MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multigrid Relaxation Methods and the Analysis of Lightness, Shading and Flow

Author(s)
Terzopoulos, Demetri
Thumbnail
DownloadAIM-803.ps (4.841Mb)
Additional downloads
AIM-803.pdf (3.788Mb)
Metadata
Show full item record
Abstract
Image analysis problems, posed mathematically as variational principles or as partial differential equations, are amenable to numerical solution by relaxation algorithms that are local, iterative, and often parallel. Although they are well suited structurally for implementation on massively parallel, locally-interconnected computational architectures, such distributed algorithms are seriously handicapped by an inherent inefficiency at propagating constraints between widely separated processing elements. Hence, they converge extremely slowly when confronted by the large representations necessary for low-level vision. Application of multigrid methods can overcome this drawback, as we established in previous work on 3-D surface reconstruction. In this paper, we develop efficient multiresolution iterative algorithms for computing lightness, shape-from-shading, and optical flow, and we evaluate the performance of these algorithms on Synthetic images. The multigrid methodology that we describe is broadly applicable in low-level vision. Notably, it is an appealing strategy to use in conjunction with regularization analysis for the efficient solution of a wide range of ill-posed visual reconstruction problems.
Date issued
1984-10-01
URI
http://hdl.handle.net/1721.1/5633
Other identifiers
AIM-803
Series/Report no.
AIM-803
Keywords
computer vision, lightness, optical flow, partialsdifferential equations, multigrid relaxation, shape from shading, svariational principles, parallel

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.