a solution if and only if the original formula F is sat-
isfiable. It is clear that the reduction can be done in
polynomial time, and Shakashaka is in the class NP.
Therefore, Shakashaka is NP-complete.

Our reduction is parsimonious, i.e., it preserves the
number of solutions. That is, the number of satisfy-
ing assignments to the original CNF formula is equal
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Figure 8: An example for C1 = {x, ȳ, w} and C2 =
{y, z̄, w̄}

to the number of solutions to the resulting instance
of Shakashaka. Because the counting version of pla-
nar 3SAT is #P-complete [10], we have the following
corollary:

Corollary 2 The counting version of Shakashaka is
#P-complete.

4 Integer Programming Formulation

We formulate Shakashaka in terms of a 0-1 integer pro-
gram. Recall that an instance I of Shakashaka consists
of a rectangular board of size m × n. We identify each
square by (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n} in the
natural way.

Variables: For each white square (i, j), we will use five
0-1 variables x[i, j, ], x[i, j, ], x[i, j, ], x[i, j, ], and
x[i, j, ]. Exactly one these variables has value 1, and
the rest are 0, according to the following meaning:

x[i, j, ] = 1 means that (i, j) remains white,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with ,
x[i, j, ] = 1 means that (i, j) is filled with .

We construct a linear system S(I) with the variables
x[i, j, ∗] such that the solutions of the instance I of
Shakashaka are in bijection with the solutions of S(I).
To this end, we set up five types of linear constraints as
described below.

Constraint A (at most one triangle in each white
square): In a solution to I, each white square either
remains white, or is filled with one of the four black
isosceles right triangles. We map this condition to the
following linear equality:

x[i, j, ] + x[i, j, ] + x[i, j, ]

+x[i, j, ] + x[i, j, ] = 1 (1)

for each i and j where (i, j) is a white square.

Proposition 3 Let SA(I) be the linear system that con-
sists of Constraint A. Then any feasible solution of
SA(I) gives the mapping from each white square to ex-
actly one of , , , , or .

Constraint B (neighbors of black squares): Next we
look at the black squares (i, j). First we consider the
case that (i, j) contains no number. In this case, (i, j)
gives some restrictions to its white neighbors. For ex-
ample, suppose that (i−1, j) is white. Then, if (i−1, j)
is or , these two squares make a 45◦ white corner
between them. Thus (i − 1, j) must be , , or .
Hence, in this case, the equation (1) for (i−1, j) can be
replaced by

x[i− 1, j, ] + x[i− 1, j, ] + x[i− 1, j, ] = 1 (2)

and we can fix x[i− 1, j, ] = x[i− 1, j, ] = 0.
On the other hand, when a black square (i, j) has a

number k, it must have k b/w squares as its neighbor.
This restriction is described by the following equation:

x[i− 1, j, ] + x[i− 1, j, ] + x[i + 1, j, ]

+ x[i + 1, j, ] + x[i, j − 1, ] + x[i, j − 1, ]

+ x[i, j + 1, ] + x[i, j + 1, ] = k, (3)

where x[i, j, ∗] is regarded as 0 if (i, j) is black. We also
fix x[i − 1, j, ] = x[i − 1, j, ] = x[i + 1, j, ] = x[i +
1, j, ] = x[i, j− 1, ] = x[i, j− 1, ] = x[i, j + 1, ] =
x[i, j + 1, ] = 0 to avoid the 45◦ white angle.

Constraint C (sequences of triangles): Next we turn
to the restrictions to make each connected white area a
rectangle. Suppose x[i, j, ] = 1. In this case, the white
triangle at (i, j) can be orthogonal if and only if either
x[i, j + 1, ] = 1 or x[i+ 1, j + 1, ] = 1. Therefore, we
obtain the following constraint:

x[i, j, ] ≤ x[i, j + 1, ] + x[i + 1, j + 1, ]. (4)
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Moreover, when x[i, j, ] = x[i+1, j+1, ] = 1, (i, j+1)
must remain white, or x[i, j+1, ] = 1. (When (i, j+1)
is , we have a parity problem; we cannot enclose this
area by extending this pattern. The other cases are also
prohibited.) This implies the following constraint:

x[i, j, ] + x[i + 1, j + 1, ] ≤ x[i, j + 1, ] + 1. (5)

We add the similar constraints for the other directions.
Then, we have the following proposition:

Proposition 4 Let SC(I) be the linear system that
consists of Constraints A, B, and C, and fix any feasible
solution of S(I). Then, each angle on the boundary of
each connected white area given by the mapping is 90◦.

