Advanced Search
DSpace@MIT

Rings of regular functions on spherical nilpotent orbits for complex classical groups

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor David Alexander Vogan. en_US
dc.contributor.author Suk, Tonghoon en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Mathematics. en_US
dc.date.accessioned 2010-04-28T17:16:57Z
dc.date.available 2010-04-28T17:16:57Z
dc.date.copyright 2009 en_US
dc.date.issued 2009 en_US
dc.identifier.uri http://hdl.handle.net/1721.1/54664
dc.description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009. en_US
dc.description Cataloged from PDF version of thesis. en_US
dc.description Includes bibliographical references (p. 16). en_US
dc.description.abstract Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a G-module. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. en_US
dc.description.statementofresponsibility by Tonghoon Suk. en_US
dc.format.extent 16 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri http://dspace.mit.edu/handle/1721.1/7582 en_US
dc.subject Mathematics. en_US
dc.title Rings of regular functions on spherical nilpotent orbits for complex classical groups en_US
dc.type Thesis en_US
dc.description.degree S.M. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Mathematics. en_US
dc.identifier.oclc 606925136 en_US


Files in this item

Name Size Format Description
606925136.pdf 806.7Kb PDF Preview, non-printable (open to all)
606925136-MIT.pdf 881.6Kb PDF Full printable version (MIT only)

This item appears in the following Collection(s)

Show simple item record

MIT-Mirage