Show simple item record

dc.contributor.advisorAlice Wang and Dennis Buss.en_US
dc.contributor.authorChou, Sharon Hen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2010-03-24T20:35:00Z
dc.date.available2010-03-24T20:35:00Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/52762
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionIncludes bibliographical references (p. 44-45).en_US
dc.description.abstractWe propose a computationally efficient statistical static timing analysis (SSTA) technique that addresses intra-die variations at near-threshold to sub-threshold supply voltage, simulated on a scaled 32nm CMOS standard cell library. This technique would characterize the propagation delay and output slew of an individual cell for subsequent timing path analyses. Its efficiency stems from the fact that it only needs to find the delay or output slew in the vicinity of the ?- sigma operating point (where ? = 0 to 3) rather than the entire probability density function of the delay or output slew, as in conventional Monte-Carlo simulations. The algorithm is simulated on combinational logic gates that include inverters, NANDs, and NORs of different sizes. The delay and output slew estimates in most cases differ from the Monte-Carlo results by less than 5%. Higher supply voltage, larger transistor widths, and slower input slews tend to improve delay and output slew estimates. Transistor stacking is found to be the only major source of under-prediction by the SSTA technique. Overall, the cell characterization approach has a substantial computational advantage compared to SPICE-based Monte-Carlo analysis.en_US
dc.description.statementofresponsibilityby Sharon H. Chou.en_US
dc.format.extent45 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleComputationally efficient characterization of standard cells for statistical static timing analysisen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc502416171en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record