Show simple item record

dc.contributor.advisorGeorgia Perakis.en_US
dc.contributor.authorWang, Jingxi, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2011-03-24T20:23:18Z
dc.date.available2011-03-24T20:23:18Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61897
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 83-85).en_US
dc.description.abstractThis thesis proposes a decentralized reward-based incentive mechanism to address the problem of noncomplying subsidiaries when the parent company wish to meet its targeted energy consumption level. Besides its effectiveness in ensuring compliance, the proposed mechanism is advantageous as it is able to induce the optimal subsidiary behavior that maximizes the company profit given a carefully chosen reward allocation scheme. In addition, when the company is willing to trade part of its profit for an operationally simple mechanism, simple uniform allocation scheme is highly effective when the subsidiaries exhibit certain degree of symmetry. The results above are drawn from our investigation on a more general model: Cournot competition under a joint constraint. For this model, we study the equilibrium behavior under free competition and compare the profit and total surplus achieved with the corresponding values when different levels of coordination are introduced in the market (i.e., the Monopoly market and the society-wide coordinated market). We establish tight upper bounds for the profit and total surplus loss due to lack of coordination as functions of various market characteristics (i.e., number of firms, intensity of competition and asymmetry between firms).en_US
dc.description.statementofresponsibilityby Jingxi Wang.en_US
dc.format.extent85 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titleA decentralized incentive mechanism for company-wide energy consumption reductionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc706817655en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record