Show simple item record

dc.contributor.advisorPaula T. Hammond.en_US
dc.contributor.authorSmith, Renée Chivonen_US
dc.contributor.otherHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.date.accessioned2010-09-03T18:35:47Z
dc.date.available2010-09-03T18:35:47Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/58399
dc.descriptionThesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractLayer-by-layer assembly has become a quintessential tool for the creation of versatile, dynamic nanostructured materials able to dictate cellular behavior through exquisite surface functionality and delivery of bioactive agents. The primary aim of this work was to use layer-by-layer assembly to advance ophthalmic drug delivery modalities post cataract surgery to overcome the challenges of traditional postoperative therapy. Hydrolytically degradable multilayer films were used to create a multi-drug delivery coating for intraocular lenses (IOL). The establishment of a drug delivery coating for intraocular lenses required key advances in ultrathin film technology. This thesis focused on rational polymer design for tailored release, incorporation of hydrophobic small molecule therapeutics, and controlled multi-agent release. Fabrication rules and design tools necessary to create hydrolytically degradable polyelectrolyte multilayer films with preprogrammed advanced engineered release kinetics were investigated. A correlation between polycation hydrophobicity, as determined using octanol:water coefficients, allowed for the reliable prediction of release dynamics. A novel ultrathin system able to produce programmable zero order release kinetics of uncharged or hydrophobic small molecule therapeutics was developed. Charged cyclodextrin polymers were essential for the trapping of cyclodextrin-drug complexes in stable, surface eroding films capable of sustained drug release without altering therapeutic activity. In vitro investigation of cellular interactions with hydrolytically degradable multilayer films containing anti-inflammatory agents was conducted. These anti-inflammatory films controlled inflammation over physiologically relevant timescales and maintained the transparency and optical clarity of the IOL. Lastly, the first multilayer thin film system able to address the demands of both infection and inflammation, using small molecule pharmaceutics is described. The power, versatility, and utility of this multi-functional system were highlighted by the creation of functional drug coatings on intraocular lenses, bandage, and sutures. These combination devices effectively prevented bacterial growth while suppressing the production of inflammatory cytokines. Combined, these efforts surmounted key challenges toward the development of intraocular lenses able to prevent complications of cataract surgery and enhanced the fundamental understanding of layer-by-layer systems.en_US
dc.description.statementofresponsibilityby Renée Chivon Smith.en_US
dc.format.extent167 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard University--MIT Division of Health Sciences and Technology.en_US
dc.titleToward a drug delivery coating for intraocular lensesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc656252827en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record