Advanced Search
DSpace@MIT

Browsing Reactor Redesign Program (MRR) - Technical Reports by Title

Research and Teaching Output of the MIT Community

Planned maintenance alert - Monday, April 21: DSpace@MIT will undergo maintenance activities that will affect service availability and access to file content. While the service interruptions should be brief, access to file content may take longer to restore. Status updates will be posted to http://3down.mit.edu/.

Browsing Reactor Redesign Program (MRR) - Technical Reports by Title

Sort by: Order: Results:

  • Bean, Malcolm K.; Dewitt, Gregory Lee; Cabeche, Dion T.; Gerrity, Thomas P.; Haratyk, Geoffrey; Kersting, Alyssa R.; Lee, Youho; Virgen, Matthew M.; Lenci, Giancarlo; Lin, Christie; Metzler, Florian; Ochoukov, Roman Igorevitch; Reed, Mark; Sobes, Vladimir; Sugrue, Rosemary M.; Shwageraus, Eugene; Wisniowska, Agata Elzbieta; Youchak, Paul M. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2011-08-01)
    Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...
  • Kempf, Stephanie A.; Hu, Lin-Wen; Forget, Benoit (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2011-06-01)
    In response to increasing demands for the services of research reactors, a 5 MW LEUfueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...
  • Ellis, T.S.; Forget, Benoit; Kazimi, Mujid S.; Newton, T.; Pilat, Edward E. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2009-02-01)
    Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...
  • Romano, Paul Kollath; Newton, Thomas H., Jr.; Forget, Benoit (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2009-06-01)
    Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able ...
  • Plumer, Kevin E.; Newton, Thomas H., Jr.; Forget, Benoit (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2011-06-01)
    In accordance with a 1986 NRC ruling, the MIT Research Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. A component of the conversion analysis ...
  • Wan, Yunzhi; Hu, Lin-Wen (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2009-05-01)
    The MIT Research Reactor (MITR) is in the process of conducting a design study to convert from High Enrichment Uranium (HEU) fuel to Low Enrichment Uranium (LEU) fuel. The currently selected LEU fuel design contains 18 ...
  • Yuen-Ting Wong, S.; Hu, Lin-Wen; Kazimi, Mujid S. (Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. MIT Reactor Redesign Program, 2008-09-01)
    The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to ...
TechReports