Advanced Search
DSpace@MIT

Accuracy of pulsed arterial spin labeling magnetic resonance imaging in the human brain : tag width and timing effects

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor Richard D. Hoge and Elfar Adalsteinsson. en_US
dc.contributor.author Bolar, Divya Sanam en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. en_US
dc.date.accessioned 2007-08-29T20:42:21Z
dc.date.available 2007-08-29T20:42:21Z
dc.date.copyright 2007 en_US
dc.date.issued 2007 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/38673
dc.description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007. en_US
dc.description Includes bibliographical references (p. 28-29). en_US
dc.description.abstract Arterial spin labeling (ASL) is the only non-invasive magnetic resonance imaging (MRI) technique that allows absolute quantification of cerebral blood flow (CBF). It involves using radiofrequency pulses designed to invert the spins of water in arterial blood, effectively creating a magnetic bolus. This inverted blood can be considered an endogenous contrast agent; imaging as it traverses the vascular tree allows CBF measurements. Such types of experiments are especially useful for functional neuro-activation studies and in settings of neuropathology. Two flavors of ASL exist: continuous ASL and pulsed ASL. Pulsed ASL has the advantage of not requiring specialized imaging hardware, and can be performed using standard clinical scanners found in most hospitals. Pulsed ASL techniques, however, may yield inaccurate perfusion values and diminished perfusion sensitivity if appropriate labeling parameters are not chosen, particularly during global challenges such as hypercapnia. In this study, the accuracy of QUIPSS II (Quantitative Imaging of Perfusion using a Single Subtraction - second version) ASL for measuring flow changes during a global flow perturbation (hypercapnia) was assessed. en_US
dc.description.abstract (Cont.) Multiple inversion time ASL experiments were performed to examine bolus delivery dynamics under conditions of normocapnia and hypercapnia and at variable inversion band thicknesses. Tag delivery (inflow) curves revealed that typical published parameter values can cause substantial perfusion error during global challenges and render perfusion increases nearly undetectable. Theoretical criteria for choosing optimal QUIPSS II ASL parameter values are explored, and a multiple inversion time method for empirical determination of tag characteristics presented. Single inversion time functional experiments were subsequently performed to show that by using larger inversion band thicknesses and optimized timing parameters, perfusion accuracy and sensitivity can be substantially improved. Activation maps from block design visual cortex activation experiments and normocapnia-hypercapnia experiments support this conclusion. en_US
dc.description.statementofresponsibility by Divya Sanam Bolar. en_US
dc.format.extent 39 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582
dc.subject Electrical Engineering and Computer Science. en_US
dc.title Accuracy of pulsed arterial spin labeling magnetic resonance imaging in the human brain : tag width and timing effects en_US
dc.title.alternative Accuracy of pulsed ASL MRI in the human brain : tag width and timing effects en_US
dc.type Thesis en_US
dc.description.degree S.M. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. en_US
dc.identifier.oclc 163945456 en_US


Files in this item

Name Size Format Description
163945456.pdf 1.557Mb PDF Preview, non-printable (open to all)
163945456-MIT.pdf 1.557Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage