MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supercoiling-mediated feedback rapidly couples and tunes transcription

Author(s)
Johnstone, Christopher P; Galloway, Kate E
Thumbnail
DownloadPublished version (2.751Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Transcription induces a wave of DNA supercoiling, altering the binding affinity of RNA polymerases and reshaping the biochemical landscape of gene regulation. As supercoiling rapidly diffuses, transcription dynamically reshapes the regulation of proximal genes, forming a complex feedback loop. However, a theoretical framework is needed to integrate biophysical regulation with biochemical transcriptional regulation. To investigate the role of supercoiling-mediated feedback within multi-gene systems, we model transcriptional regulation under the influence of supercoiling-mediated polymerase dynamics, allowing us to identify patterns of expression that result from physical inter-gene coupling. We find that gene syntax-the relative ordering and orientation of genes-defines the expression profiles, variance, burst dynamics, and inter-gene correlation of two-gene systems. Furthermore, supercoiling can enhance or weaken biochemical regulation. Our results suggest that supercoiling couples behavior between neighboring genes, providing a regulatory mechanism that tunes transcriptional variance in engineered gene networks and explains the behavior of co-localized native circuits.
Date issued
2022-10
URI
https://hdl.handle.net/1721.1/159874
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Cell Reports
Publisher
Elsevier BV
Citation
Johnstone, Christopher P and Galloway, Kate E. 2022. "Supercoiling-mediated feedback rapidly couples and tunes transcription." Cell Reports, 41 (3).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.