Show simple item record

dc.contributor.authorZhao, R.
dc.contributor.authorvan Soestbergen, M.
dc.contributor.authorvan der Wal, A.
dc.contributor.authorRijnaarts, H. H. M.
dc.contributor.authorBazant, Martin Z.
dc.contributor.authorBiesheuvel, P. M.
dc.date.accessioned2016-02-11T02:48:30Z
dc.date.available2016-02-11T02:48:30Z
dc.date.issued2012-06
dc.date.submitted2012-04
dc.identifier.issn00219797
dc.identifier.issn1095-7103
dc.identifier.urihttp://hdl.handle.net/1721.1/101160
dc.description.abstractIn a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl[subscript 2] mixtures, when the concentration of Na[superscript +] ions in the water is five times the Ca[superscript 2+]-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na[superscript +] cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca[superscript 2+] cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca[superscript 2+]/Na[superscript +]-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jcis.2012.06.022en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Bazant via Erja Kajosaloen_US
dc.titleTime-dependent ion selectivity in capacitive charging of porous electrodesen_US
dc.typeArticleen_US
dc.identifier.citationZhao, R., M. van Soestbergen, H.H.M. Rijnaarts, A. van der Wal, M.Z. Bazant, and P.M. Biesheuvel. “Time-Dependent Ion Selectivity in Capacitive Charging of Porous Electrodes.” Journal of Colloid and Interface Science 384, no. 1 (October 2012): 38–44.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBazant, Martin Z.en_US
dc.contributor.mitauthorBazant, Martin Z.en_US
dc.relation.journalJournal of Colloid and Interface Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhao, R.; van Soestbergen, M.; Rijnaarts, H.H.M.; van der Wal, A.; Bazant, M.Z.; Biesheuvel, P.M.en_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record