dc.contributor.author | Meila, Marina | en_US |
dc.contributor.author | Jordan, Michael I. | en_US |
dc.contributor.author | Morris, Quaid | en_US |
dc.date.accessioned | 2004-10-20T21:04:00Z | |
dc.date.available | 2004-10-20T21:04:00Z | |
dc.date.issued | 1997-06-01 | en_US |
dc.identifier.other | AIM-1611 | en_US |
dc.identifier.other | CBCL-151 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/7245 | |
dc.description.abstract | This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EMand the Minimum Spanning Tree algorithm to find the ML and MAP mixtureof trees for a variety of priors, including the Dirichlet and the MDL priors. | en_US |
dc.format.extent | 165004 bytes | |
dc.format.extent | 286009 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | AIM-1611 | en_US |
dc.relation.ispartofseries | CBCL-151 | en_US |
dc.title | Estimating Dependency Structure as a Hidden Variable | en_US |