MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducibility and computational lower bounds for problems with planted sparse structure

Author(s)
Brennan, Matthew (Matthew Stewart)
Thumbnail
DownloadFull printable version (33.41Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Guy Bresler.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recently, research in unsupervised learning has gravitated towards exploring statistical-computational gaps induced by sparsity. A line of work initiated by Berthet and Rigollet has aimed to explain these gaps through reductions to conjecturally hard problems from complexity theory. However, the delicate nature of average-case reductions has limited the development of techniques and often led to weaker hardness results that only apply to algorithms that are robust to different noise distributions or that do not need to know the parameters of the problem. We introduce several new techniques to give a web of average-case reductions showing strong computational lower bounds based on the planted clique conjecture for planted independent set, planted dense subgraph, biclustering, sparse rank-1 submatrix, sparse PCA and the subgraph stochastic block model. Our results demonstrate that, despite the delicate nature of average-case reductions, using natural problems as intermediates can often be beneficial, as is the case in worst-case complexity. Our main technical contribution is to introduce a set of techniques for average-case reductions that: (1) maintain the level of signal in an instance of a problem; (2) alter its planted structure; and (3) map two initial high-dimensional distributions simultaneously to two target distributions approximately under total variation. We also give algorithms matching our lower bounds and identify the information-theoretic limits of the models we consider.
Description
Thesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 145-155).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118062
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.