Show simple item record

dc.contributor.advisorTonio Buonassisi.en_US
dc.contributor.authorCastellanos Rodriguez, Sergioen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-03-03T21:06:56Z
dc.date.available2016-03-03T21:06:56Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101529
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 117-133).en_US
dc.description.abstractCast multicrystalline silicon (mc-Si) makes up about 60% of the global photovoltaics market production, and is favored due to its lower areal and capex costs relative to monocrystalline silicon. This method, however, produces material with a higher density of defects (e.g., dislocations, grain boundaries, metal impurities) than more expensive single-crystalline growth methods. A higher density of defects, particularly dislocations, results in a greater density of charge-carrier recombination centers, which reduce a solar cell's efficiency. Interestingly, the recombination activity of individual dislocations and dislocation clusters can vary by orders of magnitude, even within the same device and a separation of only by millimeters of distance. In this thesis, I combine a surface-analysis approach with bulk characterization techniques to explore the underlying root cause of variations in recombination activity between different dislocation clusters. I propose and validate an optical inspection routine based on dislocations' surface characteristics to predict their recombination activity, and extend this methodology to novel growth processes. Lastly, I explore a spatial dispersion metric to assess its potential as a descriptor for the electrical recombination activity of clusters in silicon. This work provides tools to crystal growers and solar cell manufacturers that facilitate the evaluation of electrical performance at early stages of the cell processing, enabling them to reduce the time required for cycles of learning to improve crystal growth processes.en_US
dc.description.statementofresponsibilityby Sergio Castellanos-Rodríguez.en_US
dc.format.extent133 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleElectrical impact assessment of dislocations in silicon materials for solar cellsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc939919176en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record