Advanced Search
DSpace@MIT

Quantum information processing in multi-spin systems

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor David G. Cory. en_US
dc.contributor.author Cappellaro, Paola en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering. en_US
dc.date.accessioned 2008-04-23T14:40:00Z
dc.date.available 2008-04-23T14:40:00Z
dc.date.copyright 2006 en_US
dc.date.issued 2006 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/41282
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006. en_US
dc.description Includes bibliographical references (p. 133-142). en_US
dc.description.abstract Coherence and entanglement in multi-spin systems are valuable resources for quantum information processing. In this thesis, I explore the manipulation of quantum information in complex multi-spin systems, with particular reference to Nuclear Magnetic Resonance implementations. In systems with a few spins, such as molecules in the liquid phase, the use of multi-spin coherent states provides a hedge against the noise, via the encoding of information in logical degrees of freedom distributed over several spins. Manipulating multi-spin coherent states also increases the complexity of quantum operations required in a quantum processor. Here I present schemes to mitigate this problem, both in the state initialization, with particular attention to bulk ensemble quantum information processing, and in the coherent control and gate implementations. In the many-body limit provided by nuclear spins in single crystals, the limitations in the available control increase the complexity of manipulating the system; also, the equations of motion are no longer exactly solvable even in the closed-system limit. Entanglement and multi-spin coherences are essential for extending the control and the accessible information on the system. I employ entanglement in a large ensemble of spins in order to obtain an amplification of the small perturbation created by a single spin on the spin ensemble, in a scheme for the measurement of a single nuclear spin state. I furthermore use multiple quantum coherences in mixed multi-spin states as a tool to explore many-body behavior of linear chain of spins, showing their ability to perform quantum information processing tasks such as simulations and transport of information. en_US
dc.description.abstract (cont.) The theoretical and experimental results of this thesis suggest that although coherent multi-spin states are particularly fragile and complex to control they could make possible the execution of quantum information processing tasks that have no classical counterparts. en_US
dc.description.statementofresponsibility by Paola Cappellaro. en_US
dc.format.extent 142 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Nuclear Science and Engineering. en_US
dc.title Quantum information processing in multi-spin systems en_US
dc.type Thesis en_US
dc.description.degree Ph.D. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering. en_US
dc.identifier.oclc 213481150 en_US


Files in this item

Name Size Format Description
213481150.pdf 12.47Mb PDF Preview, non-printable (open to all)
213481150-MIT.pdf 12.47Mb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage