MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrodynamic analysis of the offshore floating nuclear power plant

Author(s)
Strother, Matthew Brian
Thumbnail
DownloadFull printable version (7.746Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering Systems Division.
Advisor
Jacopo Buongiorno, Paul Sclavounos and Pat Hale.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hydrodynamic analysis of two models of the Offshore Floating Nuclear Plant [91 was conducted. The OFNP-300 and the OFNP-1100 were both exposed to computer simulated sea states in the computer program OrcaFlex: first to sets of monochromatic waves, each consisting of a single frequency and waveheight, and then to Bretschneider and JONSWAP spectra simulating 100-year storms in, respectively, the Gulf of Mexico and the North Sea. Hydrodynamic coefficients for these simulations were obtained using a separate computer program, WAMIT. Both models exhibited satisfactory performance in both heave and pitch. An alternative design of the OFNP-300 was developed and similarly analyzed in attempt to further improve hydrodynamic performance. A catenary mooring system was designed and analyzed for both plant models. The number of chains and the length of each were selected to ensure the mooring systems would withstand, with sufficient margins of safety, the maximum tension produced in a 100-year storm. This analysis was conducted both with all the designed mooring lines intact, and with the worst-case line broken. A lifecycle cost analysis of various mooring systems was conducted in order to minimize the cost of the mooring system while maintaining adequate performance.
Description
Thesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, Engineering Systems Division, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-86).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/100112
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Engineering Systems Division
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering., Engineering Systems Division.

Collections
  • Graduate Theses
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.