MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Big data fusion to estimate driving adoption behavior and urban fuel consumption

Author(s)
Kalila, Adham
Thumbnail
DownloadFull printable version (8.084Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Marta C. González.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Data from mobile phones is constantly increasing in accuracy, quantity, and ubiquity. Methods that utilize such data in the field of transportation demand forecasting have been proposed and represent a welcome addition. We propose a framework that uses the resulting travel demand and computes fuel consumption. The model is calibrated for application on any range of car fuel efficiency and combined with other sources of data to produce urban fuel consumption estimates for the city of Riyadh as an application. Targeted traffic congestion reduction strategies are compared to random traffic reduction and the results indicate a factor of 2 improvement on fuel savings. Moreover, an agent-based innovation adoption model is used with a network of women from Call Detail Records to simulate the time at which women may adopt driving after the ban on females driving is lifted in Saudi Arabia. The resulting adoption rates are combined with fuel costs from simulating empty driver trips to forecast the fuel savings potential of such a historic policy change.
Description
Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 63-68).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119335
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.