Show simple item record

dc.contributor.advisorVladimir Bulović and Marin Sojačić.en_US
dc.contributor.authorRousseau, Ian Michaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2011-02-23T14:38:31Z
dc.date.available2011-02-23T14:38:31Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61264
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 48-51).en_US
dc.description.abstractOrganic semiconductors and nanomaterials promise to potentially form the basis for future efficient and cost-effective large area optoelectronic devices, such as lightemitting diodes and solar cells. Although these materials' amorphous nature allow utilization of cheap, high-throughput manufacturing techniques, it poses a unique challenge: the physics of carrier and excitation transport in amorphous semiconductors is fundamentally different from their crystalline semiconductor counterparts. Excitations remain localized on single molecules or nanocrystals; the drift-diffusion equations, which describe carrier transport in delocalized states near thermal equilibrium, are no longer valid. A computational model for device operation would give researchers a powerful tool to design and improve devices. This work presents a novel one-dimensional discrete model that combines the computational speed of simulations based on the drift-diffusion equations with the accuracy and flexibility of Monte Carlo simulations. The one-dimensional model is shown to be exactly equivalent to the drift-diffusion model in the limits of small applied field, narrow densities of state, and low carrier concentrations. In this limit, the Einstein relation for Brownian motion holds and the transport parameters in the one-dimensional discrete model can be directly estimated from experimentally-measurable quantities. The model is implemented in an object-oriented Python computational framework. Finally, two test cases are numerically studied: an initial, test device with fictitious parameters and a well-known organic light-emitting diode. Preliminary results demonstrate reproduce experimental current-voltage characteristics over a wide range of bias voltages.en_US
dc.description.statementofresponsibilityby Ian Michael Rousseau.en_US
dc.format.extent51 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titlePhysics and simulation of transport processes in hybrid organic semiconductor devicesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc701915318en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record