Now showing items 1-20 of 109

    • Effective Thermal Conductivity of Prismatic MHTGR Fuel 

      Han, J. C.; Driscoll, M. J.; Todreas, N. E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1989-09-30)
      The Reactor Cavity Cooling System (RCCS) is an essential passive safety feature of the Modular High Temperature Gas-Cooled Reactor (MHTGR). Its function is to assure the protection of both public safety and owner investment. ...
    • Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor 

      Hejzlar, P.; Todreas, N. E.; Driscoll, M. J. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1994-06)
      A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated ...
    • Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor 

      Hejzlar, P.; Todreas, N. E.; Driscoll, M. J. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1994-06-01)
      A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid Sic-coated ...
    • An Integrated Formal Approach for Developing High Quality Software for Safety-Critical Systems 

      Ouyang, Meng; Golay, Michael W. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1995-09)
      This report presents the results of a study which devises an Integrated Formal Approach (IFA) for improving specifications of the designs of computer programs used in safety-critical systems. In this IFA, the formal ...
    • Use of Performance Monitoring to Improve Reliability of Emergency Generators Diesel 

      Dulik, J. D.; Golay, M. W. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1997-12)
      Emergency diesel generators are one of the most important contributors to the core damage failure rate of nuclear power plants. Current required testing and maintenance procedures are excessively strict and expensive without ...
    • FUEL PERFORMANCE ANALYSIS OF EXTENDED OPERATING CYCLES IN EXISTING LWRs 

      Handwerk, C. S.; Meyer, J. E.; Todreas, Neil E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Fuel Cycle Program, 1998-01)
      An integral part of a technical analysis of a core design, fuel performance is especially important for extended operating cycles since the consequences of failed fuel are greater for this operating strategy than for ...
    • Risk-Informed, Performance-Based Regulatory Implications of Improved Emergency Diesel Generator Reliability 

      Utton, S.; Golay, M. W. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1998-01)
      The Nuclear Regulatory Commission's (NRC) steady progress towards risk-informed performance-based regulation (RIPBR) prompted the practical application of this regulatory tool in order to demonstrate its potential benefits. ...
    • A Semi-Passive Containment Cooling System Conceptual Design 

      Liu, H.; Todreas, N. E.; Driscoll, M. J.; Byun, C. S.; Kim, Y. H.; e.a. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 1998-02)
      The objective of this project was to investigate a passive containment cooling system (PCCS) for the double concrete containment of the Korean Next Generation Reactor (KNGR). Two conceptual PCCS designs: the thermosyphon ...
    • ON THE USE OF THORIUM IN LIGHT WATER REACTORS 

      Kazimi, Mujid S.; Czerwinski, Kenneth R.; Driscoll, Michael J.; Hejzla, P.; Meyer, J. E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Fuel Cycle Program, 1999-04)
      The advantages and disadvantages of the use of thorium bearing fuel in light water reactors have been examined several times from the beginning of the nuclear energy era until the late seventies. The recent motivation ...
    • PROLIFERATION RESISTANT, LOW COST, THORIA-URANIA FUEL FOR LIGHT WATER REACTORS 

      Kazimi, Mujid S.; Driscoll, Michael J.; Ballinger, Ronald G.; Clarno, K. T.; Czerwinski, Kenneth R.; e.a. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Fuel Cycle Program, 1999-06-01)
      1. Summary Project Objectives: Our objective is to develop a fuel consisting of mixed thorium dioxide and uranium dioxide (ThO[subscript 2]-UO[subscript 2]) for existing light water reactors (LWRs) that (a) is less ...
    • Conceptual Reactor Physics Design of a Lead-Bismuth-Cooled Critical Actinide Burner 

      Hejzlar, Pavel; Driscoll, Michael J.; Kazimi, Mujid S. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2000-02)
      Destruction of actinides in accelerator-driven subcriticals and in stand-alone critical reactors is of contemporary interest as a means to reduce long-term high-level waste radiotoxicity. This topical report is focused ...
    • CATILaC: Computer-Aided Technique for Identifying Latent Conditions User's Manual, Version 1.2 

      Marchinkowski, K.; Weil, R.; Apostolakis, George E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Systems Enhanced Performance Program, 2000-04)
      1. Overview 1.1 Introduction to the CATILaC Methodology By understanding the way that a facility coordinates the work it does, failure events can be placed into a broader organizational context. Once the organizational ...
    • CATILaC: Computer-Aided Technique for Identifying Latent Conditions User's Manual, Version 1.2 

      Marchinkowski, K.; Weil, R.; Apostolakis, G. A. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Systems Enhanced Performance Program, 2000-04)
    • Selection of Correlations and Look-Up Tables for Critical Heat Flux Prediction in the Generation IV "IRIS" Reactor 

      Romano, A.; Todreas, Neil E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2000-06)
      In order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burn (B&B) fuel ...
    • Modular Pebble Bed Reactor 

      Kadak, Andrew C.; Ballinger, Ronald G.; Driscoll, Michael J.; Yip, Sidney; Wilson, David Gordon; e.a. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2000-07)
      This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning ...
    • Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle 

      Kim, D.; Todreas, N. E.; Kazimi, Mujid S.; Driscoll, M. J. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2000-08)
      The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...
    • Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle 

      Kim, D.; Todreas, N. E.; Kazimi, Mujid S.; Driscoll, M. J. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2000-11)
      The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...
    • Feasibility Investigations for Risk-Based Nuclear Safety Regulation 

      Beer, B. C.; Golay, M. W.; Apostolakis, G. E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Systems Enhanced Performance Program, 2001-02)
    • Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation 

      Buongiorno, J.; Todreas, N. E; Kazimi, Mujid S.; Czerwinski, K. R. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program, 2001-03)
      The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...
    • A Systematic Study of Moderation Effects On Neutronic Performance of UO[subscript 2] Fueled Lattices 

      Xu, Z.; Driscoll, Michael J.; Kazimi, Mujid S. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Fuel Cycle Program, 2001-05)
      This report addresses the physics of reactor cores that can be operated for 10 to 15 years without refueling — inspired by the objective of enhanced nuclear fuel cycle performance with regard to economics and resistance ...