MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating Dependency Structure as a Hidden Variable

Author(s)
Meila, Marina; Jordan, Michael I.; Morris, Quaid
Thumbnail
DownloadAIM-1611.ps (161.1Kb)
Additional downloads
AIM-1611.pdf (279.3Kb)
Metadata
Show full item record
Abstract
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EMand the Minimum Spanning Tree algorithm to find the ML and MAP mixtureof trees for a variety of priors, including the Dirichlet and the MDL priors.
Date issued
1997-06-01
URI
http://hdl.handle.net/1721.1/7245
Other identifiers
AIM-1611
CBCL-151
Series/Report no.
AIM-1611CBCL-151

Collections
  • AI Memos (1959 - 2004)
  • CBCL Memos (1993 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.