Show simple item record

dc.contributor.advisorJerome J. Connor.en_US
dc.contributor.authorSpittka, Berndt F. (Berndt Friedrich), 1980-en_US
dc.contributor.otherUnited States. Dept. of the Army.en_US
dc.date.accessioned2012-10-26T18:06:23Z
dc.date.available2012-10-26T18:06:23Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74404
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 115-117)en_US
dc.description.abstractHighway bridges are exposed to numerous elemental and loading issues that are extremely difficult for a designer to anticipate and account for during design. The current state of practice is to design a bridge deck for a certain life span and then turn the bridge over to maintenance personnel who attempt to prolong the life of the deck through a variety of repair and rehabilitation measures. These repair measures are rarely, if ever, considered during the design process of the bridge deck. Numerous researchers have looked at making bridges, specifically decks, more repairable. The majority of these research efforts have focused on the bridge deck system as a whole. Other researchers have looked at individual elements of the bridge deck to girder connection to see if the required strength could be achieved while making the connections easier to take apart. One of the main components in the bridge deck to girder system is the steel shear stud connection, which is used to create composite action between the deck and the girder. Numerous researchers have studied this connection from a strength perspective, and the strength equations for the shear connection have been codified. Shear connections using headless studs have been researched as well, but always as a part of a larger deck to girder connection system. The headless stud has never been researched to see how it responds to a shear loading. This study looks at headless studs with varying levels of debonding along the stud shaft to analyze the impact on the load resistance that the levels of debonding would have. Granular materials for the shear transfer of load are also looked at. The results show that, as expected, the headless, debonded shear studs can carry less load than a bonded stud, but the difference in load carrying capacity is within the suggested over-estimation range of the codes that other researchers have suggested. These results suggest that the use of headless, debonded shear studs in a deck to girder connection is a feasible way to make that connection more repairable.en_US
dc.description.sponsorshipFunded by the U.S. Dept. of the Army.en_US
dc.description.statementofresponsibilityby Berndt F. Spittkaen_US
dc.format.extent117 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.subjectUnited States. the Army.en_US
dc.subject.lcshBridges Design and constructionen_US
dc.subject.lcshBridges Maintenance and repairen_US
dc.subject.lcshBridges Live loadsen_US
dc.subject.lcshBridges Floorsen_US
dc.subject.lcshComposite constructionen_US
dc.subject.lcshShear (Mechanics)en_US
dc.subject.lcshJoints (Engineering)en_US
dc.subject.lcshGirdersen_US
dc.titleAnalysis of headless shear stud connectionsen_US
dc.typeUnited States Military Academy publications by a graduate.en_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentUnited States. Dept. of the Army.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc810337434en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record