Advanced Search

Basic Solid Mechanics for Tactile Sensing

Research and Teaching Output of the MIT Community

Show simple item record Fearing, Ronald S. en_US Hollerbach, John M. en_US 2004-10-04T14:54:59Z 2004-10-04T14:54:59Z 1984-03-01 en_US
dc.identifier.other AIM-771 en_US
dc.description.abstract In order to stably grasp objects without using object models, tactile feedback from the fingers is sometimes necessary. This feedback can be used to adjust grasping forces to prevent a part form slipping from a hand. If the angle of force at the object finger contact can be determined, slip can be prevented by the proper adjustment of finger forces. Another important tactile sensing task is finding the edged and corners of an object, since they are usually feasible grasping locations. This paper describes how this information can be extracted from the finger-object contact using strain sensors beneath a compliant skin. For determining contact forces, strain measurements are easier to use than the surface deformation profile. The finger is modelled as an infinite linear elastic half plane to predict the measured strain for several contact types and forces. The number of sensors required is less than has been proposed for other tactile recognition tasks. A rough upper bound on sensor density requirements for a specific depth is presented that is bas3ed on the frequency response of the elastic medium. The effects of different sensor stiffness on sensor performance are discussed. en_US
dc.format.extent 3273775 bytes
dc.format.extent 2552681 bytes
dc.format.mimetype application/postscript
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.relation.ispartofseries AIM-771 en_US
dc.title Basic Solid Mechanics for Tactile Sensing en_US

Files in this item

Name Size Format Description 3.122Mb Postscript
AIM-771.pdf 2.434Mb PDF

This item appears in the following Collection(s)

Show simple item record