MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear algebraic techniques in algorithms and complexity

Author(s)
Alman, Josh(Joshua H.)
Thumbnail
Download1142100707-MIT.pdf (1.592Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
R. Ryan Williams and Virginia Vassilevska Williams.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We develop linear algebraic techniques in algorithms and complexity, and apply them to a variety of different problems. We focus in particular on matrix multiplication algorithms, which have surprisingly fast running times and can hence be used to design fast algorithms in many settings, and matrix rank methods, which can be used to design algorithms or prove lower bounds by analyzing the ranks of matrices corresponding to computational tasks. First, we study the design of matrix multiplication algorithms. We define a new general method, called the Universal Method, which subsumes all the known approaches to designing these algorithms. We then design a suite of techniques for proving lower bounds on the running times which can be achieved by algorithms using many tensors and the Universal Method.
 
Our main limitation result is that a large class of tensors generalizing the Coppersmith-Winograd tensors (the family of tensors used in all record-holding algorithms for the past 30+ years) cannot achieve a better running time for multiplying n by n matrices than O(n²[superscript .]¹⁶⁸). Second, we design faster algorithms for batch nearest neighbor search, the problem where one is given sets of data points and query points, and one wants to find the most similar data point to each query point, according to some distance measure. We give the first subquadratic time algorithm for the exact problem in high dimensions, and the fastest known algorithm for the approximate problem, for various distance measures including Hamming and Euclidean distance. Our algorithms make use of new probabilistic polynomial constructions to reduce the problem to the multiplication of low-rank matrices.
 
Third, we study rigid matrices, which cannot be written as the sum of a low rank matrix and a sparse matrix. Finding explicit rigid matrices is an important open problem in complexity theory with applications in many different areas. We show that the Walsh-Hadamard transform, previously a leading candidate rigid matrix, is in fact not rigid. We also give the first nontrivial construction of rigid matrices in a certain parameter regime with applications to communication complexity, using an efficient algorithm with access to an NP oracle.
 
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 209-224).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124111
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.