Advanced Search

Branes, graphs and singularities

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.advisor John McGreevy. en_US Vegh, David en_US
dc.contributor.other Massachusetts Institute of Technology. Dept. of Physics. en_US 2011-05-23T18:01:04Z 2011-05-23T18:01:04Z 2009 en_US 2009 en_US
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009. en_US
dc.description Cataloged from PDF version of thesis. en_US
dc.description Includes bibliographical references (p. 341-354). en_US
dc.description.abstract In this thesis, we study various aspects of string theory on geometric and nongeometric backgrounds in the presence of branes. In the first part of the thesis, we study non-compact geometries. We introduce "brane tilings" which efficiently encode the gauge group, matter content and superpotential of various quiver gauge theories that arise as low-energy effective theories for D-branes probing singular non-compact Calabi-Yau spaces with toric symmetries. Brane tilings also offer a generalization of the AdS/CFT correspondence. A technique is developed which enables one to quickly compute the toric vacuum moduli space of the quiver gauge theory. The equivalence of this procedure and the earlier approach that used gauged linear sigma models is explicitly shown. As an application of brane tilings, four dimensional quiver gauge theories are constructed that are AdS/CFT dual to infinite families of Sasaki-Einstein spaces. Various checks of the correspondence are performed. We then develop a procedure that constructs the brane tiling for an arbitrary toric Calabi-Yau threefold. This solves a longstanding problem by computing superpotentials for these theories directly from the toric diagram of the singularity. A different approach to the low-energy theory of D-branes uses exceptional collections of sheaves associated to the base of the threefold. We provide a dictionary that translates between the language of brane tilings and that of exceptional collections. Geometric compactifications represent only a very small subclass of the landscape: the generic vacua are non-geometric. In the second part of the thesis, we study perturbative compactifications of string theory that rely on a fibration structure of the extra dimensions. Non-geometric spaces preserving .A = 1 supersymmetry in four dimensions are obtained by using T-dualities as monodromies. Several examples are discussed, some of which admit an asymmetric orbifold description. We explore the possibility of twisted reductions where left-moving spacetime fermion number Wilson lines are turned on in the fiber. en_US
dc.description.statementofresponsibility by David Vegh. en_US
dc.format.extent 354 p. en_US
dc.language.iso eng en_US
dc.publisher Massachusetts Institute of Technology en_US
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. en_US
dc.rights.uri en_US
dc.subject Physics. en_US
dc.title Branes, graphs and singularities en_US
dc.type Thesis en_US Ph.D. en_US
dc.contributor.department Massachusetts Institute of Technology. Dept. of Physics. en_US
dc.identifier.oclc 720743119 en_US

Files in this item

Name Size Format Description
720743119-MIT.pdf 28.00Mb PDF Full printable version

This item appears in the following Collection(s)

Show simple item record