Abstract:
Let X be a smooth projective surface and choose a curve C on X. Let VC be the set of all irreducible divisors on X linearly equivalent to C whose normalization is a rational curve. The Severi problem for rational curves on X with divisor class [C] consists of studying the irreducibility of the spaces VC as C varies among all curves on X. In this thesis, we prove that all the spaces VC are irreducible in the case where X is a del Pezzo surface of degree at least two. If the degree of X is one, then we prove the same result only for a general X, with the exception of V-KX, where KX is the canonical divisor of X. It is well known that for general del Pezzo surface of degree one, V-KX consists of twelve points, and thus cannot be irreducible.

Description:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.; This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.; Includes bibliographical references (p. 141-142).