dc.contributor.advisor | Vladimir Stojanović. | en_US |
dc.contributor.author | Moss, Benjamin (Benjamin Roy) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2010-05-25T20:50:32Z | |
dc.date.available | 2010-05-25T20:50:32Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/55122 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 71-72). | en_US |
dc.description.abstract | Processor manufacturers have turned to parallelism to continue to improve processor performance, and the bandwidth demands of these systems have risen. Silicon photonics can lower the energy-per-bit of core-to-core and core-to-memory interconnects to help alleviate bandwidth bottlenecks. In this thesis, methods of controlling the amount of charge entering the PiN-diode structure of a photonic ring modulator are investigated to achieve high energy-efficiency in a constrained monolithic process. A digital modulator driver circuit is designed, simulated, fabricated and partially tested. This circuit uses a push-pull topology with pre emphasis to reduce the energy per bit and to prevent the ring's optical passband from shifting to the next optical channel. A flexible driver test circuit for in-situ device characterization has been developed with a device-to-circuit modeling framework. There are many tradeoffs that must be analyzed from the system, circuit, and device levels. | en_US |
dc.description.statementofresponsibility | by Benjamin Moss. | en_US |
dc.format.extent | 72 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | High-speed modulation of resonant CMOS photonic modulators in deep-submicron bulk-CMOS | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 593760394 | en_US |