Constraint D (exclusion of concave corners): By
Proposition 4, any feasible solution to Constraints A,
B, and C produces a pattern consisting of orthogonal
white polygons. However, this does not yet exclude
concave corners. By Equation 4, no b/w square forms
a part of a concave corner. Thus, a concave corner
may be produced by only white squares. Suppose that
x[i, j, ] = x[i + 1, j, ] = x[i, j + 1, ] = 1. Then,
(i + 1, j + 1) must be or must remain white. Thus
we add the following constraints (for all possible direc-
tions):

x[i, j, ] + x[i + 1, j, ] + x[i, j + 1, ]

≤ x[i + 1, j + 1, ] + x[i + 1, j + 1, ] + 2. (6)

We now have the following proposition:

Proposition 5 Let SD(I) be the linear system that
consists of Constraints A, B, C, and D, and fix any fea-
sible solution of S(I). Then every connected part of a
boundary of a white area is a convex orthogonal polygon,
i.e., a rectangle.

Constraint E (Exclusion of Nested White Rectangles):
The last problem is that the linear system so far may
produce nested rectangles. (Two rectangles are nested if
one properly contains another.) We suppose that both
of (i, j) and (i+k, j+k) are . Then, to avoid nesting,
we must have between them. That is, we must have

at (i + k′, j + k′) for some 0 < k′ < k. And it is
not difficult to see that this is a necessary and sufficient
condition to avoid nested rectangles. This observation
gives us the following constraint:

x[i, j, ] + x[i + k, j + k, ]

≤
∑

0<k′<k

x[i + k′, j + k′, ] + 1. (7)

Combining all propositions and observations above,
we conclude the following:
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Figure 9: An artificial example of the puzzle
Shakashaka.

Theorem 6 Let I be an instance of Shakashaka, and
S(I) be the linear system that consists of Constraints
A–E. Then, a feasible solution of S(I) gives a solution
to I, and vice versa.

5 Experimental Results

In this section, we describe our experimental results.
The IP solver we used is SCIP 3.0.0 [11]2 (Binary: Win-
dows/PC, 32bit, cl 16, intel 12.1: statically linked to
SoPlex 1.7.0, Ipopt 3.10.2,CppAD 20120101.3). The
machine we used was a laptop (Intel Core2 Duo
P8600@2.40GHz with RAM 4GB on Windows Vista
Business SP2). Each of the ten instances at nikoli.

com3 was solved in less than one second in our experi-
ments (Table 1).

We also looked at another instance at nikoli.com,
which was prepared for a competition. The board has
size 31 × 45, the level is Extreme, and the number of
white squares is 1230. A solution was obtained in 2.63
seconds.

The other examples are artificial ones (see Figure 9);
for each n = 1, 2, . . ., the board of size 2n× 2n consists
of 4×

∑n−1
i=1 i = 2n(n−1) black squares, and 4× (n−1)

black squares contain the number 2 as shown in the
figure. Each of them has a unique solution. The exper-
imental results for the artificial ones for n = 2, 3, . . . , 40
are shown in Figure 10. For n = 40, the solution is ob-
tained in 19.86 seconds. A simple regression shows that
the computation time is roughly proportional to 1.18n.

6 Concluding Remarks

In this paper, we proved that Shakashaka is NP-
complete. In our reduction, the black squares contain

2http://scip.zib.de/
3http://www.nikoli.com/ja/puzzles/shakashaka/
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Problem Size Level # of white squares Time (sec)

1 10 × 10 Easy 76 0.02
2 10 × 10 Easy 77 0.03
3 10 × 10 Easy 82 0.03
4 10 × 18 Easy 131 0.07
5 10 × 18 Medium 156 0.09
6 10 × 18 Medium 144 0.07
7 14 × 24 Medium 297 0.21
8 14 × 24 Hard 295 0.19
9 20 × 36 Hard 645 0.84
10 20 × 36 Hard 632 0.91

Table 1: Experimental results for the instances at nikoli.com
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Figure 10: Seconds for the artificial examples (n =
2, 3, . . . , 40).

Figure 11: An instance of Shakashaka without numbers

only the number 1 (or remain blank). An interest-
ing question is to determine the computational com-
plexity of Shakashaka with no numbers in the black
squares. Figure 11 shows a nontrivial example, which
has a unique solution. There are two natural questions
in this Shakashaka puzzle. How many black squares are
required to have a unique solution in an m × n board?
Can this restricted Shakashaka be solved in polynomial
time?
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