Show simple item record

dc.contributor.authorTaipale, Mikko
dc.contributor.authorKrykbaeva, Irina
dc.contributor.authorLin, Zhen-Yuan
dc.contributor.authorLarsen, Brett
dc.contributor.authorChoi, Hyungwon
dc.contributor.authorGingras, Anne-Claude
dc.contributor.authorTucker, George Jay
dc.contributor.authorPeng, Jian
dc.contributor.authorBerger, Bonnie A.
dc.contributor.authorLindquist, Susan
dc.date.accessioned2016-12-05T20:51:04Z
dc.date.available2016-12-05T20:51:04Z
dc.date.issued2014-07
dc.date.submitted2014-03
dc.identifier.issn00928674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/105723
dc.description.abstractChaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM081871)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2014.05.039en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleA Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathwaysen_US
dc.typeArticleen_US
dc.identifier.citationTaipale, Mikko et al. “A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways.” Cell 158.2 (2014): 434–448.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorTucker, George Jay
dc.contributor.mitauthorPeng, Jian
dc.contributor.mitauthorBerger, Bonnie A.
dc.contributor.mitauthorLindquist, Susan
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTaipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1307-882X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record