Show simple item record

dc.contributor.advisorBarry Parsons.en_US
dc.contributor.authorDriscoll, Mavis Lynnen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2012-02-24T16:28:01Z
dc.date.available2012-02-24T16:28:01Z
dc.date.copyright1987en_US
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/69180
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987.en_US
dc.descriptionVita.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractGravity derived from Seasat altimetry has provided a means of estimating seafloor topography and its compensation, which in turn can be used to understand the evolution of oceanic lithosphere. In the first study, the correlation between the geoid, deflection of the vertical, and seafloor topography is investigated along a section of the Southwest Indian Ridge. Geoid anomalies computed from a simple thermal model fairly accurately predict the intermediate-wavelength anomalies across the fracture zones. The shorter wavelength anomalies are consistent with those calculated from topography using elastic plate compensation. The combined effect of the thermal offset and seafloor topography produces an anomaly which has a small-amplitude, short-wavelength depression directly over the fracture zone valley. Pronounced lineations in the horizontal geoid gradient do not coincide with the valley but have trends parallel to the fracture zones. In the second study, fracture zones along the Southwest Indian Ridge are identified using altimeter profiles and bathymetry. Finite poles of rotation are determined from the fracture zone locations and magnetic anomaly lineations for anomalies 6 (20 Ma), 13 (37 Ma), and 20 (45 Ma). The new poles are in general agreement with previously published poles and describe a fairly consistent direction of relative motion between Africa and Antarctica for the past 45 Myr. A present-day pole of rotation calculated from transform fault azimuths determined primarily from their geoid anomalies, agrees with published poles based on bathymetric data. In the third study, the rate of change of the geoid with age has been estimated as a function of age from geoid offsets across the Eltanin and Udintsev fracture zones and used to constrain thermal models of lithospheric cooling. Observed trends in the geoid slope versus age plots are similar on both branches of the Eltanin and the east limb of the Udintsev fracture zone. The similarity in trends argues against the effects of isolated thermal or bathymetric anomalies and appears instead to reflect a general feature of the geoid-slope versus average age relationship across fracture zones. Although the thermal plate cooling model is successful in predicting both seafloor depths and heat flow values out to ages of at least 80 m.y. B.P., it cannot explain the observed geoid slope values for these two fracture zones. It is not clear at this point whether this is due to inadequacies in the cooling model or to peculiarities in fracture zone evolution.en_US
dc.description.statementofresponsibilityby Mavis Lynn Driscoll.en_US
dc.format.extent165 leaves (some folded)en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshIsostasyen_US
dc.subject.lcshMarine geophysicsen_US
dc.titleApplication of Seasat altimetry to tectonic studies of fracture zones in the Southern oceansen_US
dc.title.alternativeSeasat altimetry to tectonic studies of fracture zones in the Southern oceans, Application ofen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanographyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc17914520en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record