dc.contributor.advisor | Michael Cleary and Boris Katz. | en_US |
dc.contributor.author | Marrero, John Javier | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-02-23T14:36:38Z | |
dc.date.available | 2011-02-23T14:36:38Z | |
dc.date.copyright | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/61251 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 100-102). | en_US |
dc.description.abstract | When conveying geospatial information via natural language, people typically combine implicit, commonsense knowledge with explicitly-stated information. Usually, much of this is contextual and relies on establishing locations by relating them to other locations mentioned earlier in the conversation. Because people and objects move through the world, a common and useful kind of geospatial phrase is the path expression, which is formed by designating multiple locations as landmarks on the path and relating those landmarks to one another in sequence. These phrases often include nongeospatial information, and the paths often include linear entities. This thesis builds upon the work done for the GeoCoder spatial reasoning system, by addressing several of its limitations and extending its functionality. | en_US |
dc.description.statementofresponsibility | by John Javier Marrero. | en_US |
dc.format.extent | 102 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Resolution of linear entity and path geometries expressed via partially-geospatial natural language | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 701843034 | en_US |