Time-dependent ion selectivity in capacitive charging of porous electrodes
Author(s)
Zhao, R.; van Soestbergen, M.; van der Wal, A.; Rijnaarts, H. H. M.; Bazant, Martin Z.; Biesheuvel, P. M.; ... Show more Show less
DownloadCDI mono di 4 april 2012 MZB-1.pdf (443.1Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl[subscript 2] mixtures, when the concentration of Na[superscript +] ions in the water is five times the Ca[superscript 2+]-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na[superscript +] cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca[superscript 2+] cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca[superscript 2+]/Na[superscript +]-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations.
Date issued
2012-06Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of MathematicsJournal
Journal of Colloid and Interface Science
Publisher
Elsevier
Citation
Zhao, R., M. van Soestbergen, H.H.M. Rijnaarts, A. van der Wal, M.Z. Bazant, and P.M. Biesheuvel. “Time-Dependent Ion Selectivity in Capacitive Charging of Porous Electrodes.” Journal of Colloid and Interface Science 384, no. 1 (October 2012): 38–44.
Version: Original manuscript
ISSN
00219797
1095-7103