Show simple item record

dc.contributor.advisorStephen C. Paschall II and David W. Miller.en_US
dc.contributor.authorKremer, Alison Saraen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2009-10-01T15:43:56Z
dc.date.available2009-10-01T15:43:56Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/47795
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 175-177).en_US
dc.description.abstractDeep space missions to the Moon and Mars under NASA's Constellation Program are a tangible goal. However, the Deep Space Network (DSN) antennas which provided ground based navigation state updates to spacecraft of the Apollo era are aging and overtaxed. The over-reliance on this ground based system for high accuracy navigation of deep space vehicles presents a distinct challenge. One viable solution to this dilemma is the application of autonomous navigation for deep space vehicles. This thesis investigates the problem of autonomous navigation by conducting a linear covariance analysis trade study on various configurations of autonomous sensors for a representative cislunar mission. The sensor suite is comprised of twelve sensors of varying measurement types and levels of flight readiness: MIMU IMU, LN200 IMU, star tracker, Inertial Stellar Compass (ISC), lunar orbiting beacon (Navsat), lunar ground beacons (Navsites), LIDAR, known lunar landmarks, SkyMark, TDRS, and GPS. A complete formulation of the linear covariance tool (LINCOV) dynamics and mathematical models of the sensors are presented. The primary focus of the study is a scenario based analysis of the navigation position, velocity, and attitude error covariances along the Moon to Earth trajectory for a specified set of sensor configurations. Major trends and observations from the lunar and Earth region navigation error covariances are discussed. Additionally, a short series of sensitivity tests on the sensor error model parameters, measurement geometry, and system process noise were conducted, providing notable insight and incentive for further studies. The conclusions of this trade study point to a promising future for autonomous space navigation.en_US
dc.description.statementofresponsibilityby Alison Sara Kremer.en_US
dc.format.extent177 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleLinear covariance analysis trade study of autonomous navigation schemes for cislunar missionsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc428980318en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record