Show simple item record

dc.contributor.authorVenditti, David A.
dc.contributor.authorDarmofal, David L.
dc.date.accessioned2010-08-27T19:46:42Z
dc.date.available2010-08-27T19:46:42Z
dc.date.issued2007-08
dc.identifier.urihttp://hdl.handle.net/1721.1/57598
dc.description.abstractAnisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single adaptive solution. The underlying adaptive procedure is based on a merging of adjoint error estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate the various adaptive strategies including a single element airfoil at cruise conditions and a multi-element airfoil in high-lift configuration with flow separation. Numerical results indicate that the lift, drag and moment coefficients are accurately predicted by all of the output–based strategies considered, although slightly better accuracy is obtained in the output(s) for which a particular strategy is specifically designed. Furthermore, the output-based strategies are all shown to be significantly more efficient than pure Hessian-based adaptation in terms of output accuracy for a given grid size.en_US
dc.language.isoen_USen_US
dc.publisherAerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technologyen_US
dc.relation.ispartofseriesACDL Technical Reports;ACDL TR-07-1
dc.subjectanisotropic grid adaptationen_US
dc.subjectadjoint error correction/estimationen_US
dc.subjectmultiple functional outputsen_US
dc.subjectaerodynamicsen_US
dc.subjectfinite volumeen_US
dc.subjectfinite elementen_US
dc.subjectcomputational fluid dynamicsen_US
dc.titleAnisotropic Grid Adaptation for Multiple Aerodynamic Outputsen_US
dc.typeTechnical Reporten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